PERBEDAAN K_M DAN V_{maks} RENIN BERBAGAI SUMBER PADA KOAGULASI PROTEIN SUSU PASTEURISASI

MIDA RIRIN MUHARINI

PROGRAM STUDI KIMIA
JURUSAN KIMIA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2003
Ringkasan

MIDA RIRIN MUHARINI. Perbedaan Km dan Vnaks resisten Berbagai Sumber Pada Koagulasi Protein susu Pasteurisasi (Differences in Km and Vmax of Some Rennin Sources in Protein Coagulation of Pasteurized Milk). Dibimbing oleh MANSJUR HAWAB dan TATIK KHUSNIATI.

Rennet diperoleh dengan mengextraksi abomasum sapi, papain, dan mikrob. Abomasum sapi diekstraksi dengan merendam abomasum sapi selama 5 hari pada larutan (NaCl-asa asam asetat), ekstraksi papain dengan cara menyedap dan mengerahkan getah papaya, sedangkan ekstraksi mikrob dilakukan dengan menambahkan toluena dan air pada media dedak yang telah ditumbuhkan kapang dan digoyang selama 75 menit. Ketiganya dimurnikan dengan metode salting out (pengendapan dengan garam) dan pengendapan dengan etanol.

Penentuan Km dan Vmax (metode Bergmeyer) dari renin abomasum sapi, papain, dan mikrob murni menggunakan substrat casein dengan konsentrasi 0,25; 0,5; 0,75; 1,0; 1,25; 1,5; 1,75; 2,0; 2,25 dan 2,5% (v/v). Aktivitas koagulasi diuji dengan menambahkan 1ml renet pada 10ml susu dan dicatat waktu koagulasinya. Analisis protein pada dadih dan we terbentuk dari koagulasi susu dilakukan berdasarkan metode Lowry. Hasil yang diperoleh dibandingkan untuk membuktikan adanya pengaruh perbedaan nilai Km dan Vnaks renin M. pusillus, papain, dan abomasum sapi pada koagulasi susu pasteurisasi.

Aktivitas koagulasi dan nilai kandungan protein pada dadih dan we dipengaruhi oleh jenis bahan yang digunakan dalam pemurnian. Hal ini menunjukkan sifat khas masing-masing enzim, yaitu ketahanan terhadap bahan yang digunakan dalam proses pemurnian, misalnya alkohol. Nilai Km dan Vnaks nemppengaruhi aktivitas koagulasi dan kandungan protein dadih dan we pada susu pasteurisasi. Perbedaan Km dan Vnaks ketiga jenis renet berturut-turut ialah 3,0080 dan 0,3726 (M. pusillus), 1,4567 dan 0,5619 (papain), 9,1734 dan 0,2143 (abomasum sapi). Nilai aktivitas koagulasi tertinggi ada pada papain murni (susu pemulih) dan papain kasar (susu skim). Berdasarkan nilai nihau antara dadih dan we, M. pusillus hasil pengendapan dengan ammonium sulfat memiliki nisbah antara dadih dan we tertinggi dibanding yang lain. Berdasarkan parameter diatas renin M. pusillus dan papain dapat digunakan sebagai alternatif enzim pengkoagulasi susu pengganti abomasum sapi. Tetapi untuk lebih mengetahui kelayakan produk di pasaran perlu dilakukan uji lanjutan misalnya uji organoleptik dari keju hasil fermentasi ketiga jenis renet.
PERBEDAAN K_M DAN V_{maks} RENIN BERBAGAI SUMBER PADA KOAGULASI PROTEIN SUSU PASTEURISASI

MIDA RIRIN MUHARINI

Skripsi
Sebagai salah satu syarat untuk memperoleh gelar
Sarjana Sains
Pada
Program studi Kimia

PROGRAM STUDI KIMIA
JURUSAN KIMIA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2003
Judul : Perbedaan K_M dan V_{max} Renin Berbagai Sumber Pada Koagulasi Protein Susu Pasteurisasi
Nama : Mida Rinir Muharini
NIM : G01498023

Menyetujui,

\[\text{Dr. drh. H. Mansjur Hawab, MS.} \]
\text{Pembimbing I}

\[\text{Ir. Tatik Khusniati, M.App.Sc.} \]
\text{Pembimbing II}

Mengetahui,

\[\text{Dr. Sumsiwar Setiati Achmadi} \]
\text{Ketua program studi}

Tanggal Lulus :
RIWAYAT HIDUP

Penulis dilahirkan di Tuban Jawa Timur pada tanggal 21 Juni 1979 sebagai anak bungsu dari dua bersaudara dari pasangan Muhadi dan Sampuni.

Tahun 1998 penulis lulus dari SMUN I Tuban dan pada tahun yang sama lulus seleksi masuk IPB lewat jalur Undangan seleksi masuk IPB. Penulis memilih Program Studi Kimia, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam.

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah SWT atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Judul karya ilmiah ini adalah Perbedaan K_m dan V_{max} Renin Berbagai Sumber pada Koagulasi Protein Susu Pasteurisasi.

Bogor, Januari 2003

Mida Ririn Muharini
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAPART GAMBAR</td>
<td>vi</td>
</tr>
<tr>
<td>DAPART LAMPIRAN</td>
<td>vii</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>Latar belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan</td>
<td>1</td>
</tr>
<tr>
<td>Hipotesis</td>
<td>1</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td></td>
</tr>
<tr>
<td>Renin Sebagai Protease Asari</td>
<td>1</td>
</tr>
<tr>
<td>Pemurnian Renin</td>
<td>2</td>
</tr>
<tr>
<td>Abomasum Anak Sapi</td>
<td>2</td>
</tr>
<tr>
<td>Renet Mikrob</td>
<td>2</td>
</tr>
<tr>
<td>Mucor spp</td>
<td>3</td>
</tr>
<tr>
<td>Pepaya (Carica papaya L)</td>
<td>3</td>
</tr>
<tr>
<td>Papain</td>
<td>4</td>
</tr>
<tr>
<td>Susu Pasteurisasi</td>
<td>4</td>
</tr>
<tr>
<td>Mekanisme Koagulasi Susu</td>
<td>5</td>
</tr>
<tr>
<td>Km (Tetapan Michaelis-Menten) dan Vmax (Kecepatan Maksimum)</td>
<td>6</td>
</tr>
<tr>
<td>BAHAN DAN METODE</td>
<td></td>
</tr>
<tr>
<td>Bahan dan Alat</td>
<td>6</td>
</tr>
<tr>
<td>Waktu dan Tempat Penelitian</td>
<td>6</td>
</tr>
<tr>
<td>HASIL DAN PEMBAHASAN</td>
<td></td>
</tr>
<tr>
<td>Pengendapan dengan Ammonium Sulfat</td>
<td>9</td>
</tr>
<tr>
<td>Pengendapan dengan alkohol</td>
<td>10</td>
</tr>
<tr>
<td>Penentuan Km dan Vmax</td>
<td>11</td>
</tr>
<tr>
<td>Aktivitas Koagulasi</td>
<td>12</td>
</tr>
<tr>
<td>Analisis Kandungan Protein (Metode Lowry)</td>
<td>13</td>
</tr>
<tr>
<td>KESIMPULAN DAN SARAN</td>
<td></td>
</tr>
<tr>
<td>Kesimpulan</td>
<td>14</td>
</tr>
<tr>
<td>Saran</td>
<td>14</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td></td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Gambar</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>1.</td>
<td>Mekanisme koagulasi susu oleh renin</td>
</tr>
<tr>
<td>2.</td>
<td>Kurva Michaelis-Menten</td>
</tr>
<tr>
<td>3.</td>
<td>Kurva Lineweaver-Burk</td>
</tr>
<tr>
<td>4.</td>
<td>Aktivitas Koagulasi Hasil Pengendapan dengan Ammonium Sulfat</td>
</tr>
<tr>
<td>5.</td>
<td>Aktivitas Koagulasi Hasil Pengendapan dengan Alkohol</td>
</tr>
<tr>
<td>6.</td>
<td>Kurva Michaelis-Menten M. Pusillus, papain, Abomasum sapi</td>
</tr>
<tr>
<td>7.</td>
<td>Kurva Lineweaver-Burk M. Pusillus, papain, abomasum sapi</td>
</tr>
<tr>
<td>8.</td>
<td>Kurva Ideal Michaelis-Menten Ketiga Renet</td>
</tr>
<tr>
<td>9.</td>
<td>Aktivitas Koagulasi Rata-rata Enzim Renet Pada Susu Penuh dengan Interaksi Jenis Pemurnian</td>
</tr>
<tr>
<td>10.</td>
<td>Aktivitas Koagulasi Rata-rata Enzim Renet Pada Susu skim dengan Interaksi Jenis Pemurnian</td>
</tr>
<tr>
<td>11.</td>
<td>Nisbah Antara Curd dan Wei Pada Susu Penuh</td>
</tr>
<tr>
<td>12.</td>
<td>Nisbah Antara Curd dan Wei Pada Susu skim</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latarbelakang

Susu merupakan salah satu sumber nutrisi terlengkap bagi manusia maupun hewan. Kandungan utamanya seperti karbohidrat, protein, lemak, vitamin dan mineral merupakan komponen penting yang mereka butuhkan. Pada beberapa macam mikrob, susu juga merupakan media yang sempurna. Pertumbuhan mikrob yang tidak diinginkan karena kontaminasi dapat menyebabkan kerusakan.

Kelebihan rennet mikrob dibanding rennet abomasum anak sapi muda manup babi adalah mikrob mudah diperoleh, karena perkembangbiakannya cepat dan lebih resisten terhadap perubahan pH. Beberapa penelitian sebelumnya telah menunjukkan bahwa rennet mikrob kasar sudah memiliki kemampuan mengkoagulasikan susu yang cukup tinggi. Sedangkan papain ini banyak diminati karena murah, mudah didapat dan bisa digunakan dalam bentuk ekstrak kasar.

Tujuan

Penelitian ini bertujuan membuktikan adanya pengaruh perbedaan Km dan Vmaxs renin mikrob (M. pusillus), papain, dan renin abomasum anak sapi pada koagulasian protein susu pasteurisasi.

Hipotesis

Hipotesis penelitian ini adalah perbedaan Km dan Vmaxs renin M. Pusillus, papain dan abomasum sapi mengakibatkan perbedaan aktivitas koagulasian protein pada susu pasteurisasi.

TINJAUAN PUSTAKA

Rennin Sebagai Protease Asam

Salah satu makanan hasil kerja renin sejak zaman dahulu adalah susu asam atau dadih. Dadih adalah susu yang sudah menggumpal dari kerbau atau kambing akibat terganggunya stabilitas emulsi susu. Penurunan pH susu sampai titik isoelektrik kasein susu menyebabkan protein kasein menggumpal dan mengendap.

Renet atau rennet adalah nama dagang dari suatu kultur stater dari galur bakteri yang memproduksi renin. Renet merupakan enzim proteolitik yang diketahui mempunyai aktivitas proteolitik spesifik, yaitu aktivitas koagulasi susu.

Disamping menghasilkan dadih, koagulasi susu juga menghasilkan wey (protein serum). Wey dianggap sebagai cairan limbah yang tidak diharapkan pada industri keju. Kandungan protein yang tinggi pada dadih sangat diharapkan dibandingkan pada wey. Apabila kandungan protein dari wey yang dihasilkan cukup tinggi diperlukan suatu proses yang mana untuk meningkatkan nilai gama wey tersebut.

Pemurnian Renin

Metode pemurnian yang digunakan pada penelitian ini adalah metode pengendapan protease dengan garam ammonium sulfat dan pengendapan dengan pelarut organik, yaitu alkohol. Kelebihan ammonium sulfat dibanding garam yang lain adalah garam ini larut dalam air, dapat dibuat dalam keadaan murni, harganya murah, tidak menimbulkan denaturasi pada enzim malah memperbaiki struktur enzim. Ammonium sulfat yang dipakai adalah ammonium sulfat pro analitis (p.a.). Untuk menghindari inaktivasi enzim oleh ammonium sulfat diperlukan penambahan EDTA untuk menghilangkan logam berat. Metode pengendapan protease dengan pelarut organik dilakukan pada suhu dibawah 2°C untuk menghindari denaturasi enzim. Pelarut organik biasa digunakan lila pelarut tersebut tidak menginaktivasi enzim yang dimurnikan.

Abomasum Anak Sapi

Renet mengandung enzim-enzim yang dapat diperoleh dengan melakukan ekstraksi abomasum rumiania, khususnya yang masih muda (Winarno, 1986 dalam Sunarlin dan Triyantini, 2001). Semakin dewasa anak sapi, maka renin abomasum anak sapi ini akan tersedot dengan cepat. Munir (1981), renet hasil ekstraksi abomasum anak sapi yang belum disapih (berumur kurang lebih satu bulan) mengandung 94% renin dan 6-12% pepsin, sedangkan ekstraksi abomasum sapi tua (berumur lebih dari tiga tahun) lebih banyak mengandung pepsin, yaitu 90-94% dan renin 6-10%. Renin lebih aktif pada pH 6,2-6,4 sedangkan pepsin paling aktif pada pH 1,7-2,3.

Renet Mikrob