PRODUKSI DAN KARAKTERISASI PROTEASE *Bacillus* sp.
GALUR BBU-32 ASAL SALURAN PENCERNAAN
Parastromateus niger

PRIMANITA SUKMA

DEPARTEMEN BIOLOGI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
2003
ABSTRAK

Sebanyak 42 isolat bakteri proteolitik diisolasi dari saluran pencernaan ikan bawal hitam (Parastromateus niger). Dipilih 4 isolat yang memiliki indeks proteolitik tertinggi dengan penampilan morfologi yang berbeda untuk diukur aktivitas proteasenya. Terpilih isolat BBU-32 yang memiliki aktivitas spesifik tertinggi dan diidentifikasi sebagai Bacillus sp. Media yang optimum bagi pertumbuhan Bacillus sp. galur BBU-32 terdiri atas pepton 0.5%, pati terlarut 0.1%, susu skim 0.5% dan MgCl₂ 0.1%. Pada media yang dimodifikasi ini, protease Bacillus sp. galur BBU-32 menunjukkan aktivitas maksimum pada saat biakan berumur 24 jam. Dengan menggunakan media NB yang mengandung susu skim 0.5% dan glukosa 0.1% aktivitas protease Bacillus sp. galur BBU-32 maksimum dicapai pada suhu 50⁰C dan pH 7.6. Sedangkan pada media yang dimodifikasi aktivitas protease maksimum dicapai pada suhu 50⁰C dan pH 8. Penambahan 5 mM Na⁺ dan K⁺ mampu meningkatkan aktivitas protease masing-masing sebesar 100.4% dan 103.7% sedangkan penambahan 5 mM EDTA dan PMSF menurunkan aktivitas protease, masing-masing tersisa sebesar 16.71% dan 5.47%.

ABSTRACT

Forty two proteolytic bacteria were isolated from digestive tract of Parastromateus niger. Four isolates which had the highest proteolytic index with different morphologist were selected in order to check its protease activity. Isolate BBU-32 which had the highest protease specific activity was selected and identified as Bacillus sp. Optimum medium for the growth of Bacillus sp. strain BBU-32 are pepton 0.5%, soluble starch 0.1%, skim milk 0.5% and MgCl₂ 0.1%. The protease from Bacillus sp. strain BBU-32 showed maximum activity after 24 hours cultivation in this modification medium. Cultivation Bacillus sp. strain BBU-32 in nutrient broth containing skim milk 0.5% and glucose 0.1% showed maximum activity at temperature 50⁰C and pH 7.6. Cultivation Bacillus sp. strain BBU-32 in modification medium showed maximum activity at temperature 50⁰C and pH 8. The protease activity of Bacillus sp. strain BBU-32 in modification medium increased after the additions of Na (100.4%) and K (103.7%) at concentration 5 mM and while after the addition of 5 mM EDTA and PMSF the activity decreased up to 16.71% and 5.47%.
PRODUKSI DAN KARAKTERISASI PROTEASE Bacillus sp. GALUR BBU-32 ASAL SALURAN PENCERNAAN Parastromateus niger

PRIMANITA SUKMA

Skripsi
sebagai salah satu syarat untuk memperoleh gelar
Sarjana Sains
pada
Departemen Biologi

DEPARTEMEN BIOLOGI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
2003
Judul : Produksi dan Karakterisasi Protease Bacillus sp. Gafur BBU-32 Asal Saluran Pencernaan Parastromateus niger
Nama : Primanita Sukma
NIM : G04499013
Departemen : Biologi

Menyetujui,

[Signature]
Dr. Nika Rachmania Mubarak, Msi.
Pembimbing I

[Signature]
Dra. Faruni Sri Prawasti
Pembimbing II

Mengetahui,

[Signature]
Dede Setiadi, MS.
Ketua Departemen

Tanggal Lulus: 05 JAN 2004
RIWAYAT HIDUP

PRAKATA

Bismillahirrahmanirrahim.

Pada kesempatan ini penulis mengucapkan terima kasih kepada Dr. Nisa Rachmania Mubarak, MSi dan Dra. Taruni Sri Prawasti sebagai pembimbing yang telah memberikan arahan dan bimbingan selama menyelesaikan karya ilmiah ini. Ucapan terima kasih juga penulis sampaikan kepada Dra. Hilda Akmal sebagai dosen pengujinya serta kepada Drs. I Ketut Junitha yang telah memberikan arahan dalam pengambilan sampel. Penulis juga mengucapkan terima kasih kepada Nissa, Nelli, Rini, Purwanti, teman-teman Bio’36 di laboratorium Mikrobiologi atas dukungan, persahabatan dan kebersamaan mereka selama penelitian, para karyawan laboratorium Mikrobiologi serta semua pihak yang telah membantu menyelesaikan karya ilmiah ini. Penghargaan terbesar penulis haturkan kepada orang tua dan keluarga atas hantaran doa dan kasih sayangnya.

Penulis berharap agar karya ilmiah ini bermanfaat dan dapat memberikan sumbangan bagi perkembangan ilmu pengetahuan.

Bogor, Desember 2003
Primanita Sukma
DAFTAR ISI

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR TABEL</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
</tr>
</tbody>
</table>

PENDAHULUAN

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latar Belakang</td>
</tr>
<tr>
<td>Tujuan</td>
</tr>
</tbody>
</table>

BAHAN DAN METODE

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu dan Tempat Pencitraan</td>
</tr>
<tr>
<td>Bahan</td>
</tr>
<tr>
<td>Metode</td>
</tr>
</tbody>
</table>

Isolasi Bakteri
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Penapisan Isolat Bakteri Proteolitik
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Pengukuran Aktivitas Protease dan Kadar Protein
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Identifikasi Isolat
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Penentuan Kondisi Optimum Produksi Protease
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Pengukuran Kurva Turbiditas Pertumbuhan dan Produksi Protease
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Karakterisasi Protease
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Penentuan Suhu Optimum
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Penentuan pH Optimum
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Pengujian Stabilitas Enzim
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Pengaruh Kation
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Penambahan Senyawa Penghambat
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

HASIL DAN PEMBAHASAN

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasil</td>
</tr>
</tbody>
</table>

Isolasi dan Penapisan Bakteri Proteolitik
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Identifikasi Isolat
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Penentuan Kondisi Optimum Produksi Protease Bacillus sp. Galur BBU-32
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Pengukuran Kurva Turbiditas Pertumbuhan dan Produksi Protease
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Karakterisasi Aktivitas Protease Bacillus sp. Galur BBU-32
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Pembahasan
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

KESIMPULAN
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

SARAN
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

DAFTAR PUSTAKA
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

LAMPIRAN
<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

1. Hasil pengukuran aktivitas protease dan kadar protein empat isolat terpilih ... 4
2. Pengaruh penambahan NaCl, pati terlarut, sumber nitrogen, susu skim dan garam mineral terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32 ... 4
3. Pengaruh kation dan senyawa penghambat terhadap aktivitas protease Bacillus sp. galur BBU-32 pada pH 8 suhu 50°C yang ditumbuhkan di dalam media yang dimodifikasi .. 7

DAFTAR GAMBAR

1. Kurva turbiditas dan aktivitas protease Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37 °C 5
2. Kurva turbiditas dan aktivitas protease Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37 °C selama selang waktu inkubasi 18-42 jam ... 5
3. Kadar protein dan aktivitas spesifik Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37 °C 5
4. Kadar protein dan aktivitas spesifik Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37°C selama selang waktu inkubasi 18-42 jam ... 6
5. Kurva turbiditas dan aktivitas protease Bacillus sp. galur BBU-32 di dalam media yang dimodifikasi pada pH 7.2 dan suhu 37 °C ... 6
6. Kurva turbiditas dan aktivitas protease Bacillus sp. galur BBU-32 di dalam media yang dimodifikasi pada pH 7.2 dan suhu 37 °C selama selang waktu inkubasi 18-42 jam ... 6
7. Kadar protein dan aktivitas spesifik Bacillus sp. galur BBU-32 di dalam media yang dimodifikasi pada pH 7.2 dan suhu 37 °C ... 6
8. Kadar protein dan aktivitas spesifik Bacillus sp. galur BBU-32 di dalam media yang dimodifikasi pada pH 7.2 dan suhu 37°C selama selang waktu 18-42 jam inkubasi 6
9. Pengaruh suhu terhadap aktivitas protease Bacillus sp. galur BBU-32 ... 7
10. Pengaruh pH terhadap aktivitas protease Bacillus sp. galur BBU-32 ... 7
11. Stabilitas protease Bacillus sp. galur BBU-32 pada pH 8 suhu 50°C ... 7
<table>
<thead>
<tr>
<th>No</th>
<th>JUDUL</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Metode pengujian aktivitas protease (Walter 1984) yang dimodifikasi</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Metode pengukuran kadar protein (Bradford 1976)</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Isolat proteolitik dari saluran pencernaan ikan bawal hitam</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Data aktivitas protease dan kadar protein empat isolat terpilih</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Data pengaruh konsentrasi NaCl tertentu terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Data pengaruh konsentrasi pati terlarut tertentu terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Data pengaruh komposisi sumber nitrogen tertentu terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>Data pengaruh penambahan susu skrim 0.5% terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Data pengaruh penambahan CaCl2 dan MgSO4 0.1% terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>Data turbiditas pertumbuhan dan aktivitas protease Bacillus sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skrim 0.5% dan glukosa 0.1% selama selang waktu inkubasi 24 jam</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>Data turbiditas pertumbuhan dan aktivitas protease Bacillus sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skrim 0.5% dan glukosa 0.1% selama selang waktu inkubasi 18-42 jam</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>Data kadar protein dan aktivitas spesifik protease Bacillus sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skrim 0.5% dan glukosa 0.1% pada pH 7.2 suhu 37°C selama selang waktu inkubasi 24 jam</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>Data kadar protein dan aktivitas spesifik protease Bacillus sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skrim 0.5% dan glukosa 0.1% pada pH 7.2 suhu 37°C selama selang waktu inkubasi 18-42 jam</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>Data turbiditas pertumbuhan dan aktivitas protease Bacillus sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi selama selang waktu inkubasi 24 jam</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>Data turbiditas pertumbuhan dan aktivitas protease Bacillus sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi selama selang waktu inkubasi 18-42 jam</td>
<td>19</td>
</tr>
</tbody>
</table>
16 Data kadar protein dan aktivitas spesifik protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 7.2 suhu 37°C selama selang waktu inkubasi 24 jam .. 20

17 Data kadar protein dan aktivitas spesifik protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 7.2 suhu 37°C selama selang waktu inkubasi 18-42 jam .. 20

18 Data pengaruh suhu terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 .. 20

19 Data pengaruh suhu terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 7.2 ... 21

20 Data pengaruh pH terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada suhu 50°C .. 21

21 Data pengaruh pH terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada suhu 50°C 22

22 Data stabilitas aktivitas protease *Bacillus* sp. galur BBU-32 yang ditumbuhkan dalam media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.6 dan suhu 50°C .. 22

23 Data stabilitas aktivitas protease *Bacillus* sp. galur BBU-32 yang ditumbuhkan dalam media pertumbuhan yang dimodifikasi pada pH 8 dan suhu 50°C ... 23

24 Data pengaruh penambahan iodium monovalen, kation divalent, dan senyawa penghambat terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 8 dan suhu 50°C .. 23
PENDAHULUAN

Latar Belakang

Gejala patogenitas bakteri terhadap ikan berhubungan erat dengan faktor ekstraseluler yang dihasilkannya. Yersinia ruckeri sebagai agen penyebab penyakit enteric red mouth (ERM) menghasilkan protease, lipase dan hemolisin sebagai faktor ekstraseluler yang menimbulkan gejala patogenitas pada ikan salmon. Meskipun mekanisme molekuler peran protease bakteri dalam patogenesis masih belum banyak terungkap, namun beberapa peneliti melaporkan jenis protease tertentu berperan penting dalam kerusakan jaringan ikan, seperti protease yang dihasilkan oleh Aeromonas hydrophila, V. anguillarum, Flexibacter columnaris, dan Pseudomonas aeruginosa (Secades & Gutjarro 1999).

Protease yang dihasilkan oleh mikroba sangat potensial untuk digunakan karena sumbernya yang melimpah, produksi enzim yang cepat, biaya produksi relatif murah dan mudah dikontrol. Memutut Suhartono (1989) produksi enzim asal mikro dapat ditingkatkan pada skala besar dalam ruang yang relatif terbatas. Mikroba yang dapat digunakan untuk produksi enzim secara komersial harus memenuhi beberapa syarat yaitu dapat menghasilkan enzim ekstraseluler yang pemanennannya lebih mudah, cukup stabil dan mempunyai kemampuan produksi yang tinggi, dapat dibuahkan pada media yang relatif murah, serta tidak membunyai produk fermentasi yang dapat mengganggu pembentukan enzim seperti senyawa toksik dan antibiotic (Boing 1982).

Protease merupakan salah satu enzim komersial yang telah digunakan secara luas dalam industri detergen, penyamakn kulit, obat-obatan, makanan dan pengolahan limbah (Crueger & Crueger 1984). Penggunaan enzim protease dalam industri pangan misalnya untuk produksi keju, kue, protein hidrolisat, proses pengempukan daging dan sintesis aspartam sebagai bahan untuk pemanis buatan. Protease
dalam industri kulit misalnya untuk pelapukan rambut dari kulit dan pematangan. Aplikasi protease dalam farmasi, misalnya kolagenase yang digunakan untuk perawatan luka bakar dan protease alkalin yang menggantikan tripsin asal hewan (Rao et al. 1998).

Tujuan
Penelitian ini bertujuan untuk memproduksi dan mengkarakterisasi enzim protease yang diisolasi dari Bacillus sp. asal saluran pencernaan Parastromateus niger.

BAHAN DAN METODE

Waktu dan Tempat
Penelitian ini dilaksanakan mulai bulan Januari 2003 sampai September 2003, bertempat di laboratorium Mikrobiologi dan laboratorium Zoologi FMIPA IPB.

Bahan
Ikan bawal hitam sebanyak 2 ekor dengan bobot total ± 1.5 kg diperoleh dalam keadaan segar dari Muara Angke Jakarta. Ikan dibawa ke laboratorium di dalam wadah pendingin berisi es.

Metode
Isolasi Bakteri
Saluran pencernaan ikan diambil dan dipilih berdasarkan bagiannya yaitu lambung, usus sepanjang 0-3 cm dari lambung, dan usus sepanjang 3-6 cm dari lambung yang secara aseptik dimasukkan ke dalam 50 ml kaldu nutrien (NB) yang mengandung susu skim 2%. Selanjutnya biakan diinkubasi selama 48 jam pada suhu 37°C di atas mesin pengocok (Lab Line USA) dengan kecepatan 140 rpm.

Penapisan Isolat Bakteri Proteolitik
Sebanyak 100 µl suspensi bakteri disebarkan pada media agar-agar nutrien (NA) yang mengandung susu skim 2% dan diinkubasi selama 48 jam pada suhu 37°C. Koloni yang tumbuh terpisah disisih dan digores dengan metode kuadran pada media NA yang mengandung susu skim 2%. Setelah masa inkubasi dipilih empat isolat yang memiliki Indeks Proteolitik (IP) terbesar serta penampakan koloni yang berbeda untuk diukur aktivitas proteasenya.

Pengukuran Aktivitas Protease dan Kadar Protein
Aktivitas protease diukur dengan metode Walter (1984) yang dimodifikasi (Lampiran 1). Sebanyak 0.5 ml larutan kasein 1% direaksikan dengan 0.5 ml bufer tris HCl 0.05 M pH 7.2 dan 0.1 ml ekstrak kasar enzim kemudian diinkubasi dalam penangas air pada suhu 37°C. Reaksi dihentikan dengan menambahkan 1 ml larutan asam trikloroasetat (TCA) 10% (v/v) dan diinkubasi di dalam lemari es (20°C) selama 10 menit. Hasil reaksi disentrifugasi pada kecepatan 10.000 rpm selama 5 menit. Filtrat sebanyak 0.75 ml ditambahkan dengan 2.5 ml Na2CO3 0.5 M dan 0.5 ml Folin Ciocalteu (1:2). Absorban dibaca pada panjang gelombang 578 nm. Satu unit aktivitas protease setara dengan 1 µmol tirosin yang dihasilkan per menit pada kondisi pengukuran.

Identifikasi Isolat
Isolat terpilih yang diseleksi berdasarkan indeks proteolitik dan pengukuran aktivitas proteasenya diidentifikasi berdasarkan Bergey’s of Determinative Bacteriology (Holt et al. 1994). Uji fisiologi yang dilakukan terdiri atas uji katalase, fermentasi karbohidrat, hidrogen sulfida, hidrolisis urea, hidrolisis pati dan sirat simmons. Selain itu dilakukan pewarnaan gram untuk mengamati morfologi sel.

Penentuan Kondisi Optimum Produksi Protease
Untuk mendapatkan kondisi optimum pertumbuhan, isolat bakteri ditumbuhkan pada berbagai komposisi media antara lain variasi NaCl, pati terlarut, sumber nitrogen, susu skim

Selanjutnya isolat ditumbuhkan pada 3 macam media yang mengandung NB, dan pati terlarut sebagai sumber karbon optimum dengan konsentrasi berbeda (0.1% dan 0.5%). Perluakan berikutnya sama seperti penetapan pengaruh penambahan NaCl. Komposisi yang menunjukkan aktivitas protease tertinggi untuk setiap tahap digunakan sebagai kontrol untuk tahap berikutnya. Konsentrasi optimum sumber nitrogen ditentukan dengan menumbuhkan isolat pada 3 macam media yang mengandung sumber karbon optimum dan sumber nitrogen yang berbeda (NB, ekstrak khamir 0.3% dan pepton 0.5%). Pengaruh penambahan susu skim 0.5% dilakukan dengan menumbuhkan isolat pada media yang mengandung sumber karbon optimum, sumber nitrogen optimum dan susu skim 0.5%. Setelah itu isolat ditumbuhkan pada 2 macam media yang mengandung sumber karbon, sumber nitrogen, susu skim optimum dan garam anorganik yang berbeda (CaCl₂ 0.1% dan MgSO₄ 0.1%). Komposisi media yang menghasilkan produksi protease dengan aktivitas spesifik tertinggi disebut media yang dimodifikasi, dan selanjutnya digunakan untuk produksi protease isolat terpilih.

Pengukuran Kurva Turbidity Pertumbuhan dan Produksi Protease

Sebanyak 1 lup bakteri diinokulasikan ke dalam 50 ml kaldu nutrien (NB) yang mengandung susu skim 0.5% dan glukosa 0.1% dan diikubasi selama 6 jam pada suhu ruang. Kemudian sebanyak 1 ml inokulum ditempatkan ke dalam 250 ml media produksi protease. Pembuatan kurva turbidity pertumbuhan dilakukan dengan cara mengukur absorbansi suspensi bakteri pada panjang gelombang 620 nm setiap selang waktu 3 jam selama 24 jam. Selanjutnya kembali dilakukan pengukuran kurva turbidity protease yang dimulai dari selang waktu inkubasi 18 jam sampai 42 jam dan diukur aktivitas protease dan kadar proteinnya. Untuk produksi pada media yang dimodifikasi, isolat ditumbuhkan pada 50 ml media yang dimodifikasi. Sebanyak 1 ml inokulum dimasukkan ke dalam 250 ml media produksi protease. Absorbanisensi suspen diukur pada panjang gelombang 620 nm setiap selang waktu 3 jam selama 24 jam dan kembali dilakukan pengukuran absorbanisensi suspen diukur selang waktu inkubasi 18 jam sampai 42 jam yang dilanjutkan dengan pengukuran aktivitas protease dan kadar proteinnya. Pemanenan protease dilakukan dengan menggunakan sentrifugase dengan kecepatan 10.000 rpm selama 5 menit. Supernatant yang diperoleh merupakan ekstrak kasar protease ekstrakseluler.

Karakterisasi Protease

Karakterisasi ekstrak kasar enzim yang diproduksi dari media NB dan media yang dimodifikasi dilakukan untuk menentukan suhu optimum, pH optimum, stabilitas enzim terhadap panas serta pengaruh penambahan senyawa kation dan penghambat.

Penentuan Suhu Optimum. Penentuan suhu optimum dilakukan dengan cara mengukur aktivitas protease pada berbagai suhu inkubasi, (30°C, 37°C, 40°C-70°C) dengan pH 7.2.

Penentuan pH Optimum. Penentuan pH optimum dilakukan dengan cara mengukur aktivitas protease pada berbagai pH (4-6, 7.2, 7.6, 8 dan 9). Larutan buffer yang digunakan ialah buffer sitrat 0.1 M (pH 4, 5 dan 6), Tris-HCl 0.2 M (pH 7.2, 7.6 dan 8) serta glisina NaOH 0.2 M (pH 9).

Penyelidikan Stabilitas Enzim. Stabilitas enzim diketahui dengan mengikubasi ekstrak kasar enzim tanpa substrat pada suhu optimum selama 3 jam. Aktivitas enzim diukur setiap 30 menit pada suhu dan pH optimum.

Pengaruh Kation. Ekstrak kasar protease direaksikan dengan berbagai kation monovalen (Na⁺ dan K⁺) dan kation divalent (Ca²⁺, Mg²⁺, Co²⁺, Cu²⁺, Zn²⁺ dan Mn²⁺) dengan konsentrasi akhir masing-masing.

Penambahan Senyawa Penghambat. Senyawa penghambat yang digunakan ialah EDTA (etilen diamino tetraasetat) dan PMSF (fenilmetil sulfonyl fluorida) dengan konsentrasi akhir masing-masing 3 mM.
HASIL DAN PEMBAHASAN

Hasil Isolasi dan Penapisan Bakteri Proteolitik

Sebanyak 42 isolat bakteri proteolitik berhasil disisiskan dari bagian lambung dan usus ikan bawal hitam dengan indeks proteolitik berada pada kisaran 0.07-3.30. Sepuluh isolat berasal dari bagian lambung dan sisanya dari bagian usus sepanjang 3 cm dari lambung (Lampiran 3). Isolat bakteri daptih berdasarkan perpaduan antara IP terbasi dengan aktivitas proteasenya. Dari 42 isolat bakteri proteolitik diambil 4 isolat yang memiliki IP terbasi dan menunjukkan penampilan koloni yang berbeda untuk diukur aktivitas protease dan kadar proteinnya (Tabel 1, Lampiran 4).

Tabel 1. Hasil pengukuran aktivitas protease dan kadar protein empat isolat terpilih

<table>
<thead>
<tr>
<th>Isolat</th>
<th>IP</th>
<th>Aktivitas Protease (U/ml)</th>
<th>Kadar Protein (mg/ml)</th>
<th>Aktivitas Spezifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB-10</td>
<td>0.67</td>
<td>0.0031</td>
<td>0.379</td>
<td>0.008</td>
</tr>
<tr>
<td>BB-11</td>
<td>3.00</td>
<td>0.015</td>
<td>0.227</td>
<td>0</td>
</tr>
<tr>
<td>BB-16</td>
<td>0.86</td>
<td>0.0056</td>
<td>0.323</td>
<td>0.017</td>
</tr>
<tr>
<td>BB-32</td>
<td>0.58</td>
<td>0.0073</td>
<td>0.379</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Keterangan: Aktivitas protease diukur pada pH 7.2 dan suhu 37°C

Berdasarkan pengukuran aktivitas spesifik, isolat BB-32 memiliki nilai aktivitas spesifik tertinggi yaitu sebesar 0.019 U/mg. Selanjutnya isolat ini dipilih untuk diidentifikasi dan dikarakterisasi proteasenya.

Identifikasi Isolat

Hasil pengamatan morfologi menunjukkan isolat BB-32 bersifat gram positif, berbentuk bulat, motil dan membentuk endospora. Hasil uji fisiologi menunjukkan isolat BB-32 positif untuk uji katalase dan hidrolisis pati, negatif untuk fermentasi karbohidrat, hidrogen sulfida, hidrolisis urea dan sitrat simmons.

Berdasarkan ciri-ciri tersebut, isolat BB-32 digolongkan sebagai genus Bacillus (Holt et al. 1994).

Penentuan Kondisi Optimum Produksi Protease Bacillus sp. Galur BB-32

Hasil analisis pengaruh berbagai komponen dan konsentrasi untuk media produksi protease menunjukkan terjadi penurunan aktivitas protease dengan penambahan NaCl pada berbagai konsentrasi (Tabel 2, Lampiran 5). Pati terlarut 0.1% mempunyai sumber karbon terbaik yang dapat meningkatkan aktivitas protease Bacillus sp. galur BB-32 (Tabel 2, Lampiran 6). Selanjutnya penambahan berasal turut pepton 0.5%, susu skim 0.5% dan MgSO₄ 0.1% meningkatkan aktivitas protease masing-masing sebesar 159.44, 167.6 dan 400.84% (Tabel 2, Lampiran 7, 8 dan 9).

Tabel 2. Pengaruh penambahan NaCl, pati terlarut, sumber nitrogen, susu skim dan garam mineral terhadap aktivitas spesifik protease Bacillus sp. galur BB-32

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Aktivitas spesifik protease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Pengaruh NaCl</td>
<td></td>
</tr>
<tr>
<td>NB (kontrol)</td>
<td>100.0</td>
</tr>
<tr>
<td>NB + NaCl 0.1 M</td>
<td>78.3</td>
</tr>
<tr>
<td>NB + NaCl 0.5 M</td>
<td>30.5</td>
</tr>
<tr>
<td>NB + NaCl 2.5 M</td>
<td>20.0</td>
</tr>
<tr>
<td>II Pengaruh pati terlarut</td>
<td></td>
</tr>
<tr>
<td>NB (kontrol)</td>
<td>100.0</td>
</tr>
<tr>
<td>NB + pati terlarut 0.1%</td>
<td>164.0</td>
</tr>
<tr>
<td>NB + pati terlarut 0.5%</td>
<td>24.4</td>
</tr>
<tr>
<td>III Pengaruh sumber nitrogen</td>
<td></td>
</tr>
<tr>
<td>NB + pati terlarut 0.1%</td>
<td>116.6</td>
</tr>
<tr>
<td>Ekstrak khamir 0.3% + pati terlarut 0.1%</td>
<td>159.44</td>
</tr>
<tr>
<td>Pepton 0.5% + pati terlarut 0.1%</td>
<td></td>
</tr>
<tr>
<td>IV Pengaruh susu skim</td>
<td></td>
</tr>
<tr>
<td>Pepton 0.5% + pati terlarut 0.1% (kontrol)</td>
<td>167.6</td>
</tr>
<tr>
<td>Pepton 0.5% + pati terlarut 0.1% + susu skim 0.5%</td>
<td></td>
</tr>
<tr>
<td>V Pengaruh garam morganik</td>
<td></td>
</tr>
<tr>
<td>Pepton 0.5% + pati terlarut 0.1% + susu skim 0.5% (kontrol)</td>
<td>100.0</td>
</tr>
<tr>
<td>Pepton 0.5% + pati terlarut 0.1% + susu skim 0.5% + CaCl₂ 0.1%</td>
<td>7.0</td>
</tr>
<tr>
<td>Pepton 0.5% + pati terlarut 0.1% + susu skim 0.5% + MgSO₄ 0.1%</td>
<td>400.8</td>
</tr>
</tbody>
</table>

Keterangan: Aktivitas protease diukur pada pH 7.2 dan suhu 37°C
Komposisi media hasil optimasi yang terdiri atas pati terlarut 0.1%, pepton 0.5%, susu skim 0.5% dan MgSO₄ dinamakan media modifikasi yang digunakan untuk penentuan kurva turbiditas pertumbuhan dan produksi protease isolat Bacillus sp. galur BBU-32.

Pengukuran Kurva Turbiditas Pertumbuhan dan Produksi Protease

Pertumbuhan isolat Bacillus sp. galur BBU-32 pada media NB yang mengandung susu skim 0.5% dan glukosa 0.1% selama selang waktu incubasi 24 jam menunjukkan terjadi kenaikan rapat optis pada jam ke-0 sampai jam ke-9. Selanjutnya terjadi penurunan sampai jam ke-18 dan rapat optis kembali meningkat sampai jam ke-24. Aktivitas proteasenya terus meningkat dari jam ke-0 sampai jam ke-24 sebesar 0.087 U/ml (Gambar 1, Lampiran 10). Pada pengukuran turbiditas isolat Bacillus sp. galur BBU-32 yang dilakukan pada jam ke-18 sampai jam ke-42 memperlihatkan bahwa fase stasioner diduga mulai dicapai pada jam ke-30 dan selanjutnya rapat optis mengalami penurunan hingga jam ke-42. Aktivitas protease terus meningkat dari jam ke-18 sampai jam ke-30 sebesar 0.049 U/ml, selanjutnya pada jam ke-33 aktivitasnya menurun dan kembali meningkat hingga mencapai aktivitas protease optimum pada jam ke-36 yaitu sebesar 0.056 U/ml (Gambar 2, Lampiran 11).

Kadar protein isolat Bacillus sp. galur BBU-32 yang diukur pada selang waktu incubasi 24 jam terus mengalami penurunan dari jam ke-0 sampai jam ke-18 dan meningkat kembali pada jam ke-21 sampai jam ke-24 sebesar 0.100 mg/ml (Gambar 3, Lampiran 12). Selanjutnya setelah dilakukan pengukuran kembali pada selang waktu incubasi 18 jam sampai 42 jam terlihat bahwa kadar protein isolat Bacillus sp. galur BBU-32 mengalami penurunan secara bertahap dari jam ke-18 sampai jam ke-42 hingga tersisa sebesar 0.007 mg/ml. Terdapat dua puncak aktivitas protease isolat Bacillus sp. galur BBU-32 yang diukur dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% yaitu pada jam ke-30 dan 36 dengan aktivitas spesifik optimum pada jam ke-36 yaitu sebesar 8.0 U/mg (Gambar 4, Lampiran 13).

Gambar 1. Kurva turbiditas dan aktivitas protease Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37 °C.

Gambar 2. Kurva turbiditas dan aktivitas protease Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37 °C selama selang waktu incubasi 18-42 jam.

Gambar 3. Kadar protein dan aktivitas spesifik Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37 °C.
Gambar 4. Kadar protein dan aktivitas spesifik *Bacillus* sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 dan suhu 37°C selama selang waktu inkubasi 18-42 jam.

Pertumbuhan isolat *Bacillus* sp. galur BBU-32 yang ditumbuhkan di dalam media yang dimodifikasi menunjukkan sampai jam ke-24 masih terjadi kenaikan rapat optis dan aktivitas protease (Gambar 5, Lampiran 14). Selanjutnya kembali dilakukan pengukuran turbiditas dan aktivitas protease yang dimulai dari jam ke-18 sampai jam ke-42. Isolat *Bacillus* sp. galur BBU-32 memiliki aktivitas protease tertinggi pada jam ke-24 yaitu sebesar 0.306 U/ml dan menurun relatif stabil hingga jam ke-42 sebesar 0.206 U/ml (Gambar 6, Lampiran 15). Kadar protein pada jam ke-24 sebesar 0.011 mg/ml dengan aktivitas spesifik sebesar 11.182 U/mg (Gambar 7, Lampiran 16). Aktivitas spesifik isolat *Bacillus* sp. galur BBU-32 mencapai nilai tertinggi tetap pada jam ke-24 yaitu sebesar 6.12 U/mg (Gambar 8, Lampiran 17).

Gambar 5. Kurva turbiditas dan aktivitas protease *Bacillus* sp. galur BBU-32 di dalam media yang dimodifikasi pada pH 7.2 dan suhu 37°C.

Gambar 6. Kurva turbiditas dan aktivitas protease *Bacillus* sp. galur BBU-32 di dalam media yang dimodifikasi pada pH 7.2 dan suhu 37°C selama selang waktu inkubasi 18-42 jam.

Gambar 7. Kadar protein dan aktivitas spesifik *Bacillus* sp. galur BBU-32 di dalam media yang dimodifikasi pada pH 7.2 dan suhu 37°C.

Karakterisasi Aktivitas Protease *Bacillus* sp. Galur BBU-32.

Ekstrak kasar enzim protease dikarakterisasi berdasarkan pengaruh suhu, pH, pengujian kestabilan terhadap panas, pengaruh...
kation divalent dan monovalen, serta senyawa penghambat. Aktivitas protease isolat *Bacillus* sp. galur BBU-32 yang diumbuhkan di dalam media NB yang mengandung susu skim 0.5% dan gulaosa 0.1% optimum pada suhu 50°C sebesar 0.082 U/ml (Gambar 9, Lampiran 18). Pada suhu 50°C aktivitasnya optimum dicapai pada pH 7.6 sebesar 0.058 U/ml (Gambar 10, Lampiran 19). Enzim protease yang diumbuhkan di dalam media yang dimodifikasi juga memiliki suhu optimum 50°C (Gambar 9, Lampiran 20) dengan pH optimum 8 (Gambar 10, Lampiran 21).

Pengukuran kestabilan terhadap suhu menunjukkan protease *Bacillus* sp. galur BBU-32 baik yang diumbuhkan di dalam media NB yang mengandung susu skim 0.5% dan glukosa 0.1% maupun yang diumbuhkan di dalam media yang dimodifikasi tidak stabil selama 3 jam inkubasi. Aktivitas enzim terus mengalami penurunan secara bertahap hingga pada jam ke-3 aktivitas enzim masing-masing tersisa sebesar 0.009 dan 0.044 U/ml (Gambar 11, Lampiran 22 dan 23).

Gambar 11. Stabilitas protease *Bacillus* sp. galur BBU-32 pada pH 8 suhu 50°C.

Penambahan kation divalen Mg²⁺, Ca²⁺, Cu²⁺, Co²⁺, Zn²⁺ dan Mn²⁺ menurunkan aktivitas protease sedangkan penambahan kation monovalen Na⁺ dan K⁺ sedikit meningkatkan aktivitas protease, masing-masing sebesar 100.4% dan 103.7%. Penambahan senyawa penghambat EDTA dan PMSF menurunkan aktivitas protease masing-masing tersisa sebesar 16.71% dan 5.47% (Tabel 3, Lampiran 24).

Tabel 3. Pengaruh kation dan senyawa penghambat terhadap aktivitas protease *Bacillus* sp. galur BBU-32 pada pH 8 suhu 50°C yang diumbuhkan di dalam media yang dimodifikasi

<table>
<thead>
<tr>
<th>Senyawa</th>
<th>Akt. Protease (U/ml)</th>
<th>Akt. Relatif (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>0.268</td>
<td>100</td>
</tr>
<tr>
<td>Na</td>
<td>0.269</td>
<td>100.4</td>
</tr>
<tr>
<td>K</td>
<td>0.278</td>
<td>103.7</td>
</tr>
<tr>
<td>Kontrol</td>
<td>0.347</td>
<td>100</td>
</tr>
<tr>
<td>Ca</td>
<td>0.254</td>
<td>73.19</td>
</tr>
<tr>
<td>Mg</td>
<td>0.306</td>
<td>88.18</td>
</tr>
<tr>
<td>Cu</td>
<td>0.080</td>
<td>23.05</td>
</tr>
<tr>
<td>Mn</td>
<td>0.117</td>
<td>33.72</td>
</tr>
<tr>
<td>Zn</td>
<td>0.056</td>
<td>16.14</td>
</tr>
<tr>
<td>Co</td>
<td>0.113</td>
<td>32.56</td>
</tr>
<tr>
<td>Kontrol</td>
<td>0.347</td>
<td>100</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.058</td>
<td>16.71</td>
</tr>
<tr>
<td>PMSF</td>
<td>0.019</td>
<td>5.47</td>
</tr>
</tbody>
</table>

Pembahasan

Isolat bakteri proteolitik yang ditemukan di dalam saluran pencernaan ikan bawal hitam banyak terdapat di daerah usus terutama daerah sepanjang 0-3 cm dari lambung. Hal ini menunjukkan bahwa daerah ini cukup kondusif...
bagi pertumbuhan bakteri proteolitik. Sebenarnya ditemukan juga isolat proteolitik di daerah susus sepanjang 3-6 cm dari lambung, namun protease ekstraseluler yang disekresikan bersifat tidak stabil, yaitu tidak terbatuk kembali zona bening di sekitar koloni pada peremajaan isolat yang berikutnya. Di daerah lambung ditemukan sedikit isolat bakteri proteolitik, di dalam yang dihasilkan oleh lambung menghambat pertumbuhan sejumlah bakteri proteolitik. Salah satu dari isolat yang diperoleh diidentifikasi sebagai Bacillus sp.

Pemilihan isolat penghasil enzim protease pada umumnya dilakukan dengan melihat indeks proteolitik tertinggi yang dihasilkannya. Tetapi dalam hal ini indeks proteolitik tidak selalu menunjukkan aktivitas enzim terbaik. Aarnstrup dalam Ward (1983) menyatakan tidak selalu ada korelasi antara diameter zona bening pada media agar-agar dengan kemampuan mikroorganisme memproduksi protease dalam kultur terendam. Hal ini ditunjukkan oleh Bacillus sp. galur BBU-32 yang memiliki indeks proteolitik relatif kecil tetapi aktivitas proteasenya paling tinggi dibandingkan isolat lainnya yaitu sebesar 0,019 U/mg. Isolat BBU-11 walaupun memiliki IP tertinggi tetapi aktivitas proteasenya nol, diduga pengukuran aktivitas protease yang dilakukan tidak berada pada pH dan suhu optimum bagi isolat tersebut.

Media yang digunakan untuk memproduksi enzim merupakan faktor yang penting untuk diperhatikan. Untuk itu dilakukan pengujian pengaruh beberapa sumber karbon, sumber nitrogen, susu skim dan mineral dengan berbagai konsentrasi terhadap aktivitas protease Bacillus sp. galur BBU-32. Penggunaan media harus disesuaikan dengan enzim yang akan diproduksi, proses fermentasi yang dilakukan, dan mikroba yang akan digunakan sebagai penghasil enzim (Crueger & Crueger 1984).

Pada media modifikasi, pati terlarut adalah sumber karbon terbaik yang dapat meningkatkan aktivitas protease. Penambahan pati terlarut 0,1% sebagai sumber karbon mampu meningkatkan aktivitas protease sebesar 164%. Demikian pula dengan penambahan pepton 0,5% mampu meningkatkan aktivitas protease Bacillus sp. galur BBU-32 dibandingkan dengan NB dan ekstrak khamir. Pepton juga merupakan sumber nitrogen terbaik untuk produksi protease dari A. hidrophilla (Secades & Guijarro 1999). Pepton sebagai sumber nitrogen organik mengandung vitamin dan karbohidrat.

Susu skim merupakan sumber nitrogen dan karbon yang dapat meningkatkan pertumbuhan sel sehingga dengan demikian dapat pula memicu produksi protease. Penambahan susu skim 0,5% meningkatkan aktivitas protease Bacillus sp. galur BBU-32 sebesar 167,6%. Suhartono et al. (1996) melaporkan bahwa penambahan susu skim 0,5% juga mampu meningkatkan produksi protease Bacillus pumilus Y1. Susu skim dimaksudkan sebagai induser, sebab ada beberapa jenis enzim yang bersifat inducible-enzyme (enzim terinduksi). Enzim jenis ini dihasilkan oleh sel sebagai tanggapan karena adanya substrat.

Kebutuhan mikrob akan mineral berbeda-beda tergantung kandungan unsur yang ada di dalam selnya. Penambahan garam anorganik MgSO₄ · 0,1% ke dalam media modifikasi meningkatkan aktivitas protease Bacillus sp. galur BBU-32 dibandingkan dengan penambahan CaCl₂ 0,1%, yaitu sebesar 400,8%. Hal ini berbeda dengan kebanyakan enzim protease lain yang pada umumnya menurut Suhartono (1989) penambahan kalsium dapat meningkatkan produksi dan aktivitas enzim yang dihasilkan.

Aktivitas protease isolat Bacillus sp. galur BBU-32 yang ditumbuhkan di dalam media NB yang mengandung susu skim 0,5% dan glukosa 0,1% optimum pada jam ke-36 sedangkan isolat yang ditumbuhkan di dalam media yang dimodifikasi memiliki aktivitas optimum pada jam ke-24 (Gambar 2 dan 6). Ward (1983) mengemukakan bahwa pembentukan enzim protease mulai meningkat selama memasuki fase eksponensial, kemudian meningkat dengan cepat memasuki fase stasioner. Hal ini sejalan dengan apa yang diungkapkan oleh Suhartono (1992) yang menyebutkan bahwa sintesis protease ekstraseluler biasanya terjadi pada fase stasioner, terkait dengan mekanisme represi katabolitnya. Selama fase pertumbuhan eksponensial, sel akan mengalami hambatan represi katabolit sehingga sintesis enzim terhambat. Memasuki fase stasioner, represi katabolit menurun sehingga mengaktifkan biosintesis enzim.

Selama pertumbuhan Bacillus sp. galur BBU-32 di dalam media NB yang mengandung susu skim 0,5% dan glukosa 0,1% terdapat dua

Aktivitas protease Bacillus sp. galur BBU-32 meningkat dengan adanya penambahan kation monovalen Na⁺ dan K⁺ dengan konsentrasi akhir 5 mM, masing-masing sebesar 100.4% dan 103.7%. Sementara penambahan kation divalent Mg²⁺, Ca²⁺, Cu²⁺, Co²⁺, Zn²⁺ dan Mn²⁺ menurunkan aktivitas protease. Protease yang meningkat aktivitasnya pada penambahan kation K⁺ dengan konsentrasi akhir 2 mM dan 10 mM tidaknya berasal dari B. pumilus y1 (Kusnidar 1995). Ion logam berperan terhadap aktivitas protease terutama protease logam. Ion logam dapat mengaktifkan enzim melalui berbagai kemungkinan, diantaranya ion logam menjadi bagian integral enzim, menghubungkan enzim dengan substrat, mengubah konstanta kesetimbangan reaksi enzim, mengubah tegangan protein, menghilangkan inhibitor serta mengubah konformasi enzim menjadi konformasi yang lebih aktif. Hal ini sejalan dengan apa yang disampaikan oleh Harper et al. (1979) bahwa ion logam melakukan peran penting dalam menjaga kestabilan dan pengaturan aktivitas enzim.

Penambahan senyawa penghambat EDTA dan PMSF menurunkan aktivitas protease Bacillus sp. galur BBU-32. Penambahan EDTA dan PMSF dalam berbagai konsentrasi juga menurunkan aktivitas protease yang dihasilkan oleh B. pumilus y1 (Kusnidar 1995) dan B. subtilis ATCC 6633 (Mubarik &

KESIMPULAN

Berhasil diisolasi 42 bakteri proteolitik dari bagian lambung dan usus ikan bawal hitam. Terpilih isolat BBU-32 yang memiliki aktivitas tertinggi dan termasuk ke dalam genus Bacillus sp. Media modifikasi yang memberikan kondisi optimum bagi aktivitas protease Bacillus sp. galur BBU-32 terdiri atas pepton 0.5%, pati tertarut 0.1%, susu skim 0.5% dan MgSO₄ 0.1%.

Protease Bacillus sp. galur BBU-32 yang diproduksi dari media NB yang mengandung susu skim 0.5% dan glukosa 0.1% memiliki aktivitas optimum pada suhu 50°C dan pH 7.6. Sedangkan pada media yang dimodifikasi aktivitas protease optimum diperoleh pada suhu 50°C dan pH 8. Aktivitas protease Bacillus sp. galur BBU-32 meningkat dengan penambahan logam monovalen Na⁺ dan K⁺ serta dihambat dengan adanya penambahan senyawa penghambat EDTA dan PMSF.

SARAN

Dari hasil penelitian ini diketahui bahwa protease yang dihasilkan oleh isolat Bacillus sp. galur BBU-32 dapat terdiri atas lebih dari satu macam protease. Sebaliknya dilakukan tabapan pemurnian lebih lanjut untuk mengetahui jenis protease yang dihasilkan. Selain itu, diharapkan pemurnian ini mampu meningkatkan aktivitas spesifik protease sehingga enzim protease yang telah dimurnikan dapat diaplikasikan penggunaannya secara langsung.

DAFTAR PUSTAKA

LAMPIRAN
Lampiran 1. Metode pengujian aktivitas protease (Walter 1984) yang dimodifikasi

<table>
<thead>
<tr>
<th>Perekasi</th>
<th>Blanko (µl)</th>
<th>Standar (µl)</th>
<th>Sampel (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larutan bufer Tris HCL (0.2 M) pH 7</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Substrat casein (1%)</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Ekstrak karas enzim</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Akuades steril</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tirosin standar (5 mM)</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

diinkubasi pada suhu optimum selama 10 menit

<table>
<thead>
<tr>
<th>Perekasi</th>
<th>Blanko (µl)</th>
<th>Standar (µl)</th>
<th>Sampel (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asam trikloroasetat (TCA) 10%</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Akuades steril</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Ekstrak karas enzim</td>
<td>100</td>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

diinkubasi pada suhu 20°C selama 10 menit → disentrifugasi dengan kecepatan 10000 rpm selama 5 menit

<table>
<thead>
<tr>
<th>Perekasi</th>
<th>Blanko (µl)</th>
<th>Standar (µl)</th>
<th>Sampel (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernatant</td>
<td>750</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>Na₂CO₃ (0.5 M)</td>
<td>2500</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Folin Ciocalteta (1:2)</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

didiamkan selama 15 menit → diukur absorbansinya pada panjang gelombang 578 nm

Aktivitas protease diukur dengan rumus:

\[
UA = \frac{A_{sampel} - A_{blanko} \times P \times \frac{1}{T}}{A_{standar} - A_{blanko}}
\]

Keterangan:
UA = jumlah enzim yang dapat menghasilkan 1 µmol produk tirosin per menit (U/ml)
A sampel = nilai absorbansi sampel
A standar = nilai absorbansi standar
A blanko = nilai absorbansi blanko
P = faktor pengenceran
T = waktu inkubasi (10 menit)

Komposisi perekasi Bradford lima kali pekat terdiri atas:

Coomastie brilliant blue G-250	25 mg
Ethanol 95%	12.5 ml
Asam ortofosfat 85%	25 ml
Akuades	212.5 ml

Sebelum digunakan untuk mengukur kadar protein, perekasi diencerkan dengan akuades dengan perbandingan 1:4.

Kurva standar dibuat dengan menambahkan sebanyak 5 ml perekasi Bradford ke dalam 0.1 ml larutan BSA (bovin serum albumin) dengan berbagai konsentrasi (0.0 mg/ml - 1.0 mg/ml). Selanjutnya campuran tersebut diinkubasi selama 10 menit pada suhu ruang dan absorbansinya dibaca pada panjang gelombang 595 nm.

Sampel yang akan diukur kadar proteinsnya diperlakukan sama. Sebanyak 5 ml perekasi Bradford ditambahkan ke dalam 0.1 ml sampel dan diinkubasi pada suhu ruang selama 10 menit. Selanjutnya absorbansi dibaca pada panjang gelombang 595 nm. Perhitungan kadar protein berdasarkan kurva standar yang diperoleh.
Lampiran 3. Isolat proteolitik dari saluran pencernaan ikan bawal hitam

<table>
<thead>
<tr>
<th>No</th>
<th>Isolat</th>
<th>Diameter koloni (mm)</th>
<th>Diameter zona bening (mm)</th>
<th>Indeks proteolitik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BBL-1</td>
<td>1.6</td>
<td>1.9</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>BBL-2</td>
<td>2.1</td>
<td>2.3</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>BBL-3</td>
<td>2.0</td>
<td>2.3</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>BBL-4</td>
<td>2.1</td>
<td>2.4</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>BBL-5</td>
<td>2.5</td>
<td>3.2</td>
<td>0.28</td>
</tr>
<tr>
<td>6</td>
<td>BBL-6</td>
<td>2.4</td>
<td>2.8</td>
<td>0.17</td>
</tr>
<tr>
<td>7</td>
<td>BBL-7</td>
<td>2.5</td>
<td>3.1</td>
<td>0.24</td>
</tr>
<tr>
<td>8</td>
<td>BBL-8</td>
<td>2.1</td>
<td>2.8</td>
<td>0.33</td>
</tr>
<tr>
<td>9</td>
<td>BBU-9</td>
<td>3.0</td>
<td>3.6</td>
<td>0.20</td>
</tr>
<tr>
<td>10</td>
<td>BBL-10</td>
<td>1.2</td>
<td>2.0</td>
<td>0.67</td>
</tr>
<tr>
<td>11</td>
<td>BBU-1</td>
<td>1.1</td>
<td>1.7</td>
<td>0.54</td>
</tr>
<tr>
<td>12</td>
<td>BBU-2</td>
<td>0.8</td>
<td>1.6</td>
<td>1.00</td>
</tr>
<tr>
<td>13</td>
<td>BBU-3</td>
<td>0.9</td>
<td>1.5</td>
<td>0.67</td>
</tr>
<tr>
<td>14</td>
<td>BBU-4</td>
<td>1.3</td>
<td>1.4</td>
<td>0.08</td>
</tr>
<tr>
<td>15</td>
<td>BBU-5</td>
<td>0.8</td>
<td>1.2</td>
<td>0.50</td>
</tr>
<tr>
<td>16</td>
<td>BBU-6</td>
<td>1.1</td>
<td>1.7</td>
<td>0.55</td>
</tr>
<tr>
<td>17</td>
<td>BBU-7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.75</td>
</tr>
<tr>
<td>18</td>
<td>BBU-8</td>
<td>0.5</td>
<td>1.1</td>
<td>1.20</td>
</tr>
<tr>
<td>19</td>
<td>BBU-9</td>
<td>0.5</td>
<td>1.2</td>
<td>1.40</td>
</tr>
<tr>
<td>20</td>
<td>BBU-10</td>
<td>0.4</td>
<td>1.3</td>
<td>2.25</td>
</tr>
<tr>
<td>21</td>
<td>BBU-11</td>
<td>0.3</td>
<td>1.2</td>
<td>3.00</td>
</tr>
<tr>
<td>22</td>
<td>BBU-12</td>
<td>0.9</td>
<td>1.5</td>
<td>0.67</td>
</tr>
<tr>
<td>23</td>
<td>BBU-13</td>
<td>1.1</td>
<td>1.6</td>
<td>0.45</td>
</tr>
<tr>
<td>24</td>
<td>BBU-14</td>
<td>0.8</td>
<td>1.2</td>
<td>0.50</td>
</tr>
<tr>
<td>25</td>
<td>BBU-15</td>
<td>0.7</td>
<td>1.3</td>
<td>0.86</td>
</tr>
<tr>
<td>26</td>
<td>BBU-16</td>
<td>0.7</td>
<td>1.3</td>
<td>0.86</td>
</tr>
<tr>
<td>27</td>
<td>BBU-17</td>
<td>0.8</td>
<td>1.3</td>
<td>0.63</td>
</tr>
<tr>
<td>28</td>
<td>BBU-18</td>
<td>1.0</td>
<td>1.5</td>
<td>0.50</td>
</tr>
<tr>
<td>29</td>
<td>BBU-19</td>
<td>1.5</td>
<td>1.7</td>
<td>0.13</td>
</tr>
<tr>
<td>30</td>
<td>BBU-20</td>
<td>1.3</td>
<td>1.8</td>
<td>0.38</td>
</tr>
<tr>
<td>31</td>
<td>BBU-21</td>
<td>1.1</td>
<td>1.6</td>
<td>0.45</td>
</tr>
<tr>
<td>32</td>
<td>BBU-22</td>
<td>1.3</td>
<td>1.7</td>
<td>0.31</td>
</tr>
<tr>
<td>33</td>
<td>BBU-23</td>
<td>1.3</td>
<td>1.7</td>
<td>0.31</td>
</tr>
<tr>
<td>34</td>
<td>BBU-24</td>
<td>2.3</td>
<td>3.1</td>
<td>0.35</td>
</tr>
<tr>
<td>35</td>
<td>BBU-25</td>
<td>2.9</td>
<td>3.1</td>
<td>0.07</td>
</tr>
<tr>
<td>36</td>
<td>BBU-26</td>
<td>2.8</td>
<td>3.3</td>
<td>0.18</td>
</tr>
<tr>
<td>37</td>
<td>BBU-27</td>
<td>2.8</td>
<td>3.4</td>
<td>0.21</td>
</tr>
<tr>
<td>38</td>
<td>BBU-28</td>
<td>2.5</td>
<td>3.0</td>
<td>0.20</td>
</tr>
<tr>
<td>39</td>
<td>BBU-29</td>
<td>2.8</td>
<td>3.2</td>
<td>0.14</td>
</tr>
<tr>
<td>40</td>
<td>BBU-30</td>
<td>3.3</td>
<td>3.8</td>
<td>0.15</td>
</tr>
<tr>
<td>41</td>
<td>BBU-31</td>
<td>2.5</td>
<td>3.3</td>
<td>0.32</td>
</tr>
<tr>
<td>42</td>
<td>BBU-32</td>
<td>1.9</td>
<td>3.0</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Keterangan:
- **BBL**: isolasi dari bagian lambung
- **BBU**: isolasi dari bagian usus (3 cm dari lambung)
- Tidak ditemukan isolat bakteri proteolitik yang berasal dari bagian usus sepanjang 3-6 cm dari lambung
Lampiran 4. Data aktivitas protease dan kadar protein empat isolat terpilih

<table>
<thead>
<tr>
<th>Isolat</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blanko</td>
<td>Abs standar</td>
<td>Abs sampel</td>
<td></td>
</tr>
<tr>
<td>BBL-10</td>
<td>0.272</td>
<td>0.810</td>
<td>0.323</td>
<td>0.0031</td>
</tr>
<tr>
<td>BBU-11</td>
<td>0.194</td>
<td>0.638</td>
<td>0.194</td>
<td>0</td>
</tr>
<tr>
<td>BBU-16</td>
<td>0.187</td>
<td>0.602</td>
<td>0.211</td>
<td>0.0056</td>
</tr>
<tr>
<td>BBU-32</td>
<td>0.268</td>
<td>0.721</td>
<td>0.301</td>
<td>0.0073</td>
</tr>
</tbody>
</table>

Lampiran 5. Data pengaruh konsentrasi NaCl tertentu terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32

<table>
<thead>
<tr>
<th>Konsentrasi NaCl</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blanko</td>
<td>Abs standar</td>
<td>Abs sampel</td>
<td></td>
</tr>
<tr>
<td>0 M</td>
<td>0.102</td>
<td>0.244</td>
<td>0.137</td>
<td>0.020</td>
</tr>
<tr>
<td>0.1 M</td>
<td>0.108</td>
<td>0.252</td>
<td>0.131</td>
<td>0.014</td>
</tr>
<tr>
<td>0.5 M</td>
<td>0.108</td>
<td>0.229</td>
<td>0.108</td>
<td>0.003</td>
</tr>
<tr>
<td>2.5 M</td>
<td>0.108</td>
<td>0.244</td>
<td>0.114</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Lampiran 6. Data pengaruh konsentrasi pati terlarut tertentu terhadap aktivitas spesifik protease Bacillus sp. galur BBU-32

<table>
<thead>
<tr>
<th>Konsentrasi pati terlarut</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blanko</td>
<td>Abs standar</td>
<td>Abs sampel</td>
<td></td>
</tr>
<tr>
<td>Pati terlarut 0%</td>
<td>0.114</td>
<td>0.260</td>
<td>0.114</td>
<td>0.0015</td>
</tr>
<tr>
<td>Pati terlarut 0.1%</td>
<td>0.105</td>
<td>0.260</td>
<td>0.113</td>
<td>0.0020</td>
</tr>
<tr>
<td>Pati terlarut 0.5%</td>
<td>0.119</td>
<td>0.276</td>
<td>0.119</td>
<td>0.0003</td>
</tr>
</tbody>
</table>
Lampiran 7. Data pengaruh komposisi sumber nitrogen tertentu terhadap aktivitas spesifik protease *Bacillus* sp. galur BBU-32

<table>
<thead>
<tr>
<th>Sumber Nitrogen</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blando</td>
<td>Abs standar</td>
<td>Abs sampel</td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>0.114</td>
<td>0.268</td>
<td>0.116</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>0.264</td>
<td>0.114</td>
<td></td>
</tr>
<tr>
<td>Ekstrak khamir 0.3%</td>
<td>0.092</td>
<td>0.237</td>
<td>0.100</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>0.108</td>
<td>0.260</td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td>Pepton 0.5%</td>
<td>0.086</td>
<td>0.222</td>
<td>0.092</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.078</td>
<td>0.229</td>
<td>0.092</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 8. Data pengaruh penambahan susu skim 0.5% terhadap aktivitas spesifik protease *Bacillus* sp. galur BBU-32

<table>
<thead>
<tr>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs blando</td>
<td>Abs standar</td>
<td>Abs sampel</td>
<td></td>
</tr>
<tr>
<td>Kontrol</td>
<td>0.084</td>
<td>0.229</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>0.084</td>
<td>0.229</td>
<td>0.089</td>
</tr>
<tr>
<td>Susu skim 0.5%</td>
<td>0.097</td>
<td>0.240</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>0.237</td>
<td>0.111</td>
</tr>
</tbody>
</table>

Lampiran 9. Data pengaruh penambahan CaCl₂ dan MgSO₄ 0.1% terhadap aktivitas spesifik protease *Bacillus* sp. galur BBU-32

<table>
<thead>
<tr>
<th>Garam anorganik</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blando</td>
<td>Abs standar</td>
<td>Abs sampel</td>
<td></td>
</tr>
<tr>
<td>Kontrol</td>
<td>0.097</td>
<td>0.240</td>
<td>0.122</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>0.237</td>
<td>0.111</td>
<td></td>
</tr>
<tr>
<td>CaCl₂ 0.1%</td>
<td>0.119</td>
<td>0.266</td>
<td>0.125</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>0.131</td>
<td>0.284</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>MgSO₄ 0.1%</td>
<td>0.119</td>
<td>0.256</td>
<td>0.187</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>0.272</td>
<td>0.208</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 10. Data turbiditas pertumbuhan dan aktivitas protease sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% selama selang waktu inkubasi 24 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Abs 620 nm</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blanko</td>
<td>Abs standar</td>
<td>Abs sampel</td>
</tr>
<tr>
<td>0</td>
<td>0.078</td>
<td>0.264</td>
<td>0.081</td>
</tr>
<tr>
<td>3</td>
<td>0.079</td>
<td>0.301</td>
<td>0.097</td>
</tr>
<tr>
<td>6</td>
<td>0.214</td>
<td>0.276</td>
<td>0.094</td>
</tr>
<tr>
<td>9</td>
<td>0.410</td>
<td>0.292</td>
<td>0.102</td>
</tr>
<tr>
<td>12</td>
<td>0.135</td>
<td>0.301</td>
<td>0.114</td>
</tr>
<tr>
<td>15</td>
<td>0.109</td>
<td>0.328</td>
<td>0.149</td>
</tr>
<tr>
<td>18</td>
<td>0.109</td>
<td>0.337</td>
<td>0.155</td>
</tr>
<tr>
<td>21</td>
<td>0.227</td>
<td>0.347</td>
<td>0.233</td>
</tr>
<tr>
<td>24</td>
<td>0.317</td>
<td>0.367</td>
<td>0.328</td>
</tr>
</tbody>
</table>

Lampiran 11. Data turbiditas pertumbuhan dan aktivitas protease Bacillus sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% selama selang waktu inkubasi 18-42 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Abs 620 nm</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blanko</td>
<td>Abs standar</td>
<td>Abs sampel</td>
</tr>
<tr>
<td>18</td>
<td>0.089</td>
<td>0.208</td>
<td>0.092</td>
</tr>
<tr>
<td>21</td>
<td>0.152</td>
<td>0.211</td>
<td>0.102</td>
</tr>
<tr>
<td>24</td>
<td>0.227</td>
<td>0.237</td>
<td>0.116</td>
</tr>
<tr>
<td>27</td>
<td>0.334</td>
<td>0.229</td>
<td>0.125</td>
</tr>
<tr>
<td>30</td>
<td>0.477</td>
<td>0.256</td>
<td>0.177</td>
</tr>
<tr>
<td>33</td>
<td>0.477</td>
<td>0.284</td>
<td>0.168</td>
</tr>
<tr>
<td>36</td>
<td>0.528</td>
<td>0.284</td>
<td>0.204</td>
</tr>
<tr>
<td>39</td>
<td>0.586</td>
<td>0.311</td>
<td>0.187</td>
</tr>
<tr>
<td>42</td>
<td>0.528</td>
<td>0.311</td>
<td>0.197</td>
</tr>
</tbody>
</table>
Lampiran 12. Data kadar protein dan aktivitas spesifik protease *Bacillus* sp. gula BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 suhu 37\(^\circ\)C selama selang waktu inkubasi 24 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.001</td>
<td>0.619</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>0.003</td>
<td>0.609</td>
<td>0.004</td>
</tr>
<tr>
<td>6</td>
<td>0.002</td>
<td>0.534</td>
<td>0.003</td>
</tr>
<tr>
<td>9</td>
<td>0.003</td>
<td>0.270</td>
<td>0.011</td>
</tr>
<tr>
<td>12</td>
<td>0.007</td>
<td>0.102</td>
<td>0.069</td>
</tr>
<tr>
<td>15</td>
<td>0.014</td>
<td>0.060</td>
<td>0.233</td>
</tr>
<tr>
<td>18</td>
<td>0.016</td>
<td>0.033</td>
<td>0.485</td>
</tr>
<tr>
<td>21</td>
<td>0.052</td>
<td>0.100</td>
<td>0.520</td>
</tr>
<tr>
<td>24</td>
<td>0.087</td>
<td>0.100</td>
<td>0.870</td>
</tr>
</tbody>
</table>

Lampiran 13. Data kadar protein dan aktivitas spesifik protease *Bacillus* sp. gula BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2 suhu 37\(^\circ\)C selama selang waktu inkubasi 18-42 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.005</td>
<td>0.107</td>
<td>0.047</td>
</tr>
<tr>
<td>21</td>
<td>0.011</td>
<td>0.065</td>
<td>0.169</td>
</tr>
<tr>
<td>24</td>
<td>0.017</td>
<td>0.065</td>
<td>0.261</td>
</tr>
<tr>
<td>27</td>
<td>0.025</td>
<td>0.026</td>
<td>0.961</td>
</tr>
<tr>
<td>30</td>
<td>0.049</td>
<td>0.007</td>
<td>7.000</td>
</tr>
<tr>
<td>33</td>
<td>0.035</td>
<td>0.026</td>
<td>1.346</td>
</tr>
<tr>
<td>36</td>
<td>0.056</td>
<td>0.007</td>
<td>8.000</td>
</tr>
<tr>
<td>39</td>
<td>0.051</td>
<td>0.016</td>
<td>3.187</td>
</tr>
<tr>
<td>42</td>
<td>0.050</td>
<td>0.007</td>
<td>7.143</td>
</tr>
</tbody>
</table>
Lampiran 14. Data turbiditas pertumbuhan dan aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi selama selang waktu inkubasi 24 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Abs 620 nm</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blanko</td>
<td>Abs standar</td>
<td>Abs sampel</td>
</tr>
<tr>
<td>0</td>
<td>0.027</td>
<td>0.041</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td>0.036</td>
<td>0.215</td>
<td>0.036</td>
</tr>
<tr>
<td>3</td>
<td>0.186</td>
<td>0.039</td>
<td>0.260</td>
</tr>
<tr>
<td></td>
<td>0.039</td>
<td>0.284</td>
<td>0.039</td>
</tr>
<tr>
<td>6</td>
<td>0.071</td>
<td>0.053</td>
<td>0.256</td>
</tr>
<tr>
<td></td>
<td>0.056</td>
<td>0.268</td>
<td>0.061</td>
</tr>
<tr>
<td>9</td>
<td>0.021</td>
<td>0.076</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td>0.073</td>
<td>0.297</td>
<td>0.102</td>
</tr>
<tr>
<td>12</td>
<td>0.027</td>
<td>0.078</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>0.081</td>
<td>0.311</td>
<td>0.191</td>
</tr>
<tr>
<td>15</td>
<td>0.133</td>
<td>0.092</td>
<td>0.323</td>
</tr>
<tr>
<td></td>
<td>0.092</td>
<td>0.319</td>
<td>0.264</td>
</tr>
<tr>
<td>18</td>
<td>0.161</td>
<td>0.081</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>0.311</td>
<td>0.280</td>
</tr>
<tr>
<td>21</td>
<td>0.251</td>
<td>0.076</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>0.081</td>
<td>0.311</td>
<td>0.347</td>
</tr>
<tr>
<td>24</td>
<td>0.301</td>
<td>0.073</td>
<td>0.319</td>
</tr>
<tr>
<td></td>
<td>0.081</td>
<td>0.323</td>
<td>0.367</td>
</tr>
</tbody>
</table>

Lampiran 15. Data turbiditas pertumbuhan dan aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi selama selang waktu inkubasi 18-42 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Abs 620 nm</th>
<th>Abs 578 nm</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs blanko</td>
<td>Abs standar</td>
<td>Abs sampel</td>
</tr>
<tr>
<td>18</td>
<td>0.380</td>
<td>0.066</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>0.066</td>
<td>0.161</td>
<td>0.347</td>
</tr>
<tr>
<td>21</td>
<td>0.477</td>
<td>0.066</td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td>0.066</td>
<td>0.194</td>
<td>0.292</td>
</tr>
<tr>
<td>24</td>
<td>0.506</td>
<td>0.066</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>0.066</td>
<td>0.201</td>
<td>0.414</td>
</tr>
<tr>
<td>27</td>
<td>0.535</td>
<td>0.066</td>
<td>0.218</td>
</tr>
<tr>
<td></td>
<td>0.066</td>
<td>0.229</td>
<td>0.414</td>
</tr>
<tr>
<td>30</td>
<td>0.602</td>
<td>0.066</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>0.229</td>
<td>0.509</td>
</tr>
<tr>
<td>33</td>
<td>0.567</td>
<td>0.076</td>
<td>0.260</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>0.260</td>
<td>0.398</td>
</tr>
<tr>
<td>36</td>
<td>0.567</td>
<td>0.073</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>0.071</td>
<td>0.272</td>
<td>0.577</td>
</tr>
<tr>
<td>39</td>
<td>0.506</td>
<td>0.071</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td>0.071</td>
<td>0.276</td>
<td>0.530</td>
</tr>
<tr>
<td>42</td>
<td>0.451</td>
<td>0.076</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>0.078</td>
<td>0.292</td>
<td>0.553</td>
</tr>
</tbody>
</table>
Lampiran 16. Data kadar protein dan aktivitas spesifik protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 7.2 suhu 37°C selama selang waktu inkubasi 24 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.447</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.368</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.001</td>
<td>0.166</td>
<td>0.006</td>
</tr>
<tr>
<td>9</td>
<td>0.010</td>
<td>0.107</td>
<td>0.034</td>
</tr>
<tr>
<td>12</td>
<td>0.045</td>
<td>0.005</td>
<td>9.000</td>
</tr>
<tr>
<td>15</td>
<td>0.069</td>
<td>0.022</td>
<td>3.136</td>
</tr>
<tr>
<td>18</td>
<td>0.088</td>
<td>0.011</td>
<td>7.909</td>
</tr>
<tr>
<td>21</td>
<td>0.114</td>
<td>0.084</td>
<td>1.357</td>
</tr>
<tr>
<td>24</td>
<td>0.123</td>
<td>0.013</td>
<td>11.182</td>
</tr>
</tbody>
</table>

Lampiran 17. Data kadar protein dan aktivitas spesifik protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 7.2 suhu 37°C selama selang waktu inkubasi 18-42 jam

<table>
<thead>
<tr>
<th>Jam</th>
<th>Aktivitas protease (U/ml)</th>
<th>Kadar protein (mg/ml)</th>
<th>Aktivitas spesifik (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.281</td>
<td>0.048</td>
<td>5.854</td>
</tr>
<tr>
<td>21</td>
<td>0.230</td>
<td>0.043</td>
<td>5.349</td>
</tr>
<tr>
<td>24</td>
<td>0.306</td>
<td>0.050</td>
<td>6.120</td>
</tr>
<tr>
<td>27</td>
<td>0.207</td>
<td>0.050</td>
<td>4.140</td>
</tr>
<tr>
<td>30</td>
<td>0.261</td>
<td>0.050</td>
<td>5.220</td>
</tr>
<tr>
<td>33</td>
<td>0.175</td>
<td>0.050</td>
<td>3.500</td>
</tr>
<tr>
<td>36</td>
<td>0.247</td>
<td>0.054</td>
<td>4.574</td>
</tr>
<tr>
<td>39</td>
<td>0.214</td>
<td>0.055</td>
<td>3.891</td>
</tr>
<tr>
<td>42</td>
<td>0.206</td>
<td>0.050</td>
<td>4.120</td>
</tr>
</tbody>
</table>

Lampiran 18. Data pengaruh suhu terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.2

<table>
<thead>
<tr>
<th>Suhu (°C)</th>
<th>Abs blanko</th>
<th>Abs standar</th>
<th>Abs sampel</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.119</td>
<td>0.319</td>
<td>0.181</td>
<td>0.028</td>
</tr>
<tr>
<td>37</td>
<td>0.119</td>
<td>0.328</td>
<td>0.171</td>
<td>0.037</td>
</tr>
<tr>
<td>40</td>
<td>0.119</td>
<td>0.332</td>
<td>0.201</td>
<td>0.051</td>
</tr>
<tr>
<td>50</td>
<td>0.114</td>
<td>0.311</td>
<td>0.184</td>
<td>0.082</td>
</tr>
<tr>
<td>60</td>
<td>0.119</td>
<td>0.319</td>
<td>0.168</td>
<td>0.070</td>
</tr>
<tr>
<td>70</td>
<td>0.119</td>
<td>0.347</td>
<td>0.164</td>
<td>0.018</td>
</tr>
</tbody>
</table>
Lampiran 19. Data pengaruh suhu terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 7.2

<table>
<thead>
<tr>
<th>Suhu (°C)</th>
<th>Abs blanko</th>
<th>Abs standar</th>
<th>Abs sampel</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.073</td>
<td>0.229</td>
<td>0.319</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td>0.068</td>
<td>0.237</td>
<td>0.337</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>0.071</td>
<td>0.229</td>
<td>0.347</td>
<td>0.175</td>
</tr>
<tr>
<td></td>
<td>0.073</td>
<td>0.252</td>
<td>0.328</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.076</td>
<td>0.248</td>
<td>0.398</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>0.252</td>
<td>0.387</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.081</td>
<td>0.244</td>
<td>0.710</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>0.078</td>
<td>0.252</td>
<td>0.745</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.086</td>
<td>0.237</td>
<td>0.602</td>
<td>0.309</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>0.268</td>
<td>0.585</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.086</td>
<td>0.248</td>
<td>0.488</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>0.086</td>
<td>0.252</td>
<td>0.456</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 20. Data pengaruh pH terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada suhu 50°C

<table>
<thead>
<tr>
<th>pH</th>
<th>Abs blanko</th>
<th>Abs standar</th>
<th>Abs sampel</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.119</td>
<td>0.357</td>
<td>0.137</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.119</td>
<td>0.347</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.116</td>
<td>0.357</td>
<td>0.137</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>0.114</td>
<td>0.337</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.111</td>
<td>0.352</td>
<td>0.204</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>0.128</td>
<td>0.357</td>
<td>0.201</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>0.125</td>
<td>0.377</td>
<td>0.248</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>0.125</td>
<td>0.352</td>
<td>0.276</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>0.143</td>
<td>0.377</td>
<td>0.268</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>0.137</td>
<td>0.347</td>
<td>0.272</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.131</td>
<td>0.382</td>
<td>0.252</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>0.134</td>
<td>0.367</td>
<td>0.260</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.125</td>
<td>0.387</td>
<td>0.201</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>0.143</td>
<td>0.398</td>
<td>0.208</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 21. Data pengaruh pH terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada suhu 50°C

<table>
<thead>
<tr>
<th>pH</th>
<th>Abs blanko</th>
<th>Abs standar</th>
<th>Abs sampel</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.084</td>
<td>0.268</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>0.292</td>
<td>0.102</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.081</td>
<td>0.276</td>
<td>0.143</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>0.081</td>
<td>0.264</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.097</td>
<td>0.319</td>
<td>0.387</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>0.086</td>
<td>0.319</td>
<td>0.337</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>0.094</td>
<td>0.311</td>
<td>0.553</td>
<td>0.197</td>
</tr>
<tr>
<td></td>
<td>0.097</td>
<td>0.337</td>
<td>0.538</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>0.097</td>
<td>0.328</td>
<td>0.594</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>0.097</td>
<td>0.332</td>
<td>0.638</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.097</td>
<td>0.311</td>
<td>0.629</td>
<td>0.241</td>
</tr>
<tr>
<td></td>
<td>0.097</td>
<td>0.332</td>
<td>0.648</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.081</td>
<td>0.301</td>
<td>0.553</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>0.073</td>
<td>0.276</td>
<td>0.569</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 22. Data stabilitas aktivitas protease *Bacillus* sp. galur BBU-32 yang ditumbuhkan dalam media pertumbuhan NB yang mengandung susu skim 0.5% dan glukosa 0.1% pada pH 7.6 dan suhu 50°C

<table>
<thead>
<tr>
<th>Jam</th>
<th>Abs blanko</th>
<th>Abs standar</th>
<th>Abs sampel</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.244</td>
<td>0.444</td>
<td>0.398</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>0.201</td>
<td>0.469</td>
<td>0.382</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.237</td>
<td>0.469</td>
<td>0.377</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>0.222</td>
<td>0.469</td>
<td>0.403</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.237</td>
<td>0.509</td>
<td>0.332</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>0.222</td>
<td>0.509</td>
<td>0.367</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.237</td>
<td>0.482</td>
<td>0.284</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>0.218</td>
<td>0.502</td>
<td>0.328</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.237</td>
<td>0.502</td>
<td>0.284</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>0.222</td>
<td>0.469</td>
<td>0.294</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.237</td>
<td>0.482</td>
<td>0.252</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>0.222</td>
<td>0.482</td>
<td>0.222</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.237</td>
<td>0.502</td>
<td>0.252</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>0.222</td>
<td>0.509</td>
<td>0.256</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 23. Data stabilitas aktivitas protease *Bacillus* sp. galur BBU-32 yang ditumbuhkan dalam media pertumbuhan yang dimodifikasi pada pH 8 dan suhu 50°C

<table>
<thead>
<tr>
<th>Jam</th>
<th>Abs blanko</th>
<th>Abs standar</th>
<th>Abs sampel</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.086</td>
<td>0.252</td>
<td>0.553</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td>0.086</td>
<td>0.260</td>
<td>0.602</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.094</td>
<td>0.264</td>
<td>0.444</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>0.086</td>
<td>0.268</td>
<td>0.462</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.081</td>
<td>0.268</td>
<td>0.347</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>0.089</td>
<td>0.302</td>
<td>0.398</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.097</td>
<td>0.268</td>
<td>0.347</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>0.097</td>
<td>0.276</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.089</td>
<td>0.268</td>
<td>0.260</td>
<td>0.104</td>
</tr>
<tr>
<td></td>
<td>0.092</td>
<td>0.260</td>
<td>0.284</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.086</td>
<td>0.264</td>
<td>0.174</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>0.088</td>
<td>0.272</td>
<td>0.194</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.097</td>
<td>0.276</td>
<td>0.168</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>0.092</td>
<td>0.280</td>
<td>0.184</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 24. Data pengaruh penambahan kation monovalen, kation divalen dan senyawa penghambat terhadap aktivitas protease *Bacillus* sp. galur BBU-32 dengan menggunakan media pertumbuhan yang dimodifikasi pada pH 8 dan suhu 50°C

<table>
<thead>
<tr>
<th>Kation</th>
<th>Abs blanko</th>
<th>Abs standar</th>
<th>Abs sampel</th>
<th>Aktivitas protease (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>0.097</td>
<td>0.295</td>
<td>0.602</td>
<td>0.268</td>
</tr>
<tr>
<td>Na</td>
<td>0.089</td>
<td>0.276</td>
<td>0.620</td>
<td>0.269</td>
</tr>
<tr>
<td>K</td>
<td>0.092</td>
<td>0.288</td>
<td>0.602</td>
<td>0.278</td>
</tr>
<tr>
<td></td>
<td>0.092</td>
<td>0.292</td>
<td>0.648</td>
<td></td>
</tr>
<tr>
<td>Kontrol</td>
<td>0.097</td>
<td>0.292</td>
<td>0.658</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.086</td>
<td>0.248</td>
<td>0.620</td>
<td>0.347</td>
</tr>
<tr>
<td>Mg</td>
<td>0.089</td>
<td>0.244</td>
<td>0.509</td>
<td>0.254</td>
</tr>
<tr>
<td></td>
<td>0.086</td>
<td>0.264</td>
<td>0.509</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.092</td>
<td>0.252</td>
<td>0.561</td>
<td>0.306</td>
</tr>
<tr>
<td></td>
<td>0.092</td>
<td>0.260</td>
<td>0.629</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.237</td>
<td>0.209</td>
<td>0.332</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>0.201</td>
<td>0.367</td>
<td>0.277</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>1.301</td>
<td>1.532</td>
<td>1.602</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td>1.222</td>
<td>1.699</td>
<td>1.699</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.108</td>
<td>0.256</td>
<td>0.215</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>0.097</td>
<td>0.284</td>
<td>0.174</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.248</td>
<td>0.414</td>
<td>0.447</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>0.240</td>
<td>0.462</td>
<td>0.475</td>
<td></td>
</tr>
<tr>
<td>Kontrol</td>
<td>0.092</td>
<td>0.237</td>
<td>0.620</td>
<td>0.347</td>
</tr>
<tr>
<td>EDTA</td>
<td>0.171</td>
<td>0.319</td>
<td>0.284</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>0.143</td>
<td>0.357</td>
<td>0.229</td>
<td></td>
</tr>
<tr>
<td>PMSF</td>
<td>0.143</td>
<td>0.337</td>
<td>0.187</td>
<td>0.019</td>
</tr>
</tbody>
</table>