ANALISIS SIFAT KIMIA DAN SIFAT ANATOMI KAYU MANGIUM (Acacia mangium Willd.) DARI BERBAGAI PROVENANSI

Oleh:
HENDRY PRAMUDIYO WARDANY
E02497060

JURUSAN TEKNOLOGI HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2002
Kupersembahkan karya kecil ini untuk Bapak, Ibu, Adikku dan Erika yang ku sayangi...
ANALISIS SIFAT KIMIA DAN SIFAT ANATOMI
KAYU MANGIUM (Acacia mangium Willd.)
DARI BERBAGAI PROVENANSI

Skripsi
Sebagai Salah Satu Syarat
Untuk Memperoleh Gelar Sarjana Kehutanan
Pada Fakultas Kehutanan
Institut Pertanian Bogor

Oleh
HENDRY PRAMUDIYO WARDANY
E02497060

JURUSAN TEKNOLOGI HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2002
Judul Penelitian : Analisis Sifat Kimia dan sifat Anatomi Kayu Mangium (Acacia mangium Willd.) dari Berbagai Provenansi
Nama Mahasiswa : Hendry Pramudiyo Wardany
Nomor Pokok : E02497060
Program Studi : Teknologi Hasil Hutan
Sub Program Studi : Pengolahan Hasil Hutan

Menyetujui,
Dosen Pembimbing

[Signature]

Prof. Dr. Ir. Wazrin Syafii, M.Agr
Tanggal :

Mengetahui,
Ketua Jurusan Teknologi Hasil Hutan
Fakultas Kehutanan Institut Pertanian Bogor

[Signature]

Dr. Irsan Febrianto, MS
Tanggal :

Tanggal Lulus : 21 Agustus 2002
RIWAYAT HIDUP

Penulis dilahirkan di Madiun Jawa Timur pada tanggal 17 Februari 1979 sebagai anak pertama dari dun bersaudara pasangan Atang Warsamoen (Bapak) dan Yayuk Indiyah Wahyuni (Ibu).

Sebagai salah satu syarat memperoleh gelar Sarjana Kehutanan pada Fakultas Kehutanan Institut Pertanian Bogor, penulis melakukan dui menyusun skripsi dengan judul “Analisis Sifat Kimia dan Sifat Anatomi Kayu Mangium (Acacia mangium Willd.) dari Berbagai Provenansi” dibawah bimbingan Prof. Dr. Ir. Wsarin syaf’i, M.Agr.
RINGKASAN

Hendry Pramudiyo Wardany (E02497060). Analisis Sifat Kimia dan Sifat Anatomi Kayu Mangium (Acacia mangium Willd) dari Berbagai Provenansi, dibawah bimbingan Prof. Dr. Ir. Wasrin Syafi’i, M.Agr.

Pemanfaatan hutan secara berlebihan dan besar-besaran untuk memenuhi kebutuhan manusia akan kaya mengakibatkan menurunnya ketersediaan kaya seiring dengan bertambahnya jumlah penduduk, perkembangan pembangunan yang disertai dengan perkembangan teknologi yang semakin pesat. Sedangkan dilain pihak kondisi hutan yang merupakan sumber utama hasil hutan semakin berkurang baik luas maupun produktivitasnya. Selain itu persediaan kaya awet dan berkualitas tinggi semakin berkurang dan dirasa kurang mencukupi kebutuhan manusia.

Salah satu cara untuk mengatasi hal tersebut yaitu dengan melakukan pembangunan Hutan Tanaman Industri (HTI). Pembangunan HTI merupakan suatu usaha guna memenuhi kebutuhan kaya sehingga dapat dicapai suatu penyediaan bahan baku industri perkayuan secara kontinyu dan berkesinambungan. Berdasarkan hal tersebut maka jenis pohon yang ditanam pada areal HTI harus mempunyai sifat-sifat dan persyaratan tertentu antara lain cepat tumbuh. Acacia mangium Willd. merupakan salah satu jenis pohon primadona pada pembangunan HTI. Akan tetapi pembangunan HTI tersebut bukanlah suatu pekerjaan yang mudah. Permasalahan yang dihadapi diantaranya yaitu mengenai pemilihan tempat asal (provenansi) yang paling sesuai untuk dikembangkan, yang sebagian besar merupakan jenis-jenis pohon asing bagi cilok areal tanaman.

Dengan mengetahui komposisi kimia kayu dapat dijadikan sebagai dasar pertimbangan untuk menentukan industri pengolahan kayu seperti industri pulp dan kertas. Selain sifat kimia dimensi serat juga berpengaruh terhadap sifat-sifat dari kertas yang akan dihasilkan. Peranan dimensi serat yang terdiri dari panjang, diameter dan tebal dinding mempunyai hubungan satu sama lain yang komplek serta memberikan pengaruh mendasar terhadap sifat fisik pulp dan kertas.

Penelitian ini bertujuan untuk mengetahui kadar komponen kimia Acacia mangium Willd. (holoselulosa, selulosida, α-selulosida, lignin dan ekstraktif) dan turunan dimensi seratnya (trunkel ratio (RR), daya tenun (DT), muhlsteph ratio (MR), flexibility ratio (FR), dan coefficient of rigidity (CR)) pada berbagai tingkat provenansi dan kemungkinan pemanfaattannya sebagai bahan baku pulp dan kertas.

Penentuan komponen kimia mengacu pada standar TAPPI (Technical Association of Pulp and Paper Industry) 254 om-88. Persiapan diawali dengan menggiling kayu dengan hammer mill dan diayak dengan ukuran 40-60 mesh. Penentuan kadar holoselulosa berdasarkan standar TAPPI T9 wd-75, kadar selulosa berdasarkan standar TAPPI T17wd-70, kadar α-selulosa berdasarkan standar TAPPI T203 os-74, kadar lignin berdasarkan standar TAPPI T3 os-54 dan penentuan kadar zat ekstraktif kayu larut dalam alkohol benzene (1:2) berdasarkan standar TAPPI T6m. Dan untuk kepentingan pengukuran dimensi serat dibuatlah slide mserasi.

Hasil analisis komponen kimia kayu akasia dari ketiga provenan menunjukkan bahwa kadar holoselulosa berkisar antara 75.45-83.55 % dengan nilai rata-rata sebesar 78.73 % yang berarti termasuk kelas yang mengandung kadar holoselulosa tinggi, kadar selulosa berkisar antara 45.72-60.29 % dengan nilai rata-rata sebesar 51.54 %, kadar yang berarti termasuk kelas yang mengandung kadar selulosa tinggi, kadar α-selulosa berkisar antara 35.64-52.53 % dengan nilai rata-rata sebesar 42.57 % yang berarti termasuk kelas yang mengandung kadar α-selulosa tinggi, kadar lignin klasen berkisar antara 21.98-24.54 % dengan nilai rata-rata sebesar 23.28 % yang berarti termasuk kelas yang mengandung kadar lignin tinggi, kadar nilai zat ekstraktif dala hal ini kelarutan alkohol benzene (1:2) berkisar antara 3.11-4.46 % dengan nilai rata-rata 3.65 % yang berarti termasuk kelas yang mengandung kadar zat ekstraktif rendah.

Secara keseluruhan dari segi komposisi kimia, kayu mangium provenan asal Tully Mission Beach Queensland Australia dalam penelitian ini merupakan jenis yang terbaik digunakan sebagai bahan baku pulp kertas yang didasarkan pada persyaratan sifat kayu untuk bahan baku pulp dan kertas serta klasifikasi komponen kimia kayu Indonesia. Hal ini karena provenan asal Queensland mempunyai kadar holoselulosa paling tinggi, kadar selulosa paling tinggi, kadar α-selulosa paling tinggi, kadar lignin klasen paling rendah dan kadar zat ekstraktif kelarutan dalam alkohol (1:2) paling rendah.

Hasil perhitungan turunan dimensi serat kayu mangium dari ketiga provenan menunjukkan bahwa nilai bilangan runkel berkisar antara 0.40-0.42 dengan nilai rata-rata sebesar 0.41, nilai daya tenen berkisar antara 51.09-53.63 dengan nilai rata-rata sebesar 52.72, nilai muhlsteph ratio berkisar antara 49.55-50.62 % dengan nilai rata-rata sebesar 50.00 %, nilai flexibility ratio berkisar antara 0.70-0.71 dengan nilai rata-rata sebesar 0.706, nilai coefficient of rigidity berkisar antara 0.142-0.147
dengan nilai rata-rata sebesar 0.145. Berdasarkan nilai turunan dimensi serat tersebut maka kayu akasia dari ketiga provenan termasuk kriteria sebagai bahan baku pulp dan kertas kelas mutu II.

Dari turunan dimensi seratnya, secara keseluruhan provenan asal Tully Mission Beach Queensland Australia dalam penelitian ini merupakan jenis yang terbaik digunakan sebagai bahan baku pulp kertas yang didasarkan pada kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas. Hal ini karena provenan asal Queensland mempunyai nilai bilangan runkel paling rendah, nilai mshlsteph ratio paling rendah, nilai flexibility ratio tinggi, dan nilai coefficient of rigidity paling rendah.
KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat, hidayah dan karunia-Nya sehingga penulis dapat menyelesaikan penelitian dan skripsi yang berjudul "Analisis Sifat Kimia dan Sifat Anatomi Kayu Mangium (Acacia mangium Willd.) dari Berbagai Provenansi". Skripsi ini membahas tentang komponen kimia yang terkandung didalam kayu mangium (balsa, celulosa, lignin dan zat ekstraktif) dan turunan dimensi serat (runkel ratio, daya tenun, mhlst steph ratio, flexibility ratio dan coefficient of rigidity) dari ketiga provenan berbeda yaitu provenan Tully Mission Beach Queensland Australia, provenan Balimo District Papua New Guinea dan provenan Indonesia Timur (Sumber Benih Subanjerti Sumatra Selatan) dan kemungkinan pemanfaatannya sebagai bahan baku pulp dan kertas. Dengan mengetahui komposisi kimia kayu dapat dijadikan sebagai dasar pertimbangan untuk menunjang industri pengolahan kayu seperti industri pulp dan kertas. Dalam industri pulp dan kertas komponen kimia kayu dapat memberi petunjuk tentang rendemen, kebutuhan bahan kimia dan kordisi pengolahan yang sesuai. Selain sifat kimia dimensi serat dan turunannya juga berpengaruh terhadap sifat-sifat dari kertas yang akan dihasilkan.

Dalam pelaksanaan penelitian dan penulisan skripsi penulis banyak mendapat bantuan dari berbagai pihak. Untuk itu pada kesempatan ini penulis mengucapkan terima kasih kepada:

2. Bapak Prof. Dr. Ir.Wasrin Syafi’i, M.Agr selaku dosen pembimbing atas segala bimbingan dan pengarahan selama penelitian dan penulisan skripsi ini dengan penuh kesabaran dan perhatian.
5. Staf laboratorium Kimia Jurusan Teknologi Hasil Hutan Fakultas Kehutanan IPB atas segala bantuan dan kerjasamanya selama penulis melakukan penelitian.
6. Erika tercinta yang dengan segala do’a, kasih sayang, dukungan serta waktuunya yang telah diberikan kepada penulis.

9. Sobat sejatiku (Luvin, Wahono, Upank, Rossi, Widi, Yogi), sahabat sebimbingan (Lita, Yesi, Homsah, Binti), rekan-rekan THH-34 dan fahutan 34 atas segala bantuan dan dukungan selama ini.

10. Penghuni Pondok Mr. Bean (Rizki, Bintar, Novis, Rodang, Imam, de..el..el..) dan crew klik computer (Agus, Nanang, Dedhi, Ena) atas segala bantuan, kerjasama serta masa gembira dalam kebersamaan dan persaudaraan.

11. Saudam-saudaraku di asrama Sylvasari (Aldi, Tito, Ratno, Doris, Dian, Aep, Imam, Didi, Heru, Agis, Mulyadi, de..el..el..) atas bantuan dan dukungannya.

12. Seluruh staf Fakultas Kelautan pada umumnya dan Jurusan Teknologi Hasil Hutan pada khususnya, serta semua pihak yang tidak mungkin disebutkan satu per satu yang telah banyak membantu penelitian dan penyusunan skripsi ini.

Penulis menyadari tulisan ini jauh dari kesempurnaan, oleh karena itu penulis mengharapkan kritik dan saran yang membantu demi kesempurnaan tulisan ini. Akhirnya penulis berharap tulisan ini dapat berguna dan memberikan manfaat bagi pihak-pihak yang memerlukan dan berkepentingan serta berguna bagi pengembangan ilmu pengetahuan, khususnya dalam bidang kelautan.

Bogor, Agustus 2002

Penulis
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Hal</th>
</tr>
</thead>
<tbody>
<tr>
<td>KATA PENGANTAR</td>
<td>i</td>
</tr>
<tr>
<td>DAFTAR ISI</td>
<td>iii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>v</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>vi</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>vii</td>
</tr>
<tr>
<td>I. PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>A. Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>B. Tujuan Penelitian</td>
<td>2</td>
</tr>
<tr>
<td>II. TINJAUAN PUSTAKA</td>
<td></td>
</tr>
<tr>
<td>A. Deskripsi Kayu Mangium (Acacia mangium Willd.)</td>
<td>3</td>
</tr>
<tr>
<td>B. Provenansi</td>
<td>4</td>
</tr>
<tr>
<td>C. Komponen Kimia Kayu</td>
<td>5</td>
</tr>
<tr>
<td>1. Holoselulosa</td>
<td>6</td>
</tr>
<tr>
<td>2. Selulosa</td>
<td>6</td>
</tr>
<tr>
<td>3. α-Selulosa</td>
<td>7</td>
</tr>
<tr>
<td>4. Lignin</td>
<td>8</td>
</tr>
<tr>
<td>5. Zat Ekstaktif</td>
<td>8</td>
</tr>
<tr>
<td>D. Sel Serabut (fiber) Serat</td>
<td>10</td>
</tr>
<tr>
<td>1. Panjang Serat</td>
<td>10</td>
</tr>
<tr>
<td>2. Diameter Serat</td>
<td>11</td>
</tr>
<tr>
<td>3. Tebal Dinding Serat</td>
<td>11</td>
</tr>
<tr>
<td>4. Turunan Dimensi Serat</td>
<td>11</td>
</tr>
<tr>
<td>a. Runkel Ratio (RR)</td>
<td>11</td>
</tr>
<tr>
<td>b. Daya Tenun (DT)</td>
<td>12</td>
</tr>
<tr>
<td>c. Multistep Ratio (MR)</td>
<td>12</td>
</tr>
<tr>
<td>d. Flexibility Ratio (FR)</td>
<td>13</td>
</tr>
<tr>
<td>e. Coefficient of Rigidity (CR)</td>
<td>13</td>
</tr>
<tr>
<td>III. BAHAN DAN METODE</td>
<td></td>
</tr>
<tr>
<td>A. Bahan dan Alat</td>
<td>14</td>
</tr>
<tr>
<td>B. Metode Penelitian</td>
<td>14</td>
</tr>
<tr>
<td>1. Persiapan Bahan Baku</td>
<td>14</td>
</tr>
<tr>
<td>2. Penentuan Kadar Komponen Kimia</td>
<td>14</td>
</tr>
</tbody>
</table>
IV. HASIL DAN PEMBAHASAN

A. Komponen Kimia Kayu
 1. Kadar Holoselulosa .. 19
 2. Kadar Selulosa .. 20
 3. Kadar α-Selulosa .. 22
 4. Kadar Lignin Klason .. 23
 5. Kadar Zat Ekstraktif .. 24

B. Turunan Dimensi Serat ... 26
 1. Runkel Ratio (RR) ... 26
 2. Daya Tenun (DT) ... 27
 3. Muhlsteph Ratio (MR) ... 28
 4. Flexibility Ratio (FR) ... 28
 5. Coefficient of Rigidity (CR) 29

V. KESIMPULAN DAN SARAN

A. Kesimpulan .. 32
B. Saran ... 33

DAFTAR PUSTAKA .. 34

LAMPIRAN
<table>
<thead>
<tr>
<th>Tekst</th>
<th>Hal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 1. Komposisi Kimia Acacia mangium Willd.</td>
<td>6</td>
</tr>
<tr>
<td>Tabel 2. Sifat Fisik dan Morfologi Serat Acacia mangium Willd.</td>
<td>10</td>
</tr>
<tr>
<td>Tabel 3. Persyaratan Sifat Kayu Untuk Bahan Baku Pulp dan Kertas</td>
<td>20</td>
</tr>
<tr>
<td>Tabel 4. Klasifikasi Komponen Kimia Kayu Indonesia</td>
<td>21</td>
</tr>
<tr>
<td>Tabel 5. Kriteria Penilaian Serat Kayu Indonesia Untuk Bahan Baku Pulp dan Kertas</td>
<td>26</td>
</tr>
<tr>
<td>Teks</td>
<td>Hal</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Gambar 1. Penampang Serat Sel</td>
<td>17</td>
</tr>
<tr>
<td>Gambar 2. Diagram Batang Kadar Holoselulosa Kayu Mangium dari Berbagai Provenan</td>
<td>19</td>
</tr>
<tr>
<td>Gambar 3. Diagram Batang Selulosa Kayu Mangium dari Berbagai Provenan</td>
<td>20</td>
</tr>
<tr>
<td>Gambar 4. Diagram Batang Kadar α-Selulosa Kayu Mangium dari Berbagai Provenan</td>
<td>22</td>
</tr>
<tr>
<td>Gambar 5. Diagram Batang Kadar Lignin Klason Kayu Mangium dari Berbagai Provenan</td>
<td>23</td>
</tr>
<tr>
<td>Gambar 6. Diagram Batang Kadar Zat Ekstraktif Kayu Mangium dari Berbagai Provenan</td>
<td>24</td>
</tr>
<tr>
<td>Gambar 7. Diagram Batang Nilai Runkel Ratio Kayu Mangium dari Berbagai Provenan</td>
<td>26</td>
</tr>
<tr>
<td>Gambar 8. Diagram Batang Nilai Daya Tenun Kayu Mangium dari Berbagai Provenan</td>
<td>27</td>
</tr>
<tr>
<td>Gambar 10. Diagram Batang Nilai Flexibility Ratio Kayu Mangium dari Berbagai Provenan</td>
<td>29</td>
</tr>
<tr>
<td>Gambar 11. Diagram Batang Nilai Coefficient of Rigidity Kayu Mangium dari Berbagai Provenan</td>
<td>30</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

Teks

<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Komponen Kimia Kayu Acacia mangium Willd. Provenan Tully Mission</th>
<th>Hal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lampiran 1.</td>
<td>Bench Queensland, Australia</td>
<td>36</td>
</tr>
<tr>
<td>Lampiran 2.</td>
<td>Komponen Kimia Kayu Acacia mangium Willd. Provenan Balimo District, Papua New Guinea</td>
<td>37</td>
</tr>
<tr>
<td>Lampiran 3.</td>
<td>Komponen Kimia Kayu Acacia mangium Willd. Provenan Subanjeri</td>
<td>Sumatra Selatan, Indonesia</td>
</tr>
<tr>
<td>Lampiran 4.</td>
<td>Dimensi Serat Kayu Acacia mangium Willd. Provenan Tully Mission</td>
<td>Beach Queensland, Australia</td>
</tr>
<tr>
<td>Lampiran 5.</td>
<td>Dimensi Serat Kayu Acacia mangium Willd. Provenan Balimo District, Papua New Guinea</td>
<td>40</td>
</tr>
<tr>
<td>Lampiran 6.</td>
<td>Dimensi Serat Kayu Acacia mangium Provenan Subanjeri Sumatra Selatan, Indonesia</td>
<td>41</td>
</tr>
<tr>
<td>Lampiran 8.</td>
<td>Pengukuran Dimensi Serat Acacia mangium Willd. Kode Sampel A1.1 Teras</td>
<td>43</td>
</tr>
<tr>
<td>Lampiran 15.</td>
<td>Pengukuran Dimensi Serat Acacia mangium Willd. Kode Sampel C1.1 Gubal</td>
<td>50</td>
</tr>
<tr>
<td>Lampiran 16.</td>
<td>Pengukuran Dimensi Serat Acacia mangium Willd. Kode Sampel C1.1 Teras</td>
<td>51</td>
</tr>
<tr>
<td>Lampiran 17.</td>
<td>Pengukuran Dimensi Serat Acacia mangium Willd. Kode Sampel C1.2 Gubal</td>
<td>52</td>
</tr>
<tr>
<td>Lampiran 18.</td>
<td>Pengukuran Dimensi Serat Acacia mangium Willd. Kode Sampel C1.2 Teras</td>
<td>53</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. Latar belakang

Kecenderungan menurunnya produktivitas sumberdaya hutan serta meningkatnya kebutuhan manusia akan kayu mendorong untuk meningkatkan efisiensi pemanfaatan kayu. Pemanfaatan hutan secara berlebihan dan besar-besaran untuk memenuhi kebutuhan manusia akan kayu mengakibatkan menurunnya ketersediaan kayu seiring dengan bertambahnya jumlah penduduk, perkembangan pembangunan yang disertai dengan perkembangan teknologi yang semakin pesat. Sedangkan dilain pihak kondisi hutan yang merupakan sumber utama hasil hutan semakin berkurang baik luas maupun produktivitasnya. Selain itu persediaan kayu avet dan berkualitas tinggi semakin berkurang dan dirasa kurang mencukupi kebutuhan manusia.

Salah satu cara untuk mengatasi hal tersebut yaitu dengan melakukan pembangunan Hutan Tanaman Industri (HTI). Pembangunan HTI merupakan suatu usaha guna memenuhi kebutuhan kayu sehingga dapat dicapai suatu penyediaan bahan baku industri perkayuan secara kontinyu dan berkesinambungan. Salah satu faktor yang berpengaruh terhadap keberhasilan pembangunan HTI adalah kualitas bahan tanaman agar menghasilkan suatu tegakan yang relatif seragam pertumbuhan dan riapnya. Berdasarkan hal tersebut maka jenis pohon yang ditanam pada areal HTI harus mempunyai sifat-sifat dan persyaratan tertentu antara lain cepat tumbuh. Acacia mangium Willd. merupakan salah satu jenis pohon primadona pada pembangunan HTI. Keunggulan kayu mangium adalah kecepatan tumbulunya yang tinggi, kurang membutuhkan persyaratan hidup yang tinggi serta mudah dalam penyediaan benihnya. Tanaman ini dikembangkan untuk menunjang keperluan berbagai hasil industri pengolahan kayu diantaranya yaitu digunakan sebagai bahan baku pulp dan kertas.

Untuk mewujudkan penyediaan bahan baku industri perkayuan secara kontinyu dan berkesinambungan serta untuk meningkatkan volume produksinya melalui pembangunan HTI tersebut bukanlah suatu pekerjaan yang mudah. Permasalahan yang dihadapi diantaranya yaitu mengenai pemilihan tempat asal (provenansi) yang paling sesuai untuk dikembangkan, yang sebagian besar merupakan jenis-jenis pohon asing bagi calon areal tanam.

Penanaman dalam skala luas areal HTI agar tidak terjadi kegagalan dan kerugian yang besar, maka perlu pemilihan jenis pohon yang sesuai dengan tujuan penanaman dan memenuhi syarat kesesuaian dengan tempat tumbuh. Dalam hal ini uji jenis dan uji provenansi mempunyai peranan penting dalam pembangunan HTI. Uji jenis dilakukan untuk menentukan jenis primadona, sedangkan uji provenansi dilakukan untuk memilih sumber benih yang paling produktif sebelum dikembangkan sebagai tanaman komersial. Kegiatan ini diharapkan dapat memberikan informasi tentang tingkat kesuksesan jenis, pertumbuhan produktivitas (riap) dan tingkat kualitas pohon yang diharapkan (Tampubolon 1985, dalam Rahman, S 1995).
Pertumbuhan pohon merupakan hasil dari proses-proses fisiologis yang sangat komplek dan dipengaruhi oleh dua faktor yaitu faktor dalam dan faktor luar. Faktor dalam yaitu faktor yang terdapat didalam pohon yang secara langsung mempengaruhi pertumbuhan yaitu sifat genetik pohon, bahan makanan yang terdapat dalam pohon dan perimbangan air yang ada, sedangkan faktor luar yaitu yang terdapat di luar pohon dan berpengaruh secara tidak langsung terhadap pertumbuhan yang terdiri dari faktor biotik dan abiotik. Kedua faktor tersebut sangat berpengaruh terhadap sifat-sifat kayu yang dihasilkan.

Kayu mempunyai sifat berbeda-beda, bahkan kayu yang berasal dari satu pohon memiliki sifat yang agak berbeda jika dibandingkan bagian ujung pangkalnya. Banyak sifat dari kayu berhubungan baik langsung maupun tidak langsung dengan sifat kimia kayu. Sifat kimia mempengaruhi pengaruh yang cukup besar terhadap sifat umum kayu. Komponen kimia kayu mempunyai arti penting karena menentukan kegunaan suatu jenis kayu. Komponen kimia yang dimaksud yaitu komponen utama penyusun dinding sel kayu yang terdiri dari selulosa, hemiselulosa, dan lignin serta komponen penyerta yang terdiri zat ekstraktif dan abu (Fengel and Wagener, 1995).

Dengan mengetahui komposisi kimia kayu dapat dijadikan sebagai dasar pertimbangan untuk menunjang industri pengolahan kayu seperti industri pulp dan kertas. Dalam industri pulp dan kertas komponen kimia kayu seperti selulosa, lignin, dan zat ekstraktif dapat memberi petunjuk tentang rendemen, kebutuhan bahan kimia dan kondisi pengolahan yang sesuai. Selain sifat kimia dimensi serat juga berpengaruh terhadap sifat-sifat dari kertas yang akan dihasilkan. Peran dimensi serat yang terdiri dari panjang, diameter dan tebal dinding mempunyai hubungan satu sama lain yang komplek serta memberikan pengaruh mendasar terhadap sifat fisik pulp dan kertas.

Untuk mengetahui kualitas kayu mangium dari ketiga provenans yang berbeda maka dilakukan penelitian tentang sifat dan komposisi kimia kayu dan turunan dimensi seratnya, sehingga diharapkan dapat menunjang pemanfaatan kayu mangium ini sebagai bahan baku pulp dan kertas.

B. Tujuan

Tujuan dari penelitian ini adalah untuk mengetahui kadar komponen kimia kayu Acacia mangium Willd. (holoselulosa, selulosa, α-selulosa, lignin dan ekstraktif) dan turunan dimensi seratnya (trunkel ratio (RR), daya tenun (DT), uhlfsteph ratio (MR), flexibility ratio (FR), dan coefficient of rigidity (CR)) pada berbagai provenansi dan kemungkinan pemanfaatannya sebagai bahan baku pulp dan kertas.
A. Deskripsi Kayu Mangium (*Acacia mangium* Willd.)

Nama botani kayu mangium adalah *Acacia mangium* Willd. yang termasuk kedalam famili Leguminaceae. *A. mangium* merupakan tumbuhan asli Indonesia Timur (Moluku dan Irian Jaya), Papua New Guinea, dan Queensland. *A. mangium* mempunyai pertumbuhan yang sangat cepat, tumbuh baik dilahan kritis atau pada padang alang-alang dan dapat mendominasi gulma pada waktu kurang dari dua tahun tanpa pemeliharaan yang berarti. Pada tanah yang tingkat kesuburan tinggi, mangium dapat tumbuh lebih baik bila dibandingkan dengan jenis tumbuhan yang cepat tumbuh lainnya, begitu pula pada daerah yang tanahnya tandus (Subroto dan Priasukmana, 1985).

Retnowati (1988) menyebutkan bahwa tinggi pohon *A. mangium* dapat mencapai 30 meter dengan batang lurus dan bebas cabang sampai ketanggan lebih dari setengah tinggi total. Kayu mangium dapat tumbuh dengan baik pada tanah yang mudah tererosi, pada bekas perludangan dan pada tanah yang sedikit mengandung mineral. Pada jenis tanah dengan kondisi kesuburan yang cukup tinggi *A. mangium* dapat tumbuh lebih baik jika dibandingkan dengan jenis pohon cepat tumbuh lainnya.

A. mangium dapat tumbuh pada daerah dengan curah hujan tahunan bervariasi antara 1000 mm/thn sampai lebih dari 4500 mm/thn dan termasuk suhu rata-rata 31-34 °C serta rata-rata suhu pada bulan dingin adalah 12°-16 °C (Dursalum 1987, dalam Sustiowati, 1998). *A. mangium* memiliki kayu kerras dan tebal, densitasnya berkisar antara 410-530 kg/m³ dengan prosentase kayunya berkisar antara 30-50 % dan bagian kulitnya berkisar antara 10.5-12.0 %. Besarnya densitas persentase kayu dan kulitnya tergantung pada umur pohon dan asal dari tumbuhan tersebut (Anonim 1996).

B. Provenansi

Callaham (1963) dalam Sidik (1994) mengatakan bahwa uji provenansi merupakan tindakan awal yang harus diprioritaskan dalam kegiatan pemulianan pohon hutan, karena salah satu faktor penentu kualitas tegakan pada awal sampai akhir daur adalah ketetapan memilih sumber benih tanaman yang mempunyai kemampuan tinggi dalam penyesuaian diri dengan lingkungan yang baru. Fungsinya dalam pemulianan pohon hutan adalah untuk mengumpulkan persediaan sumber generetik, dan mengadakan seleksi sumber benih dari berbagai sumber genetik yang ada.

Uji provenansi bertujuan untuk menilai beberapa sumber benih yang baik untuk suatu kondisi pertumbuhan tertentu dan dipergunakan untuk keperluan-keperluan pengumpulan benih yang mewakili populasi tegakan yang dikumpulkan benihnya. Uji provenansi dilakukan untuk beberapa alasan yaitu untuk melindungi variasi genetik yang tersedia secara alami, untuk memilih provenans terbaik, dan untuk pekerjaan pemulianan lebih lanjut (Wright, 1976 dalam Rahman 1995).

Kegiatan penanaman percobaan uji jenis dan uji provenansi perlu dilakukan sebelum melakukan penanaman dalam skala luas. Kegiatan pendahuluan tersebut diharapkan dapat memberikan informasi tingkat kesesuaian jenis, pertumbuhan, produktivitas (riap) dan tingkat kualitas pohon yang diharapkan (Tampubolon, 1985 dalam Sidik, 1994). Salah satu faktor yang mempengaruhi kegiatan penanaman adalah faktor biotik. Faktor biotik adalah faktor-faktor yang disebabkan oleh makhluk hidup lainnya seperti tumbuh-tumbuhan, binatang dan mikroorganisme yang secara langsung maupun tidak langsung mempengaruhi pertumbuhan maupun kualitas kayu yang akan dihasilkan.

1. Kayu yang berasal dari berbagai provenan yang tumbuh di lingkungan yang kurang baik cenderung memiliki sifat yang seragam, dibanding jika tumbuh di lingkungan yang lebih baik.
2. Pertumbuhan *Pinus cortorta*, *P. banksiana*, *Abies spp*, *Picea spp*, dan jenis-jenis pinus dari daerah tropis dipengaruhi oleh provenansi. Sebagian besar kayu daun lebar tidak dipengaruhi oleh sumber biji atau provenansi, kecuali jenis *Eucalyptus*.

3. Interaksi antara genotipe dan lingkungan berpengaruh terhadap sifat-sifat genetik kayu, baik secara individu maupun secara kelompok dalam suatu famili. Kondisi ini menyulitkan untuk memprediksi respon sumber terhadap sifat-sifat kayu yang dihasilkan.

4. Untuk mengetahui sifat-sifat kayu yang dihasilkan dari suatu provenansi yang ditanam dalam suatu lingkungan yang berbeda adalah dengan cara menanam jenis-jenis kayu tersebut dalam lingkungan yang berbeda pula.

C. Komponen Kimia Kayu

Serat yang berasal dari kayu maupun serat yang berasal dari non kayu merupakan sumber selulosa yang baik dalam pembuatan pulp dan kertas. Serat dari kayu dapat diperoleh baik dari kayu daun jarum maupun dari kayu daun lebar, sedangkan serat yang berasal dari non kayu dapat diperoleh dari jerami, merang, rumput, perdu, daun, kulit batang, dan biji (Casey, 1980).

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Jumlah (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-selulosa</td>
<td>39.92</td>
</tr>
<tr>
<td>Holoselulosa</td>
<td>73.12</td>
</tr>
<tr>
<td>Pentosa</td>
<td>16.50</td>
</tr>
<tr>
<td>Zat ekstraktif</td>
<td>3.00</td>
</tr>
<tr>
<td>Lignin</td>
<td>23.14</td>
</tr>
<tr>
<td>Abu</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Uzair dan Andoyo (1989)
1. Holoselulosa

Kadar holoselulosa terdiri dari selulosa dan hemiselulosa yang tinggi dan sangat diperlukan dalam pembuatan pulp kertas. Holoselulosa berpengaruh terhadap sifat keteguhan dan kekakuan serat, sehingga sulit didegradasi oleh fungi. Holoselulosa memiliki sifat afinitas yang besar terhadap air (Fengel dan Wegener, 1995).

Kadar holoselulosa dalam kayu banyka terdapat pada bagian dinding sekunder yang berfungsi sebagai penguat tekstur dan sebagai sumber energi. Karena senyawa ini terdiri dari unit monosakkarida maka apabila dihidrolisis dengan campuran asam sulfat, soda abu dan kapur pada suhu 170\(^{0}\)C akan dihasilkan monomer, farfural, asam asetat dan etanol yang dapat digunakan untuk keperluan berbagai industri, (Harris, 1985 dalam Pari dan Setyani, 1990).

Kandungan holoselulosa yang tinggi pada kayu akan dapat menghasilkan pulp dengan kekuatan yang tinggi dan pulp dapat digiling dengan cepat. Kayu yang mempunyai kandungan holoselulosa yang rendah akan menghambat proses penggilingan dan pulp yang dihasilkan akan mempunyai kekuatan yang rendah (Casey, 1980).

2. Selulosa

Casey (1980) menyatakan bahwa selulosa sedikit larut dalam air sehingga dalam proses penggilingan terjadi pemutusan serat pada waktu bersamaan terbentuk senyawa hidrat. Senyawa hidrat berperan sebagai perekat pada saat pengeringan l\(\text{m}\)baran sehingga lembaran yang dihasilkan mempunyai kekuatan yang tinggi. Pembentukan senyawa hidrat meningkat dengan adanya hemiselulosa. Tujuan dari pembuatan pulp yakni untuk memperoleh serat-serat selulosa sebanyak mungkin dengan cara melarutkan sebanyak mungkin komponen lignin yang mengikat serat.

Selulosa dalam kayu berikatan dengan banyak zat pengotor yang berbeda antara lain hemiselulosa, lignin, mineral, resin. Pemisahan selulosa dari zat pengotor berguna dalam proses pembuatan pulp, karena terlalu banyak zat pengotor dalam pulp akan menurunkan kualitas pulp
tersebut. Tujuan pembuatan pulp adalah untuk memperoleh serat-serat selulosa sebanyak mungkin dengan cara larutkan sebanyak mungkin lignin yang mengikat serat (Casey, 1980).

Stabilisasi rantai molekul panjang selulosa dalam suatu item yang teratur ditimbulkan oleh gugus fungsional hidroksil yang dapat mengadakan interaksi satu dengan lainnya. Gugus OH- pada selulosa dapat mengadakan interaksi satu dengan lainnya atau dengan gugus O', N', S' dengan ikatan hidrogen. Sifat-sifat mekanik lembaran pulp atau kertas ditentukan oleh ikatan antar serat dan ikatan hidrogen tersebut (Fengel dan Wagener, 1995).

3. α-selulosa

Alfa selulosa adalah polisakarida linear yang mempunyai rantai yang cukup panjang, dan terdiri dari unit anhidrid glukosa yang diikat oleh ikatan 1, 4 β glikosida, serta memiliki struktur tertentu. Adanya sifat alfa selulosa seperti tersebut menjadikan selulosa ini tahan atau tidak terlarut oleh larutan basa kuat (Fengel dan Wagener, 1984 dalam Achmad, R 1992).

Pulp kimia yang mengandung alfa selulosa tinggi, menunjukkan tingginya kemurnian yang terdapat didalam pulp dengan indikasi rendahnya beta dan gamma selulosa yang dikanfundunya. Tinggi rendahnya alfa selulosa yang dikandung pulp mempengaruhi sifat mekanis rayon terutama kekuatan tarik dan kekuatan mulur (Yasin 1988 dalam Achmad, R 1992).

Beta dan gamma selulosa adalah juga merupakan bagian dari selulosa, tetapi kedua selulosa tersebut mempunyai derajat polimerisasi yang lebih rendah daripada derajat polimerisasi alfa selulosa. Kedua selulosa terlarut dalam basa kuat, sedangkan dalam keadaan netral hanya beta selulosa yang mengendap (Fengel dan Wagener, 1984 dalam Achmad, R 1992).

4. Lignin

Lignin merupakan senyawa aromatik yang terdiri dari unit phenilpropana yang memiliki gugus metoksil dan inti phenol serta saling mengikat dengan ikatan eter atau ikatan karbon, mempunyai berat molekul tinggi yang diperkirakan mempunyai 61-67 % karbon, 5-6 % hidrogen, dan 30 % oksigen (Pari dan Setyan, 1990).

Lignin terdapat diantara sel-sel dan diantara dinding sel. Lignin berfungsi sebagai perekat untuk mengikat sel-sel agar tetap bersama-sama. Keberadaan lignin dalam dinding sel sangat erat hubungannya dengan selulosa yang berfungsi untuk memberikan ketegaran pada sel dan juga
berpengaruh dalam memperkecil perubahan dimensi selubung dengan perubahan kadar air kayu dan mempertinggi sifat racun kayu yang membuat kayu tahan terhadap serangan cendawan dan serangga (Haygreen dan Bowyer, 1989).

5. Zat ekstraktif

Lemak didefinisikan sebagai ester asam karbonat tinggi (asam lemak) dengan gliserol sedangkan lilin adalah ester asam lemak dengan gliserol tinggi. Lemak dan lilin dapat diekstraksi dari kayu dengan pelarut organik (dieter, petroleum eter, aseton dll). Kandungan lemak 0.3-0.4 %, lilin 0.08-0.09 % yang didasarkan pada kayu kering (Fengel dan Wagener, 1995).

Zat ekstraktif mempunyai peranan penting terhadap sifat kayu seperti keawetan alami, warna, dan bau. Besarnya zat ekstraktif dalam kayu dapat mempengaruhi kondisi pengolahan pulp karena dapat bereaksi dengan alkali yang dipakai sehingga konsumsi alkali cenderung tinggi dan juga dapat memperlambat proses delignifikasi sehingga dapat menurunkan rendemen pulp (Casey 1980).

C. Sel serabut (fiber) serat

Serat merupakan sel yang bentuknya panjang, kedua ujungnya runcing dengan dinding sel yang tebal atau tipis. Serat pada kayu daun lebar terdiri dari serat trakeida dan serat libriform yang umumnya terdapat sebanyak 50 % atau lebih dari volume total kayu. Panjangnya bervariasi dipengaruhi oleh jenis kayu, posisi batang, umur dan tempat tumbuh. Panjang serat kearah tinggi bertambah mulai dari pangkal batang sampai mencapai maksimum pada ketinggian tertentu dan selanjutnya bertambah pendek sampai pucuk. Selain itu dengan bertambahnya umur polon, maka pula ukuran panjang serat (Pandit, 1995).

Haroon dan Sudirjo (1996) menyatakan bahwa kayu mangium termasuk dalam kelas ringan jika dipandang dari berat jenisnya (0,24-0,49), sedangkan mutu dimensi serat dan turunanunya termasuk kelas mutu II sebagai bahan baku pulp. Sifat fisik dan morfologi serat Acacia mangium Willd. dapat dilihat pada tabel 2.
Tabel 2. Sifat fisik dan morfologi serat *Acacia mangium* Willd.

<table>
<thead>
<tr>
<th>Sifat Fisik dan Morfologi</th>
<th>Jumlah (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa jenis</td>
<td>0.45</td>
</tr>
<tr>
<td>Panjang serat (mm)</td>
<td>0.88</td>
</tr>
<tr>
<td>Diameter serat (μm)</td>
<td>12.22</td>
</tr>
<tr>
<td>Lumen (μm)</td>
<td>6.44</td>
</tr>
<tr>
<td>Tebal dinding (μm)</td>
<td>2.89</td>
</tr>
<tr>
<td>Runkel</td>
<td>10.90</td>
</tr>
<tr>
<td>Kelangsingan</td>
<td>72.01</td>
</tr>
<tr>
<td>Kelemasan</td>
<td>0.53</td>
</tr>
<tr>
<td>Muhlsteph ratio (%)</td>
<td>72.00</td>
</tr>
</tbody>
</table>

Haroen dan Sudirjo (1996)

1. Panjang serat

Dimensi panjang serat akan berpengaruh terhadap kekuatan sobek dan kekuatan lipat kertas. Serat panjang memungkinkan terjadinya ikatan antar serat yang lebih luas, tetapi dengan semakin panjang serat maka kertas akan semakin kasar. Perbandingan panjang serat dengan diameter serat disebut daya tenun yang menunjukkan bahwa semakin besar nilai perbandingan tersebut maka semakin tinggi kekuatan sobek dan semakin baik daya tenun serat (Casey, 1980).

2. Diameter serat

- serat berdiameter besar : 0,025-0,04 mm
- serat berdiameter sedang : 0,01-0,025 mm
- serat berdiameter kecil : 0,002-0,01 mm
3. Tebal dinding serat

Tebal dinding serat juga menentukan terhadap sifat-sifat kertas. Dinding serat yang tebal menyebabkan terbentuknya lemaran yang kasar dan tebal, kekuatan sobek yang tinggi tetapi kekuatan jebol, tiris dan lipat relatif rendah.

Serat berdinding tipis mudah melembek dan menjadi pipih, sehingga memberikan permukaan yang luas bagi terjadinya ikatan antar serat. Sedangkan serat dengan dinding tebal sukar melembek dan bentuknya tetap membulat pada saat pembentukan lemaran. Struktur tersebut menyulitkan dalam penggilongan dan akan masih memberikan kekuatan sobek yang tinggi, berbeda dengan serat berdinding tipis yang memberikan sifat kekuatan sobek rendah, tapi kekuatan tarik, jebol dan kekuatan lipatnya tinggi (Casey, 1980).

4. Turunan dimensi serat

Kualitas serat merupakan salah satu dasar penelitian untuk mengetahui kemungkinan penggunaan suatu jenis kayu sebagai bahan baku pulp dan kertas. Penetapan kualitas serat ini diantaranya berdasarkan pada nilai dimensi serat serta nilai-nilai turunannya. Turunan dimensi serat yang dimaksud adalah :

a. Runkel ratio, adalah perbandingan antara dua kali tebal dinding serat dengan diameter lumen yang dinyatakan dalam persamaan 2W/L, dimana :

\[W = \text{tebal dinding serat} \quad L = \text{diameter lumen} \]

Jenis-jenis kayu tropika digolongkan de dalam :

Golongan I : dinding serat sangat tipis, lumen lebar, *runkel ratio* (RR) = 0,25.
Golongan II : dinding serat tipis, lumen lebar, *runkel ratio* (RR) = 0,25-0,5.
Golongan III : dinding serat dan lumen berukuran sedang, *runkel ratio* (RR) = 0,5-1,0
Golongan IV : dinding serat tebal, lumen sempit, *runkel ratio* (RR) = 1-2
Golongan V : dinding serat amat tebal, lumen sangat sempit, *runkel ratio* (RR) = 2

Menurut Runkel (1952) dalam Utama (1995) serat dengan bilangan runkel kurang atau sama dengan satu sangat baik untuk kertas. Serat dengan dinding serat tipis, diameter lumen lebar mudah memipih dan pembentukan lemaran pulp mempunyai kekuatan tarik dan jebol yang tinggi, sebaliknya serat yang berdinding serat tebal dan berdiameter serat kecil akan mempertahankan bentuk pipa waktu digiling sehingga menghasilkan lemaran pulp yang tebal
dengan kekuatan tarik dan sobek rendah, sedangkan perbandingan tebal dinding serat dengan diameter diduga mempunyai korelasi negatif dengan kekuatan tarik.

b. Daya tenun (settingslenderness), adalah perbandingan antara panjang serat dengan diameter serat dengan persamaan L/d, dimana:

$$L = \text{panjang serat} \quad d = \text{diameter serat}$$

c. Muhlsteph ratio, adalah perbandingan antara luar penampang tebal dinding serat dengan luar penampang lintang serat yang berpengaruh terhadap kerapatan lembaran pulp dengan persamaan $(d^2 - \bar{d}^2) / d^2 \times 100\%$, dimana:

$$d = \text{diameter serat} \quad l = \text{diameter lumen}$$

Kelas I : serat yang memiliki rasio muhlsteph 30% untuk kayu dan 20% untuk pulp. Syarat membentuk lembaran pulp dan keras yang baik dengan sifat dan kekuatan baik.

Kelas II : serat dengan rasio muhlsteph 20-80 % untuk tipe serat pulp dari konifer. Sifat seratnya merupakan kombinasi dari sifat kayu dalam ketiga kelas lainnya.

Kelas III : serat mempunyai rasio muhlsteph 30-80 % untuk kayu dan 20-80 % untuk pulp. Seratnya bersifat plastis dan memberikan lembaran yang lebih halus dibanding kelas I.

Kelas IV : serat mempunyai rasio muhlsteph lebih besar dari 80%. Seratnya bersifat kaku, menghasilkan keras berkerapatan rendah dan kekuatan rendah, kecuali keteguhan sobek yang lebih tinggi dari kelas I.

d. Flexibility ratio, adalah perbandingan antara diameter lumen dengan diameter serat, dengan persamaan l/d, dimana:

$$l = \text{diameter lumen} \quad d = \text{diameter serat}$$

Jika nilai perbandingannya tinggi, tebal dindingnya relatif tipis dan mudah berubah bentuk. Kemampuan berubah bentuk ini menyebabkan persinggungan antara permukaan serat lebih leluasa sehingga terjadi ikatan antar serat yang lebih baik.

e. Coefficient of rigidity, adalah perbandingan antara tebal dinding serat dengan diameter serat, koefisien ini mempunyai hubungan yang negatif dengan kekuatan tarik keras dengan persamaan w/d, dimana:

$$w = \text{tebal dinding serat} \quad d = \text{diameter serat}$$
III. BAHAN DAN METODE

A. Bahan dan Alat

Alat-alat yang digunakan dalam penelitian adalah aluminium foil, beaker 100 ml dan 500 ml, gelas ukur 500 ml, erlemeyer 1000 ml, sintered glass 30 ml, kertas saring, oven, water bath, pengaduk, desikator, timbangan, dan alat tulis.

B. Metode Penelitian

Penelitian ini memiliki 3 (tiga) tahapan besar yaitu persiapan bahan baku, penentuan komponen kimia dan penentuan dimensi sel serabut (serat).

1. Persiapan Bahan Baku

Kayu mangium dari ketiga provenan yang sudah dikuliti diambil contoh kayunya dimana masing-masing provenan diambil bagian tengahnya untuk dijadikan serpih. Serpih dikering udara untuk mencapai kadar air kesetimbangan. Selanjutnya serpih digiling menjadi serbuk dengan menggunakan hammer mill dan diayak dengan ukuran 40-60 mesh.

2. Penentuan kadar komponen kimia

Persyaratan kayu untuk analisis kimia mengacu pada standar TAPPI (Technical Association of Pulp and Paper Industry) 254 om-88. Penentuan kadar holoselulosa berdasarkan standar TAPPI T9 wd-75, kadar selulosa berdasarkan standar TAPPI T17wd-70, kadar α-selulosa berdasarkan standar TAPPI T203 os-74, kadar lignin berdasarkan standar TAPPI T3 os-54 dan penentuan kadar zat ekstraktif kayu larut dalam alkohol benzene (1:2) berdasarkan standar TAPPI T6m.

a. Penentuan kadar zat ekstraktif

1. Serbuk kayu sebanyak 10 gram di ekstraksi dengan larutan etanol-benzene (1-2) sebanyak 300 ml dalam alat ekstraktor soklet selama 6-8 jam.

Kadar zat ekstraktif dihitung berdasarkan rumus berikut:

\[
\% \text{ zat ekstraktif} = \frac{\text{berat serbuk semula} - \text{berat serbuk setelah diekstraksi}}{\text{berat serbuk semula}} \times 100\%
\]

b. Penentuan kadar holoselulosa

1. Sebanyak 2 gram serbuk yang sudah bebas ekstraktif dimasukkan kedalam erlemeyer. Kemudian ditambah 150 ml air destilata; 1 gram NaClO₂ dan 0,2 ml asam asetat. Sampel dipanaskan pada suhu 70-80 °C selama 5 jam dimana setiap 1 jam ditambah 1,0 gram NaClO₂ dan 0,2 ml asam asetat (CH₃COOH).

2. Setelah pemanasan selesai sampel disaring yang kemudian dicuci dengan air destilata dan dioven pada suhu 105±3 °C lalu ditimbang sampai beratnya konstan.

Kadar holoselulosa dihitung berdasarkan rumus berikut:

\[
\% \text{ holoselulosa} = \frac{\text{berat holoselulosa}}{\text{berat serbuk kering bebas ekstraktif}} \times 100\%
\]

c. Penentuan kadar sehulosa

1. Sebanyak 2 gram serbuk holoselulosa diuangkan kedalam erlemeyer 300 ml. Kemudian ditambahkan HNO₃ 3,5 % 125 ml, ekstrak diitas penangas dengan suhu 80°C selama 12 jam lalu disaring dan dikering udara. Setelah itu dimasukkan kedalam erlemeyer 300 ml, tambahkan NaOH+Na₂SO₃ (20 gram:20 gram) sebanyak 125 ml. Ekstrak pada suhu 50°C selama 2 jam.

2. Setelah pemanasan sampel disaring dan ditambahkan pemutih NaClO₂ lalu dicuci sampai tidak berwarna. Kemudian ditambahkan asam asetat (CH₃COOH) 10 % sebanyak 100 ml. Cuci sampai bebas asam. Diberi C₂H₃OH 50 ml, sampel disaring lalu dioven pada suhu 105±3 °C lalu ditimbang sampai beratnya konstan.

Kadar sehulosa dihitung berdasarkan rumus berikut:

\[
\% \text{ sehulosa} = \frac{\text{berat sehulosa}}{\text{berat serbuk kering bebas ekstraktif}} \times 100\%
\]

d. Penentuan kadar α-selulosa

1. Sebanyak 2 gram serbuk sehulosa diuangkan kedalam erlemeyer 300 ml lalu ditambahkan 16 ml NaOH 17,5 % (suhu 20°C). Sampel ditekan-tekan untuk memudahkan dalam proses reaksi. Untuk setiap 5, 10, dan 15 menit pertama ditambah 5 ml NaOH 17,5 % serta dibiarankan sampai 45 menit. Kemudian sampel disaring dengan 125 ml NaOH 8 % dimana dalam penyaringan
diasahkan dalam waktu 5 menit. Setelah penyaringan sampel dicuci atau dibilas dengan
dengan 40 ml asam asetat 10 ml dan dibilas kembali dengan air destilata sampai bebas asam.
2. Setelah bebas asam sampel dioven pada sulu 105±3 °C lalu ditimbang sampai beratnya konstan.
Kadar α-selulosa dihitung berdasarkan rumus berikut :

\[
\% \alpha - \text{selulosa} = \frac{\text{berat } \alpha - \text{selulosa}}{\text{berat serbuk kering bebas ekstraktif}} \times 100\%
\]

e. Penentuan kadar lignin

1. Sebanyak 1 gram serbuk ditambah 15 ml asam sulfat 72 % dingin secara perlahan sambil
diuraikan dengan pengaduk gelas. Jaga agar sulu beaker glass tetap dingin (tambahkan es
disekitarnya). Tutup dengan gelas arloji atau alumunium foil dan reaksikan selama 2 jam pada
sulu 20±1 °C, diaduk sekaligus-kekal digunakan ditambahkan 300 ml air kedalam erlemeyer 1000
ml yang sebelumnya telah ditandai pada volume 575 ml. Setelah itu sampel dipindahkan
kedalam erlemeyer 1000 ml yang berisi 300 ml air, cuci dan dilarutkan dalam air hingga
konsentrasi 3 %. (volume total 575 ml).
2. Larutan tersebut dipanaskan dengan volume tetap, pada saat yang sama didihkan air untuk
menjaga volume larutan sampel yang sudah dicampur. Larutan sampel tersebut diendapkan
dengan posisi miring, lalu disaring dengan crusible. Kemudian dicuci dengan air destilata
sampai bebas asam. Setelah bebas asam sampel dioven pada sulu 105±3 °C lalu ditimbang
sampai beratnya konstan.
Kadar Lignin dihitung berdasarkan rumus berikut :

\[
\% \text{lignin} = \frac{\text{berat lignin}}{\text{berat serbuk kering bebas ekstraktif}} \times 100\%
\]

3. Pengukuran dimensi serat

Untuk kepentingan pengukuran dimensi serat dibuatlah slide maserasi. Pengukuran dimensi
sel serat dilakukan dengan bantuan mikroskop lengkap dengan mikrometernya. Dimensi sel serat
yang diukur meliputi panjang serat, diameter serat, diameter lumen dan tebal dinding yang masing-
masing pengukuran dilakukan sebanyak 30 kali, lalu dicari nilai rata-ratanya. Hal ini dimaksudkan
untuk mendapatkan nilai yang akurat dari keragaman ukuran serat yang ada. Selanjutnya dilakukan
pengukuran tentang turunan dimensi serat.

Untuk mengamati dimensi serat dibentuk slide maserasi dengan metode Schafheute yaitu
sebagai berikut :

a. Contoh uji dipotong-potong menjadi potongan kecil sebesar batang korek api agar
penetrasi bahan kimia kedalam kayu lebih cepat sehingga serat-serat mudah lepas.
b. Potongan contoh uji dimasukkan kedalam tabung reaksi yang telah diberi label untuk masing-masing contoh uji agar tidak tertukar, lalu diberi larutan campuran 1 bagian volume asam asetat (CH₃COOH) dan 20 bagian volume hidrogen peroksida (H₂O₂) sampai contoh uji terendam dalam larutan.

d. Tabung reaksi didinginkan dengan jalan menyemprotkan air destilata pada tabung reaksi.

e. Serat-serat yang lepas kemudian dicuci dengan air menggunakan saringan dan kertas saring sampai bebas asam. Selanjutnya contoh uji yang telah bebas asam dipindahkan kecawan petri dan diberi safranin 2 % dan biarkan sampai kurang lebih 6-8 jam agar safranin meresap kedalam serat.

f. Setelah itu dilakukan pencucian dengan air sampai bekas cucian berwarna bening. Kemudian dilakukan dehidrasi dengan menggunakan alkohol. Hal ini dimaksudkan agar tidak ada lagi air yang tersisa didalam serat.

g. Kemudian serat dipindahkan dengan bantuan lensa lu basal secara perlahan ditutup dengan coverglass.

![Diagram](image)

Keterangan gambar :
- a. Tebal dinding
- b. Diameter serat
- c. Diameter lumen
- d. Panjang serat

Gambar 1. Penampang Serat Sel

Cara perhitungan
1. Runkel mito (RR)

 \[
 RR = \frac{2 \times \text{tebal dinding}}{\text{diameter lumen}}
 \]

2. Daya tenun (DT)

 \[
 DT = \frac{\text{panjang serat}}{\text{diameter serat}}
 \]
3. Mulhsteph ratio (MR)

\[MR = \frac{d^2 - I^2}{d^2} \times 100\% \]

dimana:
- \(d = \) diameter sertak
- \(I = \) diameter lumen

4. Flexibility ratio (FR)

\[FR = \frac{diameter\ lumen}{diameter\ sertak} \]

5. Coefficient of rigidity (CR)

\[CR = \frac{tebal\ dinding\ sertak}{diameter\ sertak} \]
IV. HASIL DAN PEMBAHASAN

A. Komponen Kimia Kayu
1. Kadar Holoselulosa

Hasil penelitian kadar holoselulosa kayu mangium (*A. mangium* Willd.) dari ketiga provenan dapat dilihat pada Gambar 2.

![Bar Chart](image.png)

Ket.
A: Provenan Tully Mission Beach Queensland, Australia
B: Provenan Balimo District, Papua New Guinea
C: Provenan Indonesia Timur (Sumber Benih Subbanjirji Sumatra Selatan)

Gambar 2. Diagram Batang Kadar Holoselulosa Kayu Mangium dari Berbagai Provenan

Berdasarkan diagram diatas diketahui bahwa kadar holoselulosa dari ketiga provenan berkisar antara 75.45-83.55 %, dengan nilai rata-rata sebesar 78.73 %. Kadar holoselulosa tertinggi terdapat pada provenan asal Tully Mission Beach Queensland, Australia yaitu sebesar 83.55 %, sedangkan kadar holoselulosa terendah terdapat pada provenan Indonesia Timur (Sumber Benih Subbanjirji Sumatra Selatan) yaitu sebesar 74.45 %.

Apabila dilihat dari persyaratan sifat kayu untuk bahan baku pulp dan kertas (Tabel 3) maka ketiga provenan tersebut sangat baik digunakan sebagai bahan baku pulp dan kertas karena memiliki kadar holoselulosa lebih besar dari 65 persen.
Tabel 3. Persyaratan Sifat Kayu untuk Bahan Baku Pulp dan Kertas

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat Kayu</th>
<th>Kualitas Pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cukup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kurang</td>
</tr>
<tr>
<td>1.</td>
<td>Warna Kayu</td>
<td>Putih-kuning</td>
</tr>
<tr>
<td>2.</td>
<td>Massa Jenis</td>
<td>< 0,501</td>
</tr>
<tr>
<td>3.</td>
<td>Panjang Serat (mm)</td>
<td>0,501-0,600</td>
</tr>
<tr>
<td>4.</td>
<td>Holoselulosa (%)</td>
<td>> 1,600</td>
</tr>
<tr>
<td>5.</td>
<td>Lignin (%)</td>
<td>> 0,600</td>
</tr>
<tr>
<td>6.</td>
<td>Ekstraktif (%)</td>
<td>< 0,900</td>
</tr>
<tr>
<td>7.</td>
<td>Holoselulosa (%)</td>
<td>0,900-1,600</td>
</tr>
<tr>
<td>8.</td>
<td>Lignin (%)</td>
<td>< 2,5</td>
</tr>
<tr>
<td>9.</td>
<td>Ekstraktif (%)</td>
<td>25-30</td>
</tr>
<tr>
<td>10.</td>
<td>Holoselulosa (%)</td>
<td>> 25</td>
</tr>
<tr>
<td>11.</td>
<td>Lignin (%)</td>
<td>60-65</td>
</tr>
<tr>
<td>12.</td>
<td>Ekstraktif (%)</td>
<td>< 5</td>
</tr>
<tr>
<td>13.</td>
<td>Holoselulosa (%)</td>
<td>5-7</td>
</tr>
<tr>
<td>14.</td>
<td>Lignin (%)</td>
<td>> 7</td>
</tr>
</tbody>
</table>

Kandungan holoselulosa yang rendah akan menghambat proses pengilingan dan pulp yang dihasilkan akan mempunyai kekuatan yang rendah sedangkan kayu yang mengandung kadar holoselulosa tinggi akan dapat digiling dengan cepat dan menghasilkan pulp dengan kekuatan yang tinggi.

2. Kadar Selulosa

Hasil penelitian kadar selulosa kayu mangium (Acacia mangium Willd.) dari ketiga provenan dapat dilihat pada Gambar 3.

Gambar 3. Diagram Batang Kadar Selulosa Kayu Mangium dari Berbagai Provenan

Berdasarkan diagram diatas diketahui bahwa kadar selulosa dari ketiga provenan berkisar antara 45.72-60.29 %, dengan nilai rata-rata sebesar 51.54 %. Kadar selulosa tertinggi terdapat pada provenan asal Tully Mission Bench Queensland, Australia yaitu sebesar 60.29 %, sedangkan
kadar selulosa terendah terdapat pada provenan asal Indonesia Timur (Sumber Benih Subenjeriji Sumatra Selatan) yaitu sebesar 45.72%.

Apabila dilihat dari klasifikasi komponen kimia kayu daun lebar Indonesia (Tabel 4), maka ketiga provenan yang diteliti termasuk kedalam kelas yang mengandung kadar selulosa tinggi, karena kadarnya lebih besar dari 45 persen.

Kadar selulosa dalam kaya dapat digunakan untuk menaksir besarnya rendemen pulp dan kertas yang diperoleh. Apabila dilihat dari kadar selulosa saja maka ketiga provenan yang diteliti baik digunakan sebagai bahan baku pulp dan kertas. Salah satu keuntungan dari besarnya kadar selulosa dalam kaya antara lain dapat menghasilkan rendemen pulp yang besar, memiliki afitas yang lebih besar terhadap air sehingga memudahkan pembentukan ikatan antar serat dan warna yang dilaraskan dapat lebih putih.

Pari dan Hartoyo (1990) menyatakan bahwa selulosa mempunyai sifat tahan terhadap zat oksida seperti klor, natrium hipoklorit dan kalsium hipoklorit, oleh karena sifatnya yang tahan terhadap zat oksida itu maka kadar selulosa dapat digunakan sebagai prinsip dalam pemutihan pulp.

Tabel 4. Klasifikasi Komponen Kimia Kayu Indonesia

<table>
<thead>
<tr>
<th>Komponen Kimia (Chemical component), %</th>
<th>Kelas Komponen (Component class)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tinggi (High)</td>
</tr>
<tr>
<td>Kayu daun lebar (Hardwood)</td>
<td></td>
</tr>
<tr>
<td>Selulosa (Cellulose)</td>
<td>45</td>
</tr>
<tr>
<td>Lignin</td>
<td>33</td>
</tr>
<tr>
<td>Pentosa</td>
<td>24</td>
</tr>
<tr>
<td>Zat Ekstraktif (Extractive)</td>
<td>4</td>
</tr>
<tr>
<td>Abu (Ash)</td>
<td>6</td>
</tr>
<tr>
<td>Kayu daun jarum (Softwood)</td>
<td></td>
</tr>
<tr>
<td>Selulosa (Cellulose)</td>
<td>44</td>
</tr>
<tr>
<td>Lignin</td>
<td>32</td>
</tr>
<tr>
<td>Pentosa</td>
<td>13</td>
</tr>
<tr>
<td>Zat Ekstraktif (Extractive)</td>
<td>7</td>
</tr>
<tr>
<td>Abu (Ash)</td>
<td>> 0,89</td>
</tr>
</tbody>
</table>

Sumber: Dir.Jend. Kelutuman (1976)

3. Kadar α-Selulosa

Hasil penelitian kadar α-selulosa kayu mangium (Acacia mangium Willd.) dari ketiga provenan dapat dilihat pada Gambar 4.
Gambar 4. Diagram Batang Kadar α-Selulosa Kayu Mangium dari Berbagai Provenan

Berdasarkan diagram diatas diketahui bahwa kadar α-selulosa dari ketiga provenan berkisar antara 35.64-52.53 %, dengan nilai rata-rata sebesar 42.57 %. Kadar α-selulosa tertinggi terdapat pada provenan asal Tully Mission Beach Queensland, Australia yaitu sebesar 52.53 %, sedangkan kadar α-selulosa terendah terdapat pada provenan asal Indonesia Timur (Sumber Benih Subanjeriji Sumatra Selatan) yaitu sebesar 35.64 %.

Apabila dilihat dari klasifikasi komponen kimia kayu daun lebar Indonesia (Tabel 4), maka ketiga provenan yang diteliti termasuk kedalam kelas yang mengandung kadar selulosa tinggi, karena kadar nya lebih besar dari 45 persen.

Dari hasil ini maka kayu mangium dari ketiga provenan tersebut dapat digunakan sebagai bahan baku pulp dan kertas. Tingginya kadar α-selulosa dalam kayu memudahkan dalam pembentukan ikatan antara serat dan kertas yang dihasilkan menjadi lebih putih. Apabila kadar alfa selulosa yang diperoleh tinggi maka dalam proses pembuatan pulp konsumsi bahan kimia yang dibutuhkan sedikit, sedangkan apabila kadar alfa selulosa yang diperoleh rendah maka akan menyebabkan inefisiensi bahan dalam proses pembuatan pulp karena konsumsi bahan kimia yang dibutuhkan besar.

4. Kadar Lignin Klason

Hasil penelitian kadar lignin kayu mangium (Acacia mangium Willd.) dari ketiga provenan dapat dilihat pada Gambar 5.
Berdasarkan diagram diatas diketahui bahwa kadar lignin dari ketiga provenan berkisar antara 21.98-24.54 %, dengan nilai rata-rata sebesar 23.28 %. Kadar lignin tertinggi terdapat pada provenan asal Balimo District, Papua New Guinea yaitu sebesar 24.54 %, sedangkan kadar lignin terendah terdapat pada provenan asal Tully Mission Beach Queensland, Australia yaitu sebesar 21.98 %.

Apabila dibuburkan dengan klasisifikasi komponen kimia kayu tanaman lebar Indonesia (Tabel 4), maka kayu mangium dari ketiga provenan yang ditekuti termasuk kelas yang mengandung kadar lignin sedang, karena kadayanya antara 18-33 persen. Dan didasarkan pada persyaratan sifat kayu untuk bahan baku pulp dan kertas (Tabel 3) maka kayu mangium dari ketiga provenan yang ditekuti termasuk dalam kualitas sebagai bahan baku pulp yang baik, karena kadayanya lebih kecil dari 25 persen.

Dengan demikian kayu mangium dari ketiga provenan tersebut dapat digunakan sebagai bahan baku pembuatan pulp dan kertas, karena dalam pembuatan pulp dan kertas diperlukan kadar lignin yang rendah. Bila kadar lignin tinggi akan dapat menghambat proses penggilingan dan kertas yang dihasilkan akan bersifat kaku, berwarna kuning dan mutunya rendah.

5. Kadar Zat Ekstraktif

Hasil penelitian kadar zat ekstraktif kayu mangium (*Acacia mangium* Willd.) dari ketiga provenan dapat dilihat pada Gambar 6.

![Diagram](image)

Daerah Asal (Provenanasi)

- A: Provenan Tully Mission Beach Queensland, Australia
- B: Provenan Halmahera District, Papua New Guinea
- C: Provenan Indonesia Timur (Sumber Benih Subanjari) Sumatera Selatan

Gambar 6. Diagram Batang Kadar Zat Ekstraktif Kayu Mangium dari Berbagai Provenan

Berdasarkan diagram diatas diketahui bahwa kadar zat ekstraktif dari ketiga provenan berkisar antara 3.11-4.46 %, dengan nilai rata-rata sebesar 3.65 %. Kadar zat ekstraktif tertinggi terdapat pada provenan asal Baliimo District, Papua New Guinea yaitu sebesar 4.46 %, sedangkan kadar zat ekstraktif terendah terdapat pada provenan Indonesia Timur (Sumber Benih Subanjari Sumatera Selatan) yaitu sebesar 3.11 %.

Apabila dilihat dari klasifikasi komponen kimia kayu daun lebar Indonesia (Tabel 4), ternyata kadar zat ekstraktif kayu mangium dari ketiga provenan yang diteliti dalam hal ini kelarutan dalam alkohol benzene termasuk kedalam kelas yang mengandung kadar zat ekstraktif sedang, karena kadarnya antara 2-4 persen. Tetapi apabila dilihat dari persyaratan sifat kayu untuk bahan baku pulp dan kertas (Tabel 3) maka kadar zat ekstraktif kayu mangium dari ketiga provenan sangat baik untuk bahan baku pulp dan kertas, karena kadarnya lebih kecil dari 5 persen.

Zat ekstraktif mempunyai peranan penting dalam memberikan sifat pada kayu seperti daya awet, warna, bau, dan tekstur. Tingginya zat ekstraktif dalam kayu akan mempengaruhi kualitas pulp dan kertas yang dihasilkan, karena dapat meningkatkan pemakaian bahan kimia dan mengurangi efisiensi pemutih, sehingga dapat menimbulkan bintik hitam pada kertas yang dihasilkan.

Menurut Puri dan Hartoyo (1990) mengemukakan bahwa kandungan zat ekstraktif dalam kayu sangat penting diketahui untuk produksi pulp karena ekstraktif tertentu dalam kayu segar dapat menyebabkan nodai kuning atau penguningan pulp dan mempengaruhi kekuatan pulp. Selain
itu kandungan zat ekstraktif yang tinggi dapat menimbulkan bintik hitam atau cokelat pada lembaran kertas (pitch trouble).

Secara keseluruhan dari segi komposisi kimia, kayu mangium provenan asal Tully Mission Beach Queensland Australia dalam penelitian ini merupakan jenis yang terbaik digunakan sebagai bahan baku pulp kertas yang dirasakan pada persyaratan sifat kayu untuk bahan baku pulp dan kertas serta klasifikasi komponen kimia kayu Indonesia. Hal ini karena provenan asal Queensland mempunyai kadar holoselulosa paling tinggi, kadar selulosa paling tinggi, kadar α-selulosa paling tinggi, kadar lignin klasen paling rendah dan kadar zat ekstraktif kelarutan dalam alkohol (1:2) paling rendah.

Berdasarkan data komponen kimia diatas diketahui bahwa kandungan kimia dari ketiga provenan terdapat variasi. Variasi tersebut diduga karena adanya faktor lingkungan dan faktor genetik yang mempengaruhi ketiga provenan tersebut. Faktor lingkungan yang berpengaruh yaitu tempat tumbuh, sifat-sifat tanah dan jarak tanam. Sedangkan faktor genetik yang mempengaruhi hal tersebut adalah bentuk batang dan berat jenis dari kayu itu sendiri.

Adanya perbedaan kecepatan tumbuh menunjukkan bahwa ada jenis yang mampu tumbuh baik dengan keadaan kondisi lingkungan yang buruk. Faktor yang mempengaruhi pertumbuhan yaitu genetik, variasi kebutuhan hara tanaman, variasi interaksi kesuburan dan faktor lingkungan yang mempengaruhi pertumbuhan seperti suhu, kelembaban, energi matahari komposisi atmosfer dan kesediaan tanah mineral.

Ciri atau sifat yang ditampilkan oleh setiap individu tidak terlepas dari pengaruh lingkungan dimana individu itu berada dan pengaruh genetik dari dalam individu. Kenyataan ini menunjukkan bahwa tidak semua jenis tanaman dapat tumbuh dengan baik pada semua kondisi lingkungan, (kesesuaian tempat tumbuh merupakan faktor yang sangat penting).

Beragamnya jenis tanah di Indonesia dan beragamnya tingkat kesuburan yang dimiliki menyebabkan kualitas kayu yang diproduksi beragam pula, meskipun pada jenis yang sama. Perbedaan sifat tanah dan tempat tumbuh mengakibatkan adanya variasi sifat-sifat dasar kayu, antara lain sifat fisik mekanik yang dapat dikenal dari perbedaan struktur anatomis dan komponen kiminawinya. Kayu
yang mempunyai struktur anatomi dan komposisi kimia tertentu akan mempunyai sifat tertentu pula (Sidik, A. 1995).

B. Turunan Dimensi Serat

Kekuatan pulp tidak hanya ditentukan oleh dimensi serat semata. Pada perkembangan lebih lanjut menunjukkan bahwa ratio antar faktor morfologi berpengaruh nyata terhadap pulp dibanding pengaruh dimensi itu sendiri. Turunan serat yang dimaksud adalah:

Tabel 5. Kriteria Penilaian Serat Kayu Indonesia untuk Bahan Baku Pulp dan Kertas

<table>
<thead>
<tr>
<th>No</th>
<th>Urutan</th>
<th>Kelas Mutu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Syarat</td>
</tr>
<tr>
<td>1.</td>
<td>Panjang</td>
<td>> 2000</td>
</tr>
<tr>
<td>2.</td>
<td>Nisbah runkel</td>
<td>< 0,25</td>
</tr>
<tr>
<td>3.</td>
<td>Daya tenun</td>
<td>> 90</td>
</tr>
<tr>
<td>4.</td>
<td>Multitipeh ratio</td>
<td>< 30</td>
</tr>
<tr>
<td>5.</td>
<td>Flexibility ratio</td>
<td>> 0,8</td>
</tr>
<tr>
<td>6.</td>
<td>Kol. Kekakuan</td>
<td>< 0,1</td>
</tr>
<tr>
<td></td>
<td>Selang Nilai</td>
<td>450-600</td>
</tr>
</tbody>
</table>

Sumber: Laporan LP II No. 75 (1976) dalam Sulistyowati (1998)

1. Runkel Ratio (RR)

![Diagram Runkel Ratio](image)

Keterangan:
A: Provenan Tully Mission Beach Queensland, Australia
B: Provenan Italine District, Papua New Guinea
C: Provenan Indonesia Timur (Sumber Banli Subanjeri Sumatra Selatan)

Gambar 7. Diagram Baitang Nilai Runkel Ratio Kayu Mangium dari Berbagai Provenan
Berdasarkan diagram diatas diketahui bahwa nilai bilangan runkel dari ketiga provenan berkisar antara 0.40-0.42, dengan nilai rata-rata sebesar 0.41. Nilai bilangan runkel tertinggi terdapat pada provenan asal Balimo District, Papua New Guinea yaitu sebesar 0.42, sedangkan nilai bilangan runkel terendah terdapat pada provenan asal Tully Mission Beach Queensland, Australia yaitu sebesar 0.40.

Apabila dilihat dari kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas (Tabel 5), maka kayu mangium dari ketiga provenan tersebut termasuk kriteria sebagai bahan baku pulp dan kertas kelas kelas mutu II dengan nilai bilangan runkel diantara 0.25-0.50.

2. Daya Tenun (DT)

Daya tenun (feeling power/slenderness) merupakan perbandingan antara panjang serat dengan diameter serat. Nilai daya tenun kayu mangium (A. mangium Willd.) dari ketiga provenan dapat dilihat pada Gambar 8.

![Diagram Daya Tenun Kayu Mangium dari Berbagai Provenan](image)

Ket.: A: Provenan Tully Mission Beach Queensland, Australia
B: Provenan Balimo District, Papua New Guinea
C: Provenan Subangaji Sumatra Selatan, Indonesia

Gambar 8. Diagram Batang Nilai Daya Tenun Kayu Mangium dari Berbagai Provenan

Apabila dilihat dari kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas (Tabel 5), maka kayu mangium dari ketiga provenan tersebut termasuk kriteria sebagai bahan baku pulp dan kertas kelas mutu II dengan nilai daya tenun diantara 50-90.
3. Muhlsteph Ratio (MR)

![Diagram Muhlsteph Ratio Kayu Mangium dari Berbagai Provenan](image_url)

Ket.
A: Provenan Tully Mission Beach Queensland, Australia
B: Provenan Balino District, Papua New Guinea
C: Provenan Indonesia Timur (Sumber: Benih Subanjiri Samatra Selatan)

Gambar 9. Diagram Batang Nilai Muhlsteph Ratio Kayu Mangium dari Berbagai Provenan

Berdasarkan diagram diatas diketahui bahwa nilai *muhlsteph ratio* dari ketiga provenan berkisar antara 49.55-50.62 %, dengan nilai rata-rata sebesar 50.00 %. Nilai *muhlsteph ratio* tertinggi terdapat pada provenan asal Balino District, Papua New Guinea yaitu sebesar 50.62 %, sedangkan nilai *muhlsteph ratio* terendah terdapat pada provenan asal Tully Mission Beach Queensland, Australia yaitu sebesar 49.55 %.

Apabila dilihat dari kriteria penilaian scat kayu Indonesia untuk bahan baku pulp dan kertas (Tabel 5), maka kayu mangium dari ketiga provenan tersebut termasuk kriteria sebagai bahan baku pulp dan kertas kelas mutu II dengan nilai *muhlsteph ratio* diantara 30-60.

4. Flexibility Ratio (FR)

Gambar 10. Diagram Batang Nilai Flexibility Ratio Kayu Mangium dari Berbagai Provenan

Berdasarkan diagram diatas diketahui bahwa nilai *flexibility ratio* dari ketiga provenan berkisar antara 0.70-0.71, dengan nilai rata-rata sebesar 0.706. Nilai *flexibility ratio* tertinggi terdapat pada provenan asal Tully Mission Beach Queensland, Australia dan provenan asal Indonesia Timur (Sumber Benih Subanjeri Sumatra Selatan) yaitu sebesar 0.71, sedangkan nilai *flexibility ratio* terendah terdapat pada provenan asal Balimo District, Papua New Guinea yaitu sebesar 0.70.

Apabila dilihat dari kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas (Tabel 5), maka kayu mangium dari ketiga provenan tersebut termasuk kriteria sebagai bahan baku pulp dan kertas kelas mutu II dengan nilai *flexibility ratio* diantara 0.5-0.8.

5. Coefficient of Rigidity (CR)

Coefficient of Rigidity (CR) merupakan perbandingan antara tebal dinding serat dengan diameter serat. Nilai *coefficient of rigidity* kayu mangium (*Acacia mangium* Willd.) dari ketiga provenan dapat dilihat pada Gambar 11.
Diagram Batang Nilai Coefficient of Rigidlity Kayu Mangium dari Berbagai Provenan

Berdasarkan diagram diatas diketahui bahwa nilai coefficient of rigidity dari ketiga provenan berkisar antara 0.142-0.147, dengan nilai rata-rata sebesar 0.145. Nilai coefficient of rigidity tertinggi terdapat pada provenan asal Balimo District, Papua New Guinea yaitu sebesar 0.147, sedangkan nilai coefficient of rigidity terendah terdapat pada provenan asal Tully Mission Beach Queensland Australia yaitu sebesar 0.142.

Apabila dilihat dari kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas (Tabel 3), maka kayu mangium dari ketiga provenan tersebut termasuk kriteria sebagai bahan baku pulp dan kertas kelas mutu II dengan nilai coefficient of rigidity diantara 0.1-0.15.

Dari turunan dimensi seratnya, secara keseluruhan provenan asal Tully Mission Beach Queensland Australia dalam penelitian ini merupakan jenis yang terbaik digunakan sebagai bahan baku pulp kertas yang didasarkan pada kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas. Hal ini karena provenan asal Queensland mempunyai nilai bilangan runkel paling rendah, nilai multistep ratio paling rendah, nilai flexibility ratio tinggi, dan nilai coefficient of rigidity paling rendah.

Berdasarkan perhitungan turunan dimensi serat diatas dan kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas, maka serat kayu akasia dari ketiga provenan baik digunakan sebagai bahan baku pulp dan kertas dengan kelas mutu II. Mangium termasuk jenis kayu agak ringan sampai agak berat, dingding selnya tipis sampai sedang dengan lumen agak lebar. Dalam pembentukan kertas, serat mudah menjadi pipih dengan ikatan antar serat dan temuan yang baik, menghasilkan lembaran dengan keteguhan sobek dan tarik sedang.
Adanya variasi nilai dari dimensi serat dan turunan serat dari ketiga proveniensi diatas diduga disebabkan oleh adanya daya dukung tempat tumbuh yang baik. Daya dukung yang baik menyebabkan fotosintesis berjalan dengan baik pula. Fotosintesis yang kurang baik dapat menyebabkan karbohidrat dalam kayu akan tertimbun dalam dinding sel. Fotosintesis berguna sebagai energi pembebanan sel dari pada penebalan sel. Semakin baik tempat tumbuh maka sel yang dibentuk makin lebar dan pembentukan dinding selnya menjadi tipis sehingga lumennya lebar.
V. KESIMPULAN DAN SARAN

A. Kesimpulan

Hasil analisis komponen kimia kayu akasia dari ketiga provenan menunjukkan bahwa kadar holoselulosa berkisar antara 74.45-83.55 % dengan nilai rata-rata sebesar 78.73 % yang berarti termasuk kelas yang mengandung kadar holoselulosa tinggi, kadar selulosa berkisar antara 45.72-60.29 % dengan nilai rata-rata sebesar 51.54 %, kadar yang berarti termasuk kelas yang mengandung kadar selulosa tinggi, kadar α-selulosa berkisar antara 35.64-52.53 % dengan nilai rata-rata sebesar 42.57 % yang berarti termasuk kelas yang mengandung kadar α-selulosa tinggi, kadar lignin klasen berkisar antara 21.98-24.54 % dengan nilai rata-rata sebesar 23.28 % yang berarti termasuk kelas yang mengandung kadar lignin tinggi, kadar nilai zat ekstraktif dalam hal ini kelarutan alkohol benzene (1:2) berkisar antara 3.11-4.46 % dengan nilai rata-rata 3.65 % yang berarti termasuk kelas yang mengandung kadar zat ekstraktif rendah.

Hasil perhitungan turunan dimensi serat kayu akasia dari ketiga provenan menunjukkan bahwa nilai bilangan runkel berkisar antara 0.39-0.46 dengan nilai rata-rata sebesar 0.41, nilai daya tenun beksis antara 47.35-59.90 dengan nilai rata-rata sebesar 52.71, nilai muhlsteph ratio berkisar antara 47.81-53.43 % dengan nilai rata-rata sebesar 50.00 %, nilai flexibility ratio berkisar antara 0.68-0.72 dengan nilai rata-rata sebesar 0.70, nilai coefficient of rigidity berkisar antara 0.14-0.16 dengan nilai rata-rata sebesar 0.14. Berdasarkan nilai turunan dimensi serat tersebut maka kayu akasia dari ketiga provenan termasuk kriteria sebagai bahan baku pulp dan kertas kelas mutu II.

Secara keseluruhan dari segi komposisi kimia, kayu mangium provenan asal Tully Mission Beach Queensland Australia dalam penelitian ini merupakan jenis yang terbaik digunakan sebagai bahan baku pulp kertas yang didasarkan pada persyaratan sifat kayu untuk bahan baku pulp dan kertas serta klasifikasi komponen kimia kayu Indonesia. Hal ini karena provenan asal Queensland mempunyai kadar holoselulosa paling tinggi, kadar selulosa paling tinggi, kadar α-selulosa paling tinggi, kadar lignin klasen, paling rendah dan kadar zat ekstraktif kelarutan dalam alkohol (1:2) paling rendah.

Dari turunan dimensi seratnya, secara keseluruhan provenan asal Tully Mission Beach Queensland Australia dalam penelitian ini merupakan jenis yang terbaik digunakan sebagai bahan baku pulp kertas yang didasarkan pada kriteria penilaian serat kayu Indonesia untuk bahan baku pulp dan kertas. Hal ini karena provenan asal Queensland mempunyai nilai bilangan runkel paling rendah, nilai muhlsteph ratio paling rendah, nilai flexibility ratio tinggi, dan nilai coefficient of rigidity paling rendah.
B. Saran

Perlu dilakukan penelitian lebih lanjut dengan melakukan perbaikan-perbaikan dalam metode penelitian antara lain dengan memperbanyak ulangan pada setiap perlakuan (pohon) dan membedakan antara bagian pangkal, tengah dan ujung karena adanya sifat yang berbeda antar tiap bagian batang.
DAFTAR PUSTAKA

Lampiran 1. Komponen Kimia Kayu *Acacia mangium* Willd. Provenan Tully Mission Beach, Queensland, Australia

<table>
<thead>
<tr>
<th>Komponen Kimia</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holoselulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1-1</td>
<td>84,95</td>
</tr>
<tr>
<td>A1.1-2</td>
<td>80,44</td>
</tr>
<tr>
<td>b. A1.2-1</td>
<td>85,88</td>
</tr>
<tr>
<td>A1.2-2</td>
<td>82,94</td>
</tr>
<tr>
<td>Selulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1-1</td>
<td>62,94</td>
</tr>
<tr>
<td>A1.1-2</td>
<td>55,58</td>
</tr>
<tr>
<td>b. A1.2-1</td>
<td>62,86</td>
</tr>
<tr>
<td>A1.2-2</td>
<td>59,80</td>
</tr>
<tr>
<td>α-Selulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1-1</td>
<td>56,23</td>
</tr>
<tr>
<td>A1.1-2</td>
<td>47,48</td>
</tr>
<tr>
<td>b. A1.2-1</td>
<td>56,15</td>
</tr>
<tr>
<td>A1.2-2</td>
<td>50,30</td>
</tr>
<tr>
<td>Lignin (%)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1-1</td>
<td>23,76</td>
</tr>
<tr>
<td>A1.1-2</td>
<td>20,95</td>
</tr>
<tr>
<td>b. A1.2-1</td>
<td>22,22</td>
</tr>
<tr>
<td>A1.2-2</td>
<td>21,00</td>
</tr>
<tr>
<td>Ekstraktif (%)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1 Gubal</td>
<td>3,13</td>
</tr>
<tr>
<td>A1.1 Teras</td>
<td>3,60</td>
</tr>
<tr>
<td>b. A1.2 Gubal</td>
<td>3,25</td>
</tr>
<tr>
<td>A1.2 Teras</td>
<td>3,47</td>
</tr>
</tbody>
</table>
Lampiran 2. Komponen Kimia Kayu *Acacia mangium* Wild. Provenan Balimo District, Papua New Guinea

<table>
<thead>
<tr>
<th>Komponen Kimia</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holoselulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1-1</td>
<td>80,58</td>
</tr>
<tr>
<td>B1.1-2</td>
<td>73,98</td>
</tr>
<tr>
<td>b. B1.2-1</td>
<td>82,15</td>
</tr>
<tr>
<td>B1.2-2</td>
<td>76,09</td>
</tr>
<tr>
<td>Selulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1-1</td>
<td>49,18</td>
</tr>
<tr>
<td>B1.1-2</td>
<td>47,19</td>
</tr>
<tr>
<td>b. B1.2-1</td>
<td>50,72</td>
</tr>
<tr>
<td>B1.2-2</td>
<td>47,43</td>
</tr>
<tr>
<td>α-Selulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1-1</td>
<td>39,19</td>
</tr>
<tr>
<td>B1.1-2</td>
<td>38,43</td>
</tr>
<tr>
<td>b. B1.2-1</td>
<td>42,87</td>
</tr>
<tr>
<td>B1.2-2</td>
<td>37,67</td>
</tr>
<tr>
<td>Lignin (%)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1-1</td>
<td>24,67</td>
</tr>
<tr>
<td>B1.1-2</td>
<td>24,57</td>
</tr>
<tr>
<td>b. B1.2-1</td>
<td>24,84</td>
</tr>
<tr>
<td>B1.2-2</td>
<td>24,09</td>
</tr>
<tr>
<td>Ekstraktif (%)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1 Gubal</td>
<td>3,85</td>
</tr>
<tr>
<td>B1.1 Teras</td>
<td>4,33</td>
</tr>
<tr>
<td>b. B1.2 Gubal</td>
<td>3,90</td>
</tr>
<tr>
<td>B1.2 Teras</td>
<td>4,59</td>
</tr>
</tbody>
</table>
Lampiran 3. Komponen Kimia Kayu *Acacia mangium* Willd. Provenan Indonesia Timur (Sumber Benih Subanjeriji Sumatra Selatan, Indonesia)

<table>
<thead>
<tr>
<th>Komponen Kimia</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holoselulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1-1</td>
<td>78,58</td>
</tr>
<tr>
<td>C1.1-2</td>
<td>73,57</td>
</tr>
<tr>
<td>b. C1.2-1</td>
<td>75,10</td>
</tr>
<tr>
<td>C1.2-2</td>
<td>72,59</td>
</tr>
<tr>
<td>Selulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1-1</td>
<td>46,48</td>
</tr>
<tr>
<td>C1.1-2</td>
<td>45,06</td>
</tr>
<tr>
<td>b. C1.2-1</td>
<td>46,16</td>
</tr>
<tr>
<td>C1.2-2</td>
<td>45,18</td>
</tr>
<tr>
<td>α-Selulosa (%)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1-1</td>
<td>37,48</td>
</tr>
<tr>
<td>C1.1-2</td>
<td>33,41</td>
</tr>
<tr>
<td>b. C1.2-1</td>
<td>36,67</td>
</tr>
<tr>
<td>C1.2-2</td>
<td>35,01</td>
</tr>
<tr>
<td>Lignin (%)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1-1</td>
<td>23,61</td>
</tr>
<tr>
<td>C1.1-2</td>
<td>22,73</td>
</tr>
<tr>
<td>b. C1.2-1</td>
<td>23,66</td>
</tr>
<tr>
<td>C1.2-2</td>
<td>23,33</td>
</tr>
<tr>
<td>Ekstraktif (%)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1 Gubal</td>
<td>3,76</td>
</tr>
<tr>
<td>C1.1 Teras</td>
<td>3,90</td>
</tr>
<tr>
<td>b. C1.2 Gubal</td>
<td>2,47</td>
</tr>
<tr>
<td>C1.2 Teras</td>
<td>3,65</td>
</tr>
</tbody>
</table>
Lampiran 4. Dimensi Serat Kayu *Acacia mangium* Willd. Provenan Tully Mission Beach Queensland, Australia

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panjang serat (µm)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1 Gubal</td>
<td>920,07</td>
</tr>
<tr>
<td>A1.1 Teras</td>
<td>842,83</td>
</tr>
<tr>
<td>b. A1.2 Gubal</td>
<td>892,80</td>
</tr>
<tr>
<td>A1.2 Teras</td>
<td>833,50</td>
</tr>
<tr>
<td>Diameter serat (µm)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1 Gubal</td>
<td>18,21</td>
</tr>
<tr>
<td>A1.1 Teras</td>
<td>15,95</td>
</tr>
<tr>
<td>b. A1.2 Gubal</td>
<td>17,24</td>
</tr>
<tr>
<td>A1.2 Teras</td>
<td>16,94</td>
</tr>
<tr>
<td>Tebal dinding (µm)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1 Gubal</td>
<td>2,47</td>
</tr>
<tr>
<td>A1.1 Teras</td>
<td>2,46</td>
</tr>
<tr>
<td>b. A1.2 Gubal</td>
<td>2,52</td>
</tr>
<tr>
<td>A1.2 Teras</td>
<td>2,43</td>
</tr>
<tr>
<td>Diameter lumen (µm)</td>
<td></td>
</tr>
<tr>
<td>a. A1.1 Gubal</td>
<td>13,28</td>
</tr>
<tr>
<td>A1.1 Teras</td>
<td>11,02</td>
</tr>
<tr>
<td>b. A1.2 Gubal</td>
<td>12,19</td>
</tr>
<tr>
<td>A1.2 Teras</td>
<td>12,06</td>
</tr>
</tbody>
</table>

Nilai turunan dimensi serat:

1. **Runkel ratio**
 c. A1.1 Gubal | 0,37 |
 A1.1 Teras | 0,45 |
 d. A1.2 Gubal | 0,41 |
 A1.2 Teras | 0,40 |

2. **Daya tenun**
 a. A1.1 Gubal | 50,52 |
 A1.1 Teras | 52,84 |
 b. A1.2 Gubal | 51,79 |
 A1.2 Teras | 49,20 |

3. **Muhlsteph ratio (%)**
 a. A1.1 Gubal | 46,81 |
 A1.1 Teras | 52,26 |
 b. A1.2 Gubal | 50,00 |
 A1.2 Teras | 49,15 |

4. **Flexibility ratio**
 a. A1.1 Gubal | 0,72 |
 A1.1 Teras | 0,69 |
 b. A1.2 Gubal | 0,70 |
 A1.2 Teras | 0,71 |

5. **Coefficient of rigidity**
 a. A1.1 Gubal | 0,13 |
 A1.1 Teras | 0,15 |
 b. A1.2 Gubal | 0,15 |
 A1.2 Teras | 0,14 |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panjang serat (µm)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1 Gubal</td>
<td>904,03</td>
</tr>
<tr>
<td>B1.1 Teras</td>
<td>852,50</td>
</tr>
<tr>
<td>b. B1.2 Gubal</td>
<td>867,40</td>
</tr>
<tr>
<td>B1.2 Teras</td>
<td>826,23</td>
</tr>
<tr>
<td>Diameter serat (µm)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1 Gubal</td>
<td>15,42</td>
</tr>
<tr>
<td>B1.1 Teras</td>
<td>15,84</td>
</tr>
<tr>
<td>b. B1.2 Gubal</td>
<td>14,18</td>
</tr>
<tr>
<td>B1.2 Teras</td>
<td>18,40</td>
</tr>
<tr>
<td>Tebal dinding (µm)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1 Gubal</td>
<td>2,37</td>
</tr>
<tr>
<td>B1.1 Teras</td>
<td>2,38</td>
</tr>
<tr>
<td>b. B1.2 Gubal</td>
<td>2,32</td>
</tr>
<tr>
<td>B1.2 Teras</td>
<td>2,35</td>
</tr>
<tr>
<td>Diameter lumen (µm)</td>
<td></td>
</tr>
<tr>
<td>a. B1.1 Gubal</td>
<td>10,69</td>
</tr>
<tr>
<td>B1.1 Teras</td>
<td>11,09</td>
</tr>
<tr>
<td>b. B1.2 Gubal</td>
<td>9,52</td>
</tr>
<tr>
<td>B1.2 Teras</td>
<td>13,69</td>
</tr>
</tbody>
</table>

Nilai turunan dimensi serat:

1. **Runkel ratio**
 a. B1.1 Gubal | 0,44 |
 B1.1 Teras | 0,43 |
 b. B1.2 Gubal | 0,49 |
 B1.2 Teras | 0,34 |

2. **Daya tenun**
 a. B1.1 Gubal | 58,63|
 B1.1 Teras | 53,80|
 b. B1.2 Gubal | 61,17|
 B1.2 Teras | 40,90|

3. **Muhlsteph ratio**
 a. B1.1 Gubal | 51,94|
 B1.1 Teras | 50,98|
 b. B1.2 Gubal | 54,93|
 B1.2 Teras | 44,64|

4. **Flexibility ratio**
 a. B1.1 Gubal | 0,69 |
 B1.1 Teras | 0,70 |
 b. B1.2 Gubal | 0,67 |
 B1.2 Teras | 0,74 |

5. **Coefficient of rigidity**
 a. B1.1 Gubal | 0,15 |
 B1.1 Teras | 0,15 |
 b. B1.2 Gubal | 0,16 |
 B1.2 Teras | 0,13 |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panjang serat (μm)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1 Gubal</td>
<td>875,33</td>
</tr>
<tr>
<td>C1.1 Teras</td>
<td>809,17</td>
</tr>
<tr>
<td>b. C1.2 Gubal</td>
<td>921,37</td>
</tr>
<tr>
<td>C1.2 Teras</td>
<td>956,50</td>
</tr>
<tr>
<td>Diameter serat (μm)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1 Gubal</td>
<td>15,82</td>
</tr>
<tr>
<td>C1.1 Teras</td>
<td>15,50</td>
</tr>
<tr>
<td>b. C1.2 Gubal</td>
<td>17,24</td>
</tr>
<tr>
<td>C1.2 Teras</td>
<td>18,12</td>
</tr>
<tr>
<td>Tebal dinding (μm)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1 Gubal</td>
<td>2,45</td>
</tr>
<tr>
<td>C1.1 Teras</td>
<td>2,42</td>
</tr>
<tr>
<td>b. C1.2 Gubal</td>
<td>2,42</td>
</tr>
<tr>
<td>C1.2 Teras</td>
<td>2,41</td>
</tr>
<tr>
<td>Diameter lumen (μm)</td>
<td></td>
</tr>
<tr>
<td>a. C1.1 Gubal</td>
<td>10,92</td>
</tr>
<tr>
<td>C1.1 Teras</td>
<td>10,66</td>
</tr>
<tr>
<td>b. C1.2 Gubal</td>
<td>12,40</td>
</tr>
<tr>
<td>C1.2 Teras</td>
<td>13,31</td>
</tr>
</tbody>
</table>

Nilai turunan dimensi serat :

1. **Runkel ratio**
 a. C1.1 Gubal | 0,44 |
 C1.1 Teras | 0,45 |
 b. C1.2 Gubal | 0,39 |
 C1.2 Teras | 0,36 |

2. **Daya tenun**
 a. C1.1 Gubal | 55,33 |
 C1.1 Teras | 52,20 |
 b. C1.2 Gubal | 53,44 |
 C1.2 Teras | 52,79 |

3. **Mühlsteph ratio**
 a. C1.1 Gubal | 52,35 |
 C1.1 Teras | 52,70 |
 b. C1.2 Gubal | 48,27 |
 C1.2 Teras | 46,04 |

4. **Flexibility ratio**
 a. C1.1 Gubal | 0,69 |
 C1.1 Teras | 0,69 |
 b. C1.2 Gubal | 0,72 |
 C1.2 Teras | 0,73 |

5. **Coefficient of rigidity**
 a. C1.1 Gubal | 0,15 |
 C1.1 Teras | 0,16 |
 b. C1.2 Gubal | 0,14 |
 C1.2 Teras | 0,13 |

<table>
<thead>
<tr>
<th>No</th>
<th>Panjang serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88.5</td>
<td>8.9</td>
<td>6.5</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>95.6</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>90.4</td>
<td>7.4</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>95.5</td>
<td>10</td>
<td>7.5</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>85.6</td>
<td>10.1</td>
<td>7.8</td>
<td>1.15</td>
</tr>
<tr>
<td>6</td>
<td>92.3</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>7</td>
<td>88.4</td>
<td>7.3</td>
<td>5.3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>93.5</td>
<td>7.5</td>
<td>5.2</td>
<td>1.15</td>
</tr>
<tr>
<td>9</td>
<td>89.6</td>
<td>8.4</td>
<td>6.2</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>7.7</td>
<td>5.5</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>88.6</td>
<td>7.4</td>
<td>5.3</td>
<td>1.05</td>
</tr>
<tr>
<td>12</td>
<td>87.7</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>93.4</td>
<td>8.8</td>
<td>6.5</td>
<td>1.15</td>
</tr>
<tr>
<td>14</td>
<td>96.8</td>
<td>8.5</td>
<td>6</td>
<td>1.25</td>
</tr>
<tr>
<td>15</td>
<td>53.4</td>
<td>7.7</td>
<td>5.7</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>92.6</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>17</td>
<td>89.3</td>
<td>10.1</td>
<td>8</td>
<td>1.05</td>
</tr>
<tr>
<td>18</td>
<td>100.2</td>
<td>8.9</td>
<td>6.6</td>
<td>1.15</td>
</tr>
<tr>
<td>19</td>
<td>94.7</td>
<td>7.4</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>95</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>21</td>
<td>87.8</td>
<td>8.8</td>
<td>6.6</td>
<td>1.1</td>
</tr>
<tr>
<td>22</td>
<td>85.9</td>
<td>8.3</td>
<td>6.3</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>92.3</td>
<td>9</td>
<td>6.5</td>
<td>1.25</td>
</tr>
<tr>
<td>24</td>
<td>94.2</td>
<td>7.9</td>
<td>5.9</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>90.9</td>
<td>7.6</td>
<td>5.5</td>
<td>1.05</td>
</tr>
<tr>
<td>26</td>
<td>90.4</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>97.6</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>28</td>
<td>89.8</td>
<td>9.1</td>
<td>7</td>
<td>1.05</td>
</tr>
<tr>
<td>29</td>
<td>92.9</td>
<td>8.5</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>98.3</td>
<td>7.5</td>
<td>5.4</td>
<td>1.05</td>
</tr>
</tbody>
</table>

<p>| 92.00666667 | 8.196666667 | 5.976666667 | 1.11 |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Panjang serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75.3</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>86.4</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>81.5</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>83.2</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>85.7</td>
<td>6.5</td>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>79.5</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>7</td>
<td>86.4</td>
<td>7.5</td>
<td>5.3</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>93.5</td>
<td>7.9</td>
<td>5.8</td>
<td>1.05</td>
</tr>
<tr>
<td>9</td>
<td>89.6</td>
<td>6.5</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>86.1</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>87.4</td>
<td>7.8</td>
<td>5.5</td>
<td>1.15</td>
</tr>
<tr>
<td>12</td>
<td>84.5</td>
<td>7.7</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>86.1</td>
<td>7.5</td>
<td>5.4</td>
<td>1.05</td>
</tr>
<tr>
<td>14</td>
<td>83.7</td>
<td>7.3</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>15</td>
<td>80.8</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>16</td>
<td>85.2</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>80.6</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>78.8</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>19</td>
<td>82.4</td>
<td>7.4</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>86.7</td>
<td>7.2</td>
<td>5.1</td>
<td>1.05</td>
</tr>
<tr>
<td>21</td>
<td>82.4</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>85.5</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>83.7</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>24</td>
<td>80.5</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>81.3</td>
<td>7.6</td>
<td>5.6</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>84.6</td>
<td>6.8</td>
<td>4.8</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>86.6</td>
<td>6.7</td>
<td>4.3</td>
<td>1.2</td>
</tr>
<tr>
<td>28</td>
<td>89.8</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>90.7</td>
<td>8.2</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
</tbody>
</table>

<p>| 84.283333333 | 7.176666667 | 4.96 | 1.108333333 |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Panjang Serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90.2</td>
<td>8</td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>86.4</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>85.5</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>7.9</td>
<td>5.7</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>85.7</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>89.7</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>86.4</td>
<td>7.5</td>
<td>5.3</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>93.5</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>88.5</td>
<td>8</td>
<td>5.5</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>92.1</td>
<td>8</td>
<td>5.5</td>
<td>1.25</td>
</tr>
<tr>
<td>11</td>
<td>87.4</td>
<td>7.8</td>
<td>5.5</td>
<td>1.15</td>
</tr>
<tr>
<td>12</td>
<td>84.5</td>
<td>8.5</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>86.1</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>14</td>
<td>83.7</td>
<td>7.3</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>15</td>
<td>90.6</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>16</td>
<td>91.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>88.8</td>
<td>8.2</td>
<td>6.1</td>
<td>1.05</td>
</tr>
<tr>
<td>18</td>
<td>85.7</td>
<td>8.4</td>
<td>6.2</td>
<td>1.1</td>
</tr>
<tr>
<td>19</td>
<td>90</td>
<td>7.4</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>87.4</td>
<td>7.2</td>
<td>5.1</td>
<td>1.05</td>
</tr>
<tr>
<td>21</td>
<td>85.7</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>88.3</td>
<td>8</td>
<td>5.9</td>
<td>1.05</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>24</td>
<td>93.5</td>
<td>7.9</td>
<td>5.5</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>86.9</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>92.5</td>
<td>8.2</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>27</td>
<td>97</td>
<td>8.6</td>
<td>6.3</td>
<td>1.15</td>
</tr>
<tr>
<td>28</td>
<td>89.8</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>90.7</td>
<td>8.2</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>30</td>
<td>90.2</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>89.28</td>
<td>7.756666667</td>
<td>5.486666667</td>
<td>1.135</td>
</tr>
<tr>
<td>No</td>
<td>Panjang serat (mm)</td>
<td>Diameter Serat (mm)</td>
<td>Diameter Lumen (mm)</td>
<td>Tebal Dinding (mm)</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>79</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>76.8</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>81</td>
<td>8</td>
<td>5.5</td>
<td>1.25</td>
</tr>
<tr>
<td>4</td>
<td>85.2</td>
<td>9</td>
<td>6.5</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>87.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>91</td>
<td>7</td>
<td>4.7</td>
<td>1.15</td>
</tr>
<tr>
<td>7</td>
<td>88.2</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>77.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>86.1</td>
<td>9</td>
<td>6.8</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>80.4</td>
<td>8.8</td>
<td>6.6</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>82.6</td>
<td>8.5</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>85</td>
<td>7.7</td>
<td>5.5</td>
<td>1.1</td>
</tr>
<tr>
<td>13</td>
<td>93.7</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>14</td>
<td>78.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>92.4</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>77.1</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>17</td>
<td>80.2</td>
<td>8.5</td>
<td>8.2</td>
<td>1.15</td>
</tr>
<tr>
<td>18</td>
<td>81.5</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>84</td>
<td>7.4</td>
<td>5.3</td>
<td>1.05</td>
</tr>
<tr>
<td>20</td>
<td>82.3</td>
<td>7.2</td>
<td>5.1</td>
<td>1.05</td>
</tr>
<tr>
<td>21</td>
<td>88.6</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>77.6</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>83.7</td>
<td>9</td>
<td>6.6</td>
<td>1.2</td>
</tr>
<tr>
<td>24</td>
<td>90.5</td>
<td>7.9</td>
<td>5.3</td>
<td>1.3</td>
</tr>
<tr>
<td>25</td>
<td>85.3</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>84.6</td>
<td>8.5</td>
<td>6</td>
<td>1.25</td>
</tr>
<tr>
<td>27</td>
<td>82.3</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>79</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>78.5</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>30</td>
<td>80.4</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
</tbody>
</table>

83.35 7.623333333 5.436666667 1.093333333
<table>
<thead>
<tr>
<th>No</th>
<th>Panjang serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93.5</td>
<td>7.3</td>
<td>5.3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>87.6</td>
<td>7.4</td>
<td>5.6</td>
<td>0.9</td>
</tr>
<tr>
<td>4</td>
<td>95.5</td>
<td>7</td>
<td>4.6</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>90.6</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>93.7</td>
<td>7.5</td>
<td>5.3</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>86.5</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>90.3</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>85.5</td>
<td>6.5</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>95.6</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>93.3</td>
<td>7.2</td>
<td>5.5</td>
<td>0.85</td>
</tr>
<tr>
<td>12</td>
<td>90.5</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>13</td>
<td>94.4</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>85.9</td>
<td>6.5</td>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>7</td>
<td>4.6</td>
<td>1.2</td>
</tr>
<tr>
<td>16</td>
<td>87.2</td>
<td>6</td>
<td>4.1</td>
<td>0.95</td>
</tr>
<tr>
<td>17</td>
<td>90.2</td>
<td>6.7</td>
<td>4.4</td>
<td>1.15</td>
</tr>
<tr>
<td>18</td>
<td>85.8</td>
<td>6.5</td>
<td>4.3</td>
<td>1.1</td>
</tr>
<tr>
<td>19</td>
<td>92.3</td>
<td>7.4</td>
<td>5</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>94.3</td>
<td>7.2</td>
<td>5.4</td>
<td>0.9</td>
</tr>
<tr>
<td>21</td>
<td>87.9</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>90</td>
<td>7</td>
<td>4.7</td>
<td>1.15</td>
</tr>
<tr>
<td>23</td>
<td>91.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>87.8</td>
<td>6.5</td>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>89.8</td>
<td>6.7</td>
<td>4.6</td>
<td>1.05</td>
</tr>
<tr>
<td>26</td>
<td>90.4</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>27</td>
<td>89</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>90.5</td>
<td>7</td>
<td>4.8</td>
<td>1.1</td>
</tr>
<tr>
<td>29</td>
<td>92</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>30</td>
<td>88.5</td>
<td>7.3</td>
<td>5.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

90.403333333 | 6.94 | 4.81 | 1.065 |

<table>
<thead>
<tr>
<th>No</th>
<th>Panjang serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95.2</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>87.6</td>
<td>8</td>
<td>5.8</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>82.5</td>
<td>6.9</td>
<td>4.5</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>85.7</td>
<td>7.9</td>
<td>5.9</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>83.3</td>
<td>7</td>
<td>5.2</td>
<td>0.9</td>
</tr>
<tr>
<td>6</td>
<td>85.8</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>84.7</td>
<td>8</td>
<td>5.6</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>88.6</td>
<td>6.5</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>82.7</td>
<td>6</td>
<td>3.7</td>
<td>1.15</td>
</tr>
<tr>
<td>11</td>
<td>90.3</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>85.5</td>
<td>8.2</td>
<td>6.2</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>87.4</td>
<td>7.5</td>
<td>5.3</td>
<td>1.1</td>
</tr>
<tr>
<td>14</td>
<td>82.7</td>
<td>7.3</td>
<td>5.2</td>
<td>1.05</td>
</tr>
<tr>
<td>15</td>
<td>80.8</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>85.2</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>80.6</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>83.1</td>
<td>7.5</td>
<td>5.1</td>
<td>1.2</td>
</tr>
<tr>
<td>19</td>
<td>82.7</td>
<td>6.9</td>
<td>5</td>
<td>0.95</td>
</tr>
<tr>
<td>20</td>
<td>87</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>84.6</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>82.4</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>84.7</td>
<td>7</td>
<td>4.9</td>
<td>1.05</td>
</tr>
<tr>
<td>24</td>
<td>90</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>25</td>
<td>83.5</td>
<td>6.5</td>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>85.5</td>
<td>6.8</td>
<td>4.5</td>
<td>1.15</td>
</tr>
<tr>
<td>27</td>
<td>90</td>
<td>6.7</td>
<td>4.3</td>
<td>1.2</td>
</tr>
<tr>
<td>28</td>
<td>81.8</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>90.2</td>
<td>8.2</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>30</td>
<td>83.4</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>31</td>
<td>85.25</td>
<td>7.13</td>
<td>4.99</td>
<td>1.07</td>
</tr>
<tr>
<td>No</td>
<td>Panjang serat (mm)</td>
<td>Diameter Serat (mm)</td>
<td>Diameter Lumen (mm)</td>
<td>Tebal Dinding (mm)</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>82.2</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>82.1</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>92</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>87.3</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>83.5</td>
<td>6.2</td>
<td>4.2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>80.6</td>
<td>7.1</td>
<td>5</td>
<td>1.05</td>
</tr>
<tr>
<td>7</td>
<td>85.2</td>
<td>7</td>
<td>4.7</td>
<td>1.15</td>
</tr>
<tr>
<td>8</td>
<td>81.8</td>
<td>7.5</td>
<td>5.2</td>
<td>1.15</td>
</tr>
<tr>
<td>9</td>
<td>80.3</td>
<td>6.2</td>
<td>4</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>83.5</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>11</td>
<td>87.4</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>84.5</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>86.1</td>
<td>7</td>
<td>5.2</td>
<td>0.9</td>
</tr>
<tr>
<td>14</td>
<td>83.7</td>
<td>7.3</td>
<td>5.3</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>90.6</td>
<td>6</td>
<td>3.8</td>
<td>1.1</td>
</tr>
<tr>
<td>16</td>
<td>91.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>89.3</td>
<td>7</td>
<td>4.7</td>
<td>1.15</td>
</tr>
<tr>
<td>18</td>
<td>85.7</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>90</td>
<td>7</td>
<td>5.3</td>
<td>0.85</td>
</tr>
<tr>
<td>20</td>
<td>87.4</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>88.7</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>88.3</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>88.2</td>
<td>6.5</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>24</td>
<td>93.6</td>
<td>7.1</td>
<td>4.8</td>
<td>1.15</td>
</tr>
<tr>
<td>25</td>
<td>86.9</td>
<td>6.3</td>
<td>4</td>
<td>1.15</td>
</tr>
<tr>
<td>26</td>
<td>88.3</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>85.4</td>
<td>5.5</td>
<td>3.3</td>
<td>1.1</td>
</tr>
<tr>
<td>28</td>
<td>92.4</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>90.7</td>
<td>6.2</td>
<td>4.6</td>
<td>0.8</td>
</tr>
<tr>
<td>30</td>
<td>88.2</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>86.74</td>
<td>6.38</td>
<td>4.286666667</td>
<td>1.046666667</td>
</tr>
<tr>
<td>No</td>
<td>Panjang serat (mm)</td>
<td>Diameter Serat (mm)</td>
<td>Diameter Lumen (mm)</td>
<td>Tebal Dinding (mm)</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>84.5</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>82.8</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>84.4</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>87.2</td>
<td>9.3</td>
<td>7</td>
<td>1.15</td>
</tr>
<tr>
<td>5</td>
<td>83.6</td>
<td>9.1</td>
<td>7</td>
<td>1.05</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>83.4</td>
<td>8.2</td>
<td>6.2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>81.3</td>
<td>8.5</td>
<td>6.3</td>
<td>1.1</td>
</tr>
<tr>
<td>9</td>
<td>88.7</td>
<td>9</td>
<td>6.5</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>80.4</td>
<td>8.8</td>
<td>6.5</td>
<td>1.15</td>
</tr>
<tr>
<td>11</td>
<td>84</td>
<td>8.5</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>79.8</td>
<td>7.7</td>
<td>5.7</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>88.1</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>81.3</td>
<td>7.8</td>
<td>5.7</td>
<td>1.05</td>
</tr>
<tr>
<td>15</td>
<td>82.5</td>
<td>7.6</td>
<td>5.4</td>
<td>1.1</td>
</tr>
<tr>
<td>16</td>
<td>77.1</td>
<td>8.3</td>
<td>6.4</td>
<td>0.95</td>
</tr>
<tr>
<td>17</td>
<td>75.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>81.5</td>
<td>8.8</td>
<td>6.8</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>84</td>
<td>8</td>
<td>5.5</td>
<td>1.25</td>
</tr>
<tr>
<td>20</td>
<td>82.3</td>
<td>8.1</td>
<td>6</td>
<td>1.05</td>
</tr>
<tr>
<td>21</td>
<td>82.4</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>77.6</td>
<td>8.4</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>23</td>
<td>83.7</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>80.5</td>
<td>8.4</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>81.3</td>
<td>8.6</td>
<td>6.5</td>
<td>1.05</td>
</tr>
<tr>
<td>26</td>
<td>90.1</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>82.5</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>79</td>
<td>7.8</td>
<td>5.8</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>83.4</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>82.763333333</td>
<td>8.28</td>
<td>6.16</td>
<td>1.06</td>
</tr>
<tr>
<td>No</td>
<td>Panjang Serat (mm)</td>
<td>Diameter Serat (mm)</td>
<td>Diameter Lumen (mm)</td>
<td>Tebal Dinding (mm)</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td>87.2</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>77.4</td>
<td>6</td>
<td>3.5</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>90.6</td>
<td>7.8</td>
<td>5.5</td>
<td>1.15</td>
</tr>
<tr>
<td>4</td>
<td>86.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>88.4</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>6</td>
<td>87.6</td>
<td>7.1</td>
<td>5</td>
<td>1.05</td>
</tr>
<tr>
<td>7</td>
<td>95.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>90.6</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>83.4</td>
<td>7</td>
<td>5.1</td>
<td>0.95</td>
</tr>
<tr>
<td>10</td>
<td>93.3</td>
<td>8</td>
<td>5.7</td>
<td>1.15</td>
</tr>
<tr>
<td>11</td>
<td>85.6</td>
<td>7.7</td>
<td>5.6</td>
<td>1.05</td>
</tr>
<tr>
<td>12</td>
<td>87.5</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>86.1</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>88.5</td>
<td>7.3</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>15</td>
<td>88.3</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>84.3</td>
<td>6</td>
<td>3.5</td>
<td>1.25</td>
</tr>
<tr>
<td>17</td>
<td>87.4</td>
<td>7</td>
<td>4.5</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>83.7</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>82.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>95.6</td>
<td>8.1</td>
<td>5.8</td>
<td>1.15</td>
</tr>
<tr>
<td>21</td>
<td>90.3</td>
<td>7.3</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>22</td>
<td>93.2</td>
<td>8</td>
<td>5.5</td>
<td>1.25</td>
</tr>
<tr>
<td>23</td>
<td>87.7</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>84.8</td>
<td>7.1</td>
<td>5</td>
<td>1.05</td>
</tr>
<tr>
<td>25</td>
<td>86</td>
<td>7</td>
<td>4.8</td>
<td>1.1</td>
</tr>
<tr>
<td>26</td>
<td>83.3</td>
<td>7</td>
<td>4.7</td>
<td>1.15</td>
</tr>
<tr>
<td>27</td>
<td>85.4</td>
<td>6.5</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>28</td>
<td>92.8</td>
<td>8</td>
<td>5.6</td>
<td>1.2</td>
</tr>
<tr>
<td>29</td>
<td>82.5</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>8</td>
<td>5.7</td>
<td>1.15</td>
</tr>
</tbody>
</table>

| 87.533333333 | 7.12 | 4.916666667 | 1.101666667 |

<table>
<thead>
<tr>
<th>No</th>
<th>Panjang Serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75.8</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>82.2</td>
<td>7</td>
<td>4.8</td>
<td>1.1</td>
</tr>
<tr>
<td>3</td>
<td>90.1</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>78.2</td>
<td>6.5</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>83.5</td>
<td>6.6</td>
<td>4.6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>80.8</td>
<td>7</td>
<td>4.6</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>87.5</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>76.2</td>
<td>6.6</td>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>9</td>
<td>87.9</td>
<td>7.7</td>
<td>5.7</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>81.2</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>77.5</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>79.8</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>77.3</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>81.3</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>15</td>
<td>82.5</td>
<td>7.3</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>16</td>
<td>79.5</td>
<td>7.7</td>
<td>5.3</td>
<td>1.2</td>
</tr>
<tr>
<td>17</td>
<td>77.2</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>86.3</td>
<td>7</td>
<td>4.6</td>
<td>1.2</td>
</tr>
<tr>
<td>19</td>
<td>78.1</td>
<td>6.2</td>
<td>4.2</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>75.4</td>
<td>7.2</td>
<td>5.1</td>
<td>1.05</td>
</tr>
<tr>
<td>21</td>
<td>80</td>
<td>6.5</td>
<td>4.3</td>
<td>1.1</td>
</tr>
<tr>
<td>22</td>
<td>77.6</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>83.6</td>
<td>7</td>
<td>4.7</td>
<td>1.15</td>
</tr>
<tr>
<td>24</td>
<td>80.5</td>
<td>8.4</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>78.4</td>
<td>8.6</td>
<td>6.5</td>
<td>1.05</td>
</tr>
<tr>
<td>26</td>
<td>90.1</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>82.5</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>81.5</td>
<td>7.8</td>
<td>5.5</td>
<td>1.15</td>
</tr>
<tr>
<td>29</td>
<td>80</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>30</td>
<td>77.2</td>
<td>6.3</td>
<td>4</td>
<td>1.15</td>
</tr>
</tbody>
</table>

| 80.91666667 | 6.976666667 | 4.796666667 | 1.09 |
Lampiran 17. Pengukuran Dimensi Serat Acacia mangium Willd. Kode Sampel C 1.2 Gubal

<table>
<thead>
<tr>
<th>No</th>
<th>Panjang serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>9</td>
<td>8.5</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>95.8</td>
<td>8</td>
<td>5.6</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>84.4</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>93.5</td>
<td>8.3</td>
<td>6.2</td>
<td>1.05</td>
</tr>
<tr>
<td>5</td>
<td>85.6</td>
<td>8</td>
<td>5.6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>86.2</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>95.5</td>
<td>8.5</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>86.3</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>9</td>
<td>97.6</td>
<td>8</td>
<td>5.5</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>92.6</td>
<td>8</td>
<td>5.6</td>
<td>1.2</td>
</tr>
<tr>
<td>11</td>
<td>96.4</td>
<td>8.5</td>
<td>6</td>
<td>1.25</td>
</tr>
<tr>
<td>12</td>
<td>88.3</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>94.6</td>
<td>8.6</td>
<td>6</td>
<td>1.3</td>
</tr>
<tr>
<td>14</td>
<td>86.7</td>
<td>7.3</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>15</td>
<td>89.4</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>92.6</td>
<td>7.8</td>
<td>5.8</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>90.7</td>
<td>7.5</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>88.5</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>97.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>95.3</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>89.8</td>
<td>7.2</td>
<td>5</td>
<td>1.1</td>
</tr>
<tr>
<td>22</td>
<td>96.4</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>93.7</td>
<td>8.5</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>94.4</td>
<td>8.2</td>
<td>6.2</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>88.5</td>
<td>6.5</td>
<td>4</td>
<td>1.25</td>
</tr>
<tr>
<td>26</td>
<td>90.5</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>96.3</td>
<td>8.4</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>28</td>
<td>92.8</td>
<td>8.5</td>
<td>6</td>
<td>1.25</td>
</tr>
<tr>
<td>29</td>
<td>94.2</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| Total | 92.1366667 | 7.76 | 5.58 | 1.09 |</p>
<table>
<thead>
<tr>
<th>No</th>
<th>Panjang serat (mm)</th>
<th>Diameter Serat (mm)</th>
<th>Diameter Lumen (mm)</th>
<th>Tebal Dinding (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104.6</td>
<td>9</td>
<td>6.5</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>95.4</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>105</td>
<td>8.5</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>9.2</td>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td>5</td>
<td>100.5</td>
<td>9.5</td>
<td>7.5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>96.6</td>
<td>8.5</td>
<td>6.5</td>
<td>1.25</td>
</tr>
<tr>
<td>7</td>
<td>97.4</td>
<td>7.5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>103.7</td>
<td>9</td>
<td>7</td>
<td>1.25</td>
</tr>
<tr>
<td>9</td>
<td>98.6</td>
<td>7.5</td>
<td>5</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>95.8</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>96.7</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>89.5</td>
<td>8.3</td>
<td>6</td>
<td>1.15</td>
</tr>
<tr>
<td>13</td>
<td>94.2</td>
<td>8.2</td>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>14</td>
<td>97</td>
<td>7.5</td>
<td>5.4</td>
<td>1.05</td>
</tr>
<tr>
<td>15</td>
<td>98.2</td>
<td>7.3</td>
<td>5</td>
<td>1.15</td>
</tr>
<tr>
<td>16</td>
<td>88.5</td>
<td>7.7</td>
<td>5.7</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>88.4</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>103</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>102.5</td>
<td>8.9</td>
<td>6.5</td>
<td>1.2</td>
</tr>
<tr>
<td>20</td>
<td>85.5</td>
<td>7.2</td>
<td>5.2</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>96.9</td>
<td>8.1</td>
<td>6</td>
<td>1.05</td>
</tr>
<tr>
<td>22</td>
<td>94.7</td>
<td>8.7</td>
<td>6.5</td>
<td>1.1</td>
</tr>
<tr>
<td>23</td>
<td>100.5</td>
<td>9.2</td>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td>24</td>
<td>89.4</td>
<td>7.3</td>
<td>5.3</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>94.7</td>
<td>8.6</td>
<td>6.6</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>90.1</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>88.6</td>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>88.4</td>
<td>7.8</td>
<td>5.3</td>
<td>1.25</td>
</tr>
<tr>
<td>29</td>
<td>88.5</td>
<td>7.2</td>
<td>5.2</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>95.5</td>
<td>8.5</td>
<td>6</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>95.65</td>
<td>8.1566666667</td>
<td>5.99</td>
<td>1.0832333333</td>
</tr>
</tbody>
</table>