STUDI KEANEKARAGAMAN & KELIMPANAHAN GASTROPODA
DI SUAKA MARGASATWA PULAU RAMBUT,
DKI JAKARTA

SRI RATNA ARIANI

DEPARTEMEN KONSERVASI SUMBERDAYA HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2004
RINGKASAN

Hutan mangrove memiliki fungsi ekonomis dan ekologis. Secara ekologis, hutan mangrove berfungsi sebagai tempat berlindung dan berkembang biak bagi berbagai jenis fauna serta sebagai mata rantai perputaran energi dan hara yang penting artiya bagi kehidupan alam hayati laut. Gastropoda merupakan salah satu komunitas moluska yang hidup di ekosistem mangrove dan memanfaatkan partikel serasah dari vegetasi mangrove sebagai sumber makanannya. Produktivitas serasah yang dihasilkan suatu hutan mangrove menentukan pula peningkatan populasi gastropoda yang ada. Akibat degradasi lahan dan kerusakan lingkungan yang terjadi di pulau Rambut, pula sebagian hutan terdapat hutan mangrove dengan vegetasi yang terbuka selain hutan mangrove dengan vegetasi yang masih rapat. Hal ini dapat mempengaruhi karakteristik habitat hutan mangrove baik dari vegetasi maupun keanekaragaman moluska yang ada.

Penelitian ini dilakukan pada bulan September sampai Oktober 2003 di hutan mangrove Pulau Rambut, DKI Jakarta dengan lokasi pengambilan contoh pada hutan mangrove yang rapat dan hutan mangrove yang terbuka. Bertujuan untuk mengetahui keanekaragaman jenis dan penyebaran gastropoda pada hutan mangrove di Pulau Rambut serta hubungan kerapatan vegetasi mangrove dengan keanekaragaman gastropoda.

Pengambilan contoh dilakukan pada hutan mangrove rapat dan terbuka masing-masing 3 transek. Pengamatan vegetasi pada tiap transek dilakukan dengan metode transek yang berukuran 10 x 10 m². Tiap transek dibagi menjadi 5 sub petak pengamatan gastropoda yang berukuran 0,5 x 0,5 m², kemudian sampel diambil dan diidentifikasi. Parameter lain yang diambil yaitu suhu, salinitas, pH, substrat, perbedaan pasang surut dan kualitas air (data sekunder). Analisa data yang dilakukan meliputi analisis vegetasi mangrove (INP), analisis komunitas gastropoda (kepadatan, keanekaragaman, keseragaman, dominansi, pola sebaran jenis) dan regresi hubungan kelimpahan antara jenis gastropoda dengan kerapatan vegetasi mangrove.

Parameter fisika kimia perairan pada kawasan penelitian mempunyai kisaran suhu antara 26 - 31 °C, salinitas 29 - 36 %, pH antara 6,5 - 8 dan tipe pasang surut campuran yang cenderung diurnal. Tipe substrat pada daerah pengambilan contoh adalah liat dan lempung berliat. Umumnya gastropoda menyukai daerah yang berlumpur karena partikel organik yang halus dengan kandungan organik yang tinggi. Salinitas tanah berkisar antara 19,05 - 24,7 % sedangkan pH tanah mempunyai kisaran antara 6,21 - 7,33. Kandungan C-organik dalam substrata berkisar antara 8,85 - 11,32 %. Kualitas air dinilai berdasarkan keduanya air laut untuk konservasi biota laut menurut Kep.02/MENKLH/I/1988. Kualitas air pada hutan mangrove yang terbuka terdapat 2 parameter yang nilainya lebih tinggi dari
baku mutu yaitu padatan tersuspensi dan COD, sedangkan pada hutan mangrove rapat hanya 1 parameter yaitu COD.

Tiga jenis mangrove yang ditemukan di lokasi penelitian adalah *Rhizophora mucronata*, *Ceriops tagal* dan *Xylocarpus granatum*. Komposisi mangrove pada hutan mangrove yang rapat baik tingkat pohon, pancang dan semai lebih tinggi dibandingkan dengan hutan mangrove yang terbuka. Jenis *Rhizophora mucronata* memiliki nilai INP (Indeks Nilai Penting) tertinggi pada hutan mangrove yang terbuka. Pada hutan mangrove yang rapat, jenis tersebut memiliki nilai INP tertinggi baik pada tingkat semai maupun pohon, sedangkan pada tingkat pancang nilai INP tertinggi pada jenis *Ceriops tagal*.

Nilai indeks keanekaragaman (H') berkisar antara 0,62 – 1,574. Pada hutan mangrove yang rapat, indeks H' lebih rendah dibandingkan hutan mangrove yang terbuka karena adanya jenis yang sangat dominan yaitu *Terebralia palustris*. Hal ini dipengaruhi nilai dominansi (C) dengan kisaran antara 0,338 – 0,793 dengan nilai C yang lebih tinggi pada hutan mangrove rapat dibandingkan hutan mangrove terbuka. Nilai indeks keseragaman (E) antara 0,089 – 0,226. Pada hutan mangrove yang terbuka memiliki nilai E yang lebih tinggi dibanding hutan mangrove rapat dengan kecenderungan adanya dominansi akibat ketidakstabilan faktor-faktor lingkungan dan populasi. Pola penyebaran jenis gastropoda yang ditemukan pada lokasi penelitian bersifat mengelompok dan hanya jenis *Terebralia sulcata* yang ditemukan pola penyebarannya bersifat acak pada hutan mangrove yang rapat. Pola sebaran ini berkaitan dengan tipe habitat yang berkaitan dengan ketersediaan makanan, ketersediaan ruang, kondisi substrat, waktu penggenangan air dan daya adaptasi lingkungan.

Dari hasil analisa regresi, hubungan kelimpahan antara jenis gastropoda dengan kerapatan vegetasi mangrove baik tingkat semai, pancang dan pohon mangrove menunjukkan nilai yang berbeda-beda. Hubungan antara kerapatan vegetasi mangrove baik tingkat semai, pancang maupun pohon tidak berpengaruh nyata terhadap kelimpahan gastropoda jenis *Terebralia palustris* pada kedua tipe hutan mangrove. Sedangkan gastropoda jenis *Terebralia sulcata* hanya berpengaruh nyata terhadap kerapatan vegetasi mangrove pada tingkat pancang. Sedangkan untuk gastropoda jenis *Terebralia mauritzi* berpengaruh nyata terhadap kerapatan vegetasi mangrove pada tingkat pancang dan pohon.

Pola penyebaran gastropoda umumnya mengelompok. Hal ini disebabkan karena adanya keterbatasan dari sumberdaya habitat yang mendukung kehidupan gastropoda, baik pada hutan mangrove yang terbuka maupun rapat. Kelimpahan dan keanekaragaman gastropoda lebih banyak dipengaruhi oleh kondisi penggenangan lahan serta penutupan sampah dibandingkan dengan kondisi kerapatan tegakan mangrovenya.
STUDI KEANEKARAGAMAN & KELIMPANAHAN GASTROPODA
DI SUAKA MARGASATWA PULAU RAMBUT,
DKI JAKARTA

SRI RATNA ARIANI

Skripsi
Sebagai Salah satu Syarat Memperoleh Gelar
Sarjana Kehutanan
Fakultas Kehutanan Institut Pertanian Bogor

DEPARTEMEN KONSERVASI SUMBERDAYA HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2004
Judul Skripsi : Studi Keanekaragaman & Kelimpahan Gastropoda Di Suaka Margasatwa Pulau Rambut, DKI Jakarta
Nama Mahasiswa : Sri Ratna Ariani
NRP : E03499042
Program Studi : Konservasi Sumberdaya Hutan

Menyetujui,

\[Signature \]
Ir. Agus Priyono, MS
Pembimbing Utama

\[Signature \]
Ir. Nyoto Santoso, MS
Pembimbing Kedua

Mengetahui,

Ketua Departemen Konservasi Sumberdaya Hutan
Fakultas Kehutanan
Institut Pertanian Bogor

\[Signature \]
Dr. Ir. Rinokso Soekandi, MSc.F
Ketua

Tanggal : 1 Jun 2004

Tanggal Lulus :
KATA PENGANTAR

Gastropoda merupakan salah satu jenis biota yang hidup di perairan termasuk hutan mangrove. Masyarakat lebih mengenal gastropoda sebagai siput/keong. Adanya perhatian yang cukup besar dari masyarakat terhadap keanekaragaman gastropoda berkaitan dengan pemanfaatan secara ekonomis jenis-jenis gastropoda karena keunikan bentuk dan warnanya. Selain itu, dimanfaatkan pula sebagai sumber makanan dan benda koleksi yang cukup berharga. Sedangkan secara ekologis, gastropoda memiliki peranan penting dalam mekanisme daur hidup dan perputaran hara dalam kehidupan alam hayati perairan.

Bogor, April 2004

Penulis
RIWAYAT HIDUP

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan, penulis menyelesaikan skripsi yang berjudul "Studi Keanekaragaman & Kelimpahan Gastropoda Di Suaka Margasatwa Pulau Rambut, DKI Jakarta" dibawah bimbingan Ir. Agus Priyono, MS dan Ir. Nyoto Santoso, MS.
Ucapan Terima Kasih

Allah, SWT atas Segala Rahmat dan HidayahNya
Orang tuaku tersayang mama dan papa serta febi dan aje untuk doa, dukungan, keceriaan dan kasih sayangnya. You’re The Best Family For Me. Dogen...untuk semua perhatian, semangat dan kesabaranmu. Makasih Ya Dosen-dosen pembimbingku untuk kesabaran dan tuntunannya Dosen-dosen pengujiku untuk sarat dan kritik yang telah diberikan.

Kasanova Family That I Will Always Remember

Also Thanks To: Wismi (My Bodyguard & Charlie Angel), Pera Jugawan (P. Joya & P Sul) untuk kesabaran menentukan pertemuan, para staf & karyawan Dep. Konservasi Sumatera & Pusat (Bukit Merah) yang telah mendukung @ Pertanto (Identifikasi Nya, makasi pak). Ba’i’ Ngabah dalam C’Jekah di Dalaman (maa doanya)

Oky Includes (My Quince), Meu, Vale, Buka & Ken dan Mary (My Sons) yang masih setia mendukung dan semua piknik-piknik yang telah dihadiri kami. Semoga kita berjumpa satu persatu.
DAFTAR TABEL	iii
DAFTAR GAMBAR	iv
DAFTAR LAMPIRAN	v
PENDAHULUAN	
Latar Belakang	1
Tujuan Penelitian	2
Manfaat Penelitian	2
TINJAUAN PUSTAKA	
Pengertian Mangrove	3
Zonasi Mangrove	3
Tinjauan Umum Gastropoda	4
Fungsi Hutan Mangrove Sebagai Habitat Moluska	5
Penyebaran Komunitas Moluska	6
Parameter Lingkungan Yang Dapat Mempengaruhi Keberadaan Moluska Di Ekosistem Mangrove	8
KONDISI UMUM LOKASI PENELITIAN	11
Letak Geografis	14
Status Kawasan	14
Iklim	14
Topografi	14
Flora	15
Fauna	16
METODE PENELITIAN	
Lokasi dan Waktu Penelitian	17
Bahan dan Alat	17
Penentuan Stasiun Pengamatan	18
Teknik Pengambilan Data	18
Analisa Pengolahan Data	20
HASIL DAN PEMBAHASAN	
Keadaan Fisik Lokasi Penelitian	25
Karakteristik Fisika Kimia Perairan	26
Analisa Vegetasi Mangrove	34
Struktur Komunitas Gastropoda ... 38
 Komposisi dan Kelimpahan Gastropoda .. 38
 Keanekaragaman, Keseragaman dan Dominansi Gastropoda 42
 Pola Penyebaran Jenis ... 45
Hubungan Kelimpahan Antara Jenis Gastropoda dengan Kerapatan Vegetasi Mangrove ... 47

KESIMPULAN DAN SARAN ... 50
 Kesimpulan ... 50
 Saran ... 51

DAFTAR PUSTAKA .. 52

LAMPIRAN .. 55
<table>
<thead>
<tr>
<th>No</th>
<th>Daftar Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beberapa Ciri Pokok Jenis-jenis Moluska Penghuni Hutan Mangrove</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Bahan dan Alat yang Digunakan dalam Pengambilan Data</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Nilai Rataan dan Kisaran Parameter Fisika Kimia Perairan</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Fraksi Substrat Tanah dan Kandungan C-Organik pada Lokasi Pengamatan</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Data Kualitas Air Mangrove Rapat dan Terbuka di Pulau Rambut</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Komposisi Vegetasi pada Ekosistem Mangrove Rapat dan Terbuka</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Kelimpahan Gastropoda pada Ekosistem Mangrove Rapat dan Terbuka</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>Nilai Indeks Keanekaragaman (H'), Keseragaman (E) dan Dominansi (C) Gastropoda</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>Pola Penyebaran Jenis Gastropoda pada Ekosistem Mangrove Rapat</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>Pola Penyebaran Jenis Gastropoda pada Ekosistem Mangrove Terbuka</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Hubungan Kelimpahan Antara Jenis Gastropoda dengan Kerapatan Vegetasi Mangrove</td>
<td>48</td>
</tr>
<tr>
<td>No</td>
<td>Judul</td>
<td>Halaman</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Analisa Vegetasi Mangrove dengan Metode Transek</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Perbandingan Klas Tekstur Berdasarkan Persentase Liat, Debu dan Pasir</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>(a) Grafik Rata-rata Persentase Fraksi Substrat Tanah, (b) Grafik</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Rata-rata Persentase C-Organik</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Grafik Kerapatan Mangrove pada Lokasi Pengamatan</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(a) Semai (ind/ha), (b) Pancang (ind/ha), (c) Pohon (ind/ha)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Grafik Jumlah Gastropoda Akibat Pengaruh Pasang (a) Mangrove Rapat,</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(b) Mangrove Terbuka</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Grafik Jumlah Gastropoda Akibat Pengaruh Surut (a) Mangrove Rapat,</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>(b) Mangrove Terbuka</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Grafik Nilai Indeks Keanekaragaman, Keseragaman dan Dominansi Jenis</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Gastropoda</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Judul</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Peta Lokasi Penelitian Pulau Rambut</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>Data Pasang Surut Pulau Rambut</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Data Pasang Surut di Perairan Tanjung Priok</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Bulan September – Oktober)</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>Hasil Analisa Vegetasi Mangrove Rapat di Lokasi Pengamatan</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>Hasil Analisa Vegetasi Mangrove Terbuka di Lokasi Pengamatan</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Kerapatan Vegetasi Mangrove Tiap Stasiun pada Lokasi Pengamatan</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>Komposisi Jenis Gastropoda yang Ditemukan pada Mangrove Rapat di</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Lokasi Pengamatan Pulau Rambut</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Komposisi Jenis Gastropoda yang Ditemukan pada Mangrove Terbuka di</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Lokasi Pengamatan Pulau Rambut</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Profil Arsitektur Pohon Mangrove Rapat di Stasiun 1</td>
<td>61</td>
</tr>
<tr>
<td>10</td>
<td>Profil Arsitektur Pohon Mangrove Rapat di Stasiun 2</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>Profil Arsitektur Pohon Mangrove Rapat di Stasiun 3</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Beberapa Jenis Gastropoda yang Ditemukan di Lokasi Pengamatan</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>Foto Kedana Ekosistem Mangrove di Pulau Rambut</td>
<td>65</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Hutan mangrove merupakan ekosistem alamiah yang menjadi pendukung kehidupan yang penting di wilayah pesisir dan lautan. Dari sekitar 15,9 juta ha hutan mangrove yang terdapat di dunia, sekitar 27% berada di Indonesia (Bengen 2000). Namun kini luasan hutan mangrove telah mengalami penurunan menjadi sekitar 2.496.185 ha akibat terjadinya perusakan dan degradasi (Dahuri 2001).

Komposisi dan struktur vegetasi hutan mangrove cukup khas dari arah perairan sampai ke arah daratan dengan karakteristik zonasi tertentu, dengan vegetasi yang dominan adalah genera Rhizophora, Avicennia, Bruguiera, dan Sonneratia (Nybakken 1992). Hutan mangrove tidak hanya berfungsi sebagai pelindung daratan pantai dari hembusan angin dan hempasan badai, namun dapat pula berfungsi sebagai tempat berlindung dan berkembangbiak bagi berbagai jenis ikan, burung dan fauna lainnya sebagai mata rantai perputaran energi dan cara yang penting artinya bagi kehidupan alam hayati laut (Hardjoseptono 1978).

Moluska merupakan salah satu fauna yang hidup di hutan mangrove dan mempunyai peranan yang cukup penting sebagai pemakan detritus dari vegetasi mangrove di Pulau Rambut yang dapat terganggu dengan adanya kerusakan hutan mangrove tersebut. Untuk mendapatkan data dan informasi mengenai hubungan antara hutan mangrove sebagai habitat moluska dan karakteristik habitat hutan mangrove maka perlu adanya penelitian mengenai keanekaragaman moluska dengan perbedaan vegetasi mangrove di Pulau Rambut.

Tujuan Penelitian

Tujuan penelitian ini adalah:
1. Untuk mengetahui keanekaragaman jenis dan penyebaran gastropoda pada hutan mangrove di Pulau Rambut
2. Untuk mengetahui hubungan kerapatan vegetasi mangrove dengan keanekaragaman gastropoda.

Manfaat Penelitian

Penelitian ini bermanfaat untuk meningkatkan ketersediaan data dan informasi mengenai keanekaragaman gastropoda (moluska) di Pulau Rambut serta interaksi karakteristik habitat dengan komposisi dan penyebaran moluska. Selain itu, memberikan masukan dalam pelestarian hutan mangrove pada Suaka Margasatwa Pulau Rambut.
TINJAUAN PUSTAKA

Pengertian Mangrove

Mangrove atau yang dikenal juga hutan bakau adalah sebutan umum yang digunakan untuk menggambarkan beberapa spesies pohon-pohon yang khas atau semak-semak yang mempunyai kemampuan untuk tumbuh dalam perairan dengan salinitas tinggi (Nybakken 1992). Sedangkan menurut Bengen (2000), mangrove merupakan komunitas vegetasi pantai tropis, yang didominasi oleh beberapa jenis pohon mangrove yang mampu tumbuh dan berkembang pada daerah pasang surut pantai berlumpur dengan karakteristik umum tumbuh pada lapisan intertidal yang jenis tanahnya yang berlumpur, berlempung atau berpasir, daerahnya tergenang air laut secara berkala baik setiap hari maupun yang hanya tergenang pada saat pasang purnama sedangkan frekuensi genangan menentukan komposisi hutan mangrove, menerima pasokan air tawar yang cukup dari darat, dan terlindung dari gelombang besar dan arus pasang surut yang kuat serta air bersalinitas tinggi.

Mangrove adalah pohon atau perdu yang tumbuh di pantai diantara batas-batas permukaan air pasang tertinggi dan sedikit diatas rata-rata permukaan air laut (Hardjosentono 1978). Odum (1971) berpendapat bahwa mangrove adalah sekelompok tumbuhan yang hidup di pantai yang toleran dengan tingkat salinitas tinggi dan membentuk zonasi tumbuhan.

Zonasi Mangrove

Menurut Bengen (2000), hutan mangrove di Indonesia memiliki kurang lebih 47 jenis tumbuhan yang spesifik hutan mangrove. Paling tidak di dalam hutan mangrove terdapat salah satu jenis tumbuhan yang dominan yang termasuk ke dalam empat famili: Rhizophoraceae (Rhizophora, Bruguiera, dan Ceriops), Sonneratiaceae (Sonneratia), Avicenniaceae (Avicennia), dan Meliaceae (Xylocarpus). Terdapat karakteristik vegetasi mangrove yang dominan sehingga membentuk suatu zonasi dari daerah perairan sampai yang mengarah ke daratan (Aksornkoea 1993). Menurut Hardjosentono (1978), zonasi tersebut dipengaruhi oleh interaksi antara faktor penggenangan (perendaman) dalam pasang surut, salinitas tanah, dan drainase tanah. Hutan mangrove telah dibedakan dalam beberapa zone menurut pohon yang dominan sebagai berikut:

a. Zone Sonneratia
b. Zone Avicennia (yang menyorok ke laut)
c. Zone Rhizophora
d. Zona Bruguiera
e. Zona Ceriops
f. Asosiasi nipah

Zonasi tersebut akan berbeda bergantung dari keadaan tempatnya. Pembagian zone tersebut mulai dari bagian yang paling kuat mengalami pengaruh angin dan ombak yakni zone terdepan yang digenangi air berkadar garam tinggi dan ditumbuhi pohon pionir (seperti Sonneratia sp) dan di tanah yang lebih padat tumbuh Avicennia dengan akar napas yang menunjuk ke langit.

Di belakang pinggiran Avicennia terdapat zona Rhizophora, yang didominasi oleh satu atau lebih spesies Rhizophora. Rhizophora adalah komunitas bakau yang paling khas karena mempunyai akar tunggang yang melengkung sehingga daerah ini sukar ditembus manusia. Di depan yang menghadap ke daratan adalah zona Bruguiera. Pohon-pohon genus Bruguiera berkembang pada sedimen yang lebih berat (tanah liat) pada tingkat air pasang-purnama yang tinggi. Zona selanjutnya (kadang-kadang ada) adalah zona Ceriops, suatu asosiasi dari semak yang kecil-kecil

Tinjauan Umum Gastropoda

Famili moluska ditandai dengan tubuhnya yang lunak, bentuk yang simetris bilateral, mempunyai anus, tidak bersegmen, umumnya memiliki cangkang dan khususnya mempunyai kaki ventral yang berotot untuk bergerak. Gastropoda merupakan filum dari moluska yang sering dijumpai dalam berbagai bentuk; mereka umumnya besar, mempunyai kaki yang kuat, kepala yang berkembang dilingkapi mata dan tentakel dan mempunyai insang atau modifikasi paru-paru. Cangkang gastropoda biasanya berbentuk kerucut melingkar membentuk spiral mendekati poros utama yang disebut *columella*. Cangkang gastropoda betina umumnya lebih besar dari yang jantan (*Littorina*) dengan omamen yang berbeda (Dance 1974).

radula, organ ini digunakan dengan berbagai cara dan dengan modifikasi-modifikasi tertentu (Dance 1974).

Pada fertilisasi internal, telur yang dikeluarkan oleh betina dilindungi oleh kapsul, dan beberapa spesies perkembangan larvanya berlangsung didalam kapsul tersebut namun ada pula yang berubah menjadi larva *veliger* kemudian tumbuh dan berkembang di luar kapsul.

Fungsi Hutan Mangrove Sebagai Habitat Moluska

Sebagian serasah mangrove dikomposisi oleh bakteri dan fungi menjadi zat hara (nutrien) terlarut yang dapat dimanfaatkan langsung oleh fitoplankton, alga atau tumbuhan mangrove itu sendiri dalam proses fotosintesis sedangkan sebagian lagi sebagai partikel serasah (detritus) dimanfaatkan oleh moluska, udang, kepiting dan ikan sebagai makanannya. Produksi serasah yang dihasilkan untuk setiap jenis mangrove berbeda. Pengamatan Brotonegoro & Abdulkadir (1978), banyaknya daun yang jatuh pada dasar hutan mangrove pulau Rambut sebesar 853 gram berat kering per meter persegi pertahun. Sebagian kecil daun yang gugur dalam hutan mangrove itu akan dibawa oleh air surut ke laut, sedangkan sebagian besar tetap tinggal di dasar hutan. Dari yang tetap tinggal di hutan ini, sebagian kecil dimakan oleh binatang sedangkan sebagian besar akan mengalami penguraian sebagian atau sepenuhnya oleh jasad renik tanah seperti bakteri.

Hutan mangrove dapat juga menjadi habitat (rumah) bagi berbagai jenis burung, reptilia, mamalia dan jenis-jenis kehidupan lainnya sehingga menyediakan keanekaragaman hayati (biodiversity) dan plasma nutfah (genetic pool) yang tinggi sebagai sistem penunjang kehidupan. Dengan sistem perakaran dan canopy yang rapat serta kokoh, hutan mangrove juga berfungsi sebagai pelindung daratan dari bencana alam dari laut seperti angin topan, tsunami, perembesan air laut dan lain-lain. Sedangkan secara ekonomis, hutan mangrove dapat dimanfaatkan sebagai daerah ekoturisme secara lestari dan kayunya dapat digunakan untuk bahan bangunan, arang (charcoal) dan bahan baku kertas (Bengen 2000).

Menurut Hardjosentono (1978), dalam kedudukannya sebagai suatu ekosistem antara darat dan laut, hutan mangrove memiliki peranan menjadi keseimbangan biota laut. Macnac (1968) telah menyelidiki secara intensif hewan yang ada di hutan mangrove dan menyimpulkan bahwa hutan mangrove dapat dibagi menjadi 6 (enam) macam habitat sebagai berikut:

a. Tajuk-tajuk pohon pada umumnya dihuni oleh burung, mamalia, dan insekta yang datang dari hutan/tempat sekitarnya

b. Lubang pada cabang busuk dan air pada celah retakan antara batang dan ranting merupakan habitat yang baik sekali bagi larva
c. Permukaan tanah dan di bawah tanah hidup berbagai jenis siput dan ketam
d. Bagian batang dan akar merupakan tempat hidupnya bangsa kerang dan jenis
moluska lainnya
e. Pohon kecil dihuni oleh jenis-jenis ketam/kepiting, larva nyamuk dan katak
f. Bagian yang berair dihuni oleh ikan, buaya dan biawak

Jenis-jenis hewan di atas sebagian ada yang berstatus pendatang dan sebagian
lagi khas hidup di tanah/lumpur laut, namun kesemuanya itu memerlukan adanya
hutan mangrove sebagai suatu habitat tempat hidupnya.

Karena habitat mangrove bersifat khusus, setiap jenis biota di dalamnya
mempunyai kisaran ekologi tersendiri dan masing-masing mempunyai relung khusus.
Menurut Steernis (1958) dalam Kartawinata et al. (1979), preferensi ekologis ini
disebabkan oleh kombinasi dari faktor-faktor:
a. Tipe tanah (perbandingan kandungan pasir dan liat)
b. Salinitas (variasi nilai rata-rata harian dan tahunan, sebanding dengan frekuensi,
kedalaman, dan waktu genangan)
c. Ketahanan jenis terhadap arus dan ombak
d. Kondisi perkecambahan dan pertumbuhan jenis semai

Adanya faktor-faktor diatas menyebabkan terbentuknya berbagai macam
komunitas dan bahkan mintakat (zonasi), sehingga komposisi jenisnya berbeda dari
satu tempat dengan tempat lain.

Penyebaran Komunitas Moluska

Menurut Nybakken (1992), di dalam ekosistem mangrove golongan moluska
diwakili terutama oleh kelas gastropoda. Gastropoda umumnya hidup pada akar dan
batang pohon mangrove (Littorinidae) dan lainnya pada lumpur di dasar akar
mencakup sejumlah pemakan detritus (Ellobiidae dan Potamididae). Jenis-jenis
Moluska dari famili Potamididae dan Ellobiidae mempunyai frekuensi kehadiran
yang cukup tinggi di hutan mangrove karena luasnya daerah yang disukai oleh
Ellobiidae (keriting, lembab, berpasir) dan Potamididae (lumpur, berair, terbuka).
Kehadiran jenis-jenis moluska yang tinggi terdapat pada jenis-jenis yang mudah menyesuaikan diri atau memiliki toleransi yang luas seperti jenis yang tahan kering (*Littorina scabra*, *Brachiondentes bilocularis*, *Crassostrea cucullata* dan *Spondylus histryx*), jenis yang dapat menghindar dari air pasang (*Nerita planospira* dan *Drupa margariticola*) dan jenis yang tahan terendam air (*Terebralia sulcata*), (Budiman & Darnaedi 1982).

Kartawinata *et al.* (1979) menyatakan bahwa moluska mangrove menyebar secara vertikal maupun horizontal. Sebaran vertikal berlaku bagi jenis-jenis moluska yang hidupnya di lantai mangrove sampai moluska yang melekat pada akar, batang, cabang dan daun pohon mangrove. Penyebaran mendatar dari laut ke arah darat berlaku bagi jenis-jenis yang hidup sebagai epifauna maupun infauna. Hutan mangrove adalah suatu ekosistem tiga dimensi dengan dua cara pemintakatan yaitu:

1. Pemintakatan mendatar (horizontal) dari arah laut ke arah darat pada hewan epifauna (fauna yang hidup di atas permukaan tanah dan melintang) dan infauna (fauna yang hidup di bawah permukaan tanah dengan cara menggali lubang)
2. Pemintakatan menegak (vertikal) dari lantai hutan ke pucuk-pucuk pohon pada fauna pohon (fauna yang menempel pada akar dan batang/cabang pohon).

1. Menyimpan air dalam cangkang
2. Bergerak mencari tempat yang masih digenangi air/masih lembab
3. Modifikasi/menambah alat pernafasan lain selain insang sehingga dapat mengambil oksigen langsung dari udara
4. Toleransi terhadap fluktuasi salinitas yang besar terutama di daerah tropis yang mengalami penyinaran matahari yang kuat dan frekuensi hujan yang cukup tinggi sehingga berpengaruh terhadap perairan
5. Toleransi yang tinggi terhadap kekeruhan sehingga harus memiliki kemampuan dalam menyaring dan membuang partikel lumpur pada jenis yang memiliki cara makan dengan memfilter air.

<table>
<thead>
<tr>
<th>Tabel 1. Beberapa Ciri Pokok Jenis-jenis Moluska Penghuni Hutan Mangrove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faktor Pembeda</td>
</tr>
<tr>
<td>Pakan</td>
</tr>
<tr>
<td>Frekuensi dan kelimpahan dalam hutan</td>
</tr>
<tr>
<td>Frekuensi dan kelimpahan di luar hutan</td>
</tr>
<tr>
<td>Penyebaran</td>
</tr>
</tbody>
</table>

Sumber: Budiman (1991)

Parameter Lingkungan Yang Dapat Mempengaruhi Keberadaan Moluska Di Ekosistem Mangrove

Adanya struktur dan fungsi dari ekosistem mangrove, serta komposisi dan penyebaran dari tiap jenis dan pertumbuhan dari organisme mangrove yang berbeda-beda dipengaruhi oleh beberapa faktor lingkungan seperti topografi, iklim, pasang surut, salinitas, oksigen terlarut, tanah (substrat) dan ketersediaan nutrisi/unsur hara (Aksornkoae 1993). Faktor lingkungan yang sering mempengaruhi kehidupan gastropoda (moluska) antara lain suhu, salinitas, pH (derajat keasaman), pasang surut, kondisi substrat dan kualitas air.

1. Moluska yang berada di zona mangrove bagian depan / dekat laut yang mampu beradaptasi terhadap perubahan salinitas yang tinggi
2. Moluska yang berada di zona mangrove bagian tengah yang sangat dipengaruhi oleh fluktuasi salinitas yang lebih tinggi
3. Moluska yang berada di zona mangrove bagian belakang / bagian dalam yang beradaptasi terhadap fluktuasi salinitas yang rendah dimana terdapat spesies *euryhaline* yang hidup berdampingan dengan *stenohaline*.

Perkembangan moluska dipengaruhi pula oleh derajat keasaman perairan dan aktifitas pengaruh lingkungan perairan. Air laut merupakan sistem penyangga yang sangat luas dengan pH relatif stabil sebesar 7,0 – 8,5. Nilai pH ini termasuk baik untuk perkembangan moluska sebab pH yang kurang dari 5 dan lebih dari 9 menciptakan kondisi yang tidak menguntungkan bagi makrozoobenthos (Odum 1971).

Kandungan bahan organik dapat dilihat dari nilai karbon organik yang berkaitan erat dengan ketersediaan senyawa karbon yang berupa bahan organik yang berasal dari daun, batang, ranting, buah mangrove dan hewan-hewan yang telah mati dan membusuk. Kandungan karbon total berkorelasi positif dengan fraksi liat, hal ini dikarenakan liat berpengaruh dalam aerasi tanah. Ukuran partikel liat yang jauh lebih halus menyebabkan substrat bersifat lebih kompak dan sulit ditembus oleh udara. Semakin tinggi kadar liat maka semakin anaerob keadaan substrat dan kondisi ini menyebabkan bahan organik melimpah karena sedikit sekali yang mengalami dekomposisi (Samson 1999).

KONDISI UMUM LOKASI PENELITIAN

Letak Geografis

Pulau Rambut terletak pada 106° 41' 30'' BT dan 5° 37'' LS. Secara geografis, pulau ini berada di sebelah barat laut Jakarta dan berjarak 30 km. Pantai Pulau Jawa yang terdekat adalah Pantai Tanjung Pasir yang berjarak 2,5 km dari Pulau Rambut yang termasuk dalam wilayah administrasi Tangerang.

Status Kawasan

Iklim

Tipe iklim Pulau Rambut termasuk tipe iklim C menurut Schmidt-Fergusson dengan curah hujan rata-rata per tahun sekitar 1586 mm dengan jumlah hari hujan rata-rata per tahun 85,2 hari. Bulan basah sekitar Desember - April dengan rata-rata curah hujan di atas 100 mm. Curah hujan tertinggi terjadi pada bulan Januari. sedangkan bulan keringnya antara Mei - Oktober. Selama musim angin barat (Desember - Februari) dan musim angin timur (Juni - Agustus) merupakan musim yang berbahaya bagi pelayaran karena besarnya angin dan gelombang air laut yang dapat mencapai tinggi 1,5 - 2 m disertai hujan dan angin bertiup terus menerus selama 24 jam.

Topografi

Bentuk Pulau Rambut hampir bulat dan sebagian besar daratannya merupakan tanah rendah berpayau yang meliputi pantai timur, barat dan utara. Pantai barat dan
utara terlindung gugusan beting karang sedangkan bagian selatan dan tenggara landai serta berpasir putih. Laut disekeliling Pulau Rambut termasuk perairan yang relatif dangkal dengan bagian terdalarn hanya mencapai 12 m. Bagian terdalam tersebut terletak di sebelah utara dan timur.

Ketinggian tanah di Pulau Rambut berkisar antara 0 - 1,75 m dari permukaan laut. Daerah tertinggi terletak di bagian tenggara. Bagian tengah pulau mempunyai ketinggian kurang lebih 1 m. Kondisi tanahnya sebagian besar terdiri dari kapur yang berasal dari karang laut.

Flora

Pulau Rambut terdiri dari formasi pantai, mangrove dan hutan campuran. Hutan mangrove hampir dapat dijumpai di seluruh bagian pantai kecuali di bagian selatan karena didominasi oleh formasi hutan pantai. Hutan mangrove didominasi oleh bakau-bakauan jenis Rhizophoraceae yaitu Rhizophora muconata, Rhizophora apiculata dan Rhizophora stylosa. Selain itu dapat dijumpai jenis Ceriops tagal, Nyirih (Xylocarpus granatum), jangkar (Bruguiera gymnorrhiza), buta-buta (Excoecaria agallocha).

Di hutan pantai yang berpasir tumbuh semak dan perdu serta rumput-rumputan. Jenis tumbuhan bawah yang dapat dijumpai adalah rumput tembagan (Ischaemum sp.), pandan (Pandanus tectorius). Sedangkan di atas daerah pasang surut dapat dijumpai waru laut (Thespesia opulnea), cemara laut (Casuarina equisetifolia) dan Akasia (Acasia auriculiformis).

Vegetasi yang dapat dijumpai di hutan campuran adalah pohon-pohon tinggi, semak belukar dan liana. Tumbuhan-tumbuhan tersebut antara lain kepuh (Sterculia foetida), kesambi (Schleicheria oleosa) dan mengkudu (Morinda citrifolia), kingkit (Tripasia trifolia) dan pepaya (Carica papaya).
Fauna

Berbagai jenis burung dapat dijumpai di Pulau Rambut baik burung air maupun burung terestrial. Jenis burung-burung air yang dapat ditemui antara lain kowak maling (*Nycticorax nycticorax*), cangak abu (*Ardea cinerea*), pecuk ular (*Anhingi melanogaster*), bluwok (*Mycteria cinerea*), pecuk (*Palacoorax* sp.), kuntul (*Egretta* sp.), trinil (*Tringa* sp.), kareo (*Amaturorns phoenicurus*) dan lain-lain. Sedangkan jenis burung terestrial yang sering ditemukan adalah kepodang (*Oriolus chinensis*), tekukur (*Sreptopelia chinensis*), elang laut (*Haliaeetus leucogaster*), gagak (*Corvus macrorhyncus*), raja udang biru (*Alcedo caerulecens*), cekakak (*Todirhamphus chloris*), pelatuk ulam (*Dendrocoops macelf*), bubut (*Centropus bengalensis*), sesap madu (*Anthreptes malaccensis*).

Beberapa jenis satwa lain yang dapat ditemukan yaitu ular cincin emas (*Boiga dendrophila*), ular sanca (*Python reticulatus*), biawak (*Varanus salvator*), dan kalong (*Pteropus vampyrus*). Pantai Pulau Rambut dikelilingi oleh karang laut baik yang masih hidup maupun yang sudah mati. Di tempat yang perairannya agak tenang dijumpai banyak teripang dan bulu babi (*Diadema setosum*). Pada lagunanya selain ikan hias ditemukan juga ubur-ubur sisir (*Ctenophora*). Sedangkan alga laut yang banyak dijumpai adalah marga *Corallinae*, *Gelidium*, *Gracilaria* dan *Sargassum*.
METODE PENELITIAN

Lokasi dan Waktu Penelitian

Bahan dan Alat

Dalam pengambilan data primer dibutuhkan bahan dan alat yang disajikan pada Tabel 2.

Tabel 2. Bahan dan Alat yang Digunakan dalam Pengambilan Data

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Alat / Bahan</th>
<th>Kegunaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Termometer</td>
<td>Mengukur suhu</td>
</tr>
<tr>
<td>2.</td>
<td>Salinometer</td>
<td>Mengukur salinitas</td>
</tr>
<tr>
<td>3.</td>
<td>Universal Indikator pH</td>
<td>Mengukur derajat keasaman</td>
</tr>
<tr>
<td>4.</td>
<td>Kayu berskala</td>
<td>Mengukur pasang surut</td>
</tr>
<tr>
<td>5.</td>
<td>Kompas</td>
<td>Menentukan arah transek</td>
</tr>
<tr>
<td>6.</td>
<td>Tali rafia</td>
<td>Penandaan plot / transek</td>
</tr>
<tr>
<td>7.</td>
<td>Rollmeter</td>
<td>Menentukan jarak antar plot / transek</td>
</tr>
<tr>
<td>8.</td>
<td>Kertas label dan Alat tulis</td>
<td>Mencatat data dan menandai sampel</td>
</tr>
<tr>
<td>9.</td>
<td>Kantong plastik</td>
<td>Menyimpan sampel</td>
</tr>
<tr>
<td>10.</td>
<td>Buku Identifikasi Moluska</td>
<td>Identifikasi jenis-jenis moluska</td>
</tr>
<tr>
<td>11.</td>
<td>Larutan alkohol 70%</td>
<td>Mengawetkan sampel</td>
</tr>
<tr>
<td>12.</td>
<td>Kamera</td>
<td>Dokumentasi</td>
</tr>
</tbody>
</table>

Penentuan Stasiun Pengamatan

Stasiun pengamatan dipusatkan di dalam hutan mangrove. Stasiun-stasiun ini ditetapkan pada awal penelitian disesuaikan dengan keadaan lapangan terhadap kondisi penyebaran vegetasi. Berdasarkan peta penyebaran vegetasi dan kondisinya yang dikategorikan hutan mangrove dengan vegetasi yang masih rapat dan terbuka yang mewakili beberapa tipe vegetasi.

Teknik Pengumpulan Data

Pengambilan Contoh Vegetasi

Analisa vegetasi mangrove diawali dengan penetapan transek-transek garis dari arah laut ke darat (tegak lurus garis pantai sepanjang zonasi hutan mangrove). Transek yang dibuat sebanyak 6 buah sepanjang 50 m disesuaikan dengan kebutuhan yaitu 3 transek pada hutan mangrove yang rapat dan 3 transek pada hutan mangrove yang terbuka. Dalam setiap jalur akan dibuat petak-petak berukuran 10x10 m, yang didalamnya dibentuk petak-petak yang lebih kecil untuk menganalisa dan mengukur tingkatan vegetasi yang ada. Pada setiap jalur transek ini langsung melakukan identifikasi jenis mangrove dan dibuat petak-petak contoh (Gambar 1), dengan tingkat tegakan sebagai berikut:

1. Untuk tingkat pohon, dilakukan identifikasi pada petak contoh 10 x 10 m dengan diameter batang lebih besar dari 10 cm pada ketinggian > 1,5 m
2. Untuk tingkat pancang, dilakukan identifikasi pada petak contoh 5 x 5 m dengan diameter batang antara 2 sampai 10 cm pada ketinggian > 1,5 m
3. Untuk tingkat semai, dilakukan identifikasi pada petak contoh 2 x 2 m dengan diameter batang kurang dari 2 cm dan ketinggian < 1,5 m

Parameter yang digunakan adalah jenis, jumlah individu, diameter setinggi dada, tinggi total dan bentuk tajuk. Berdasarkan data tersebut, dibuat pula profil arsitektur pohon pada tiap jalur pengamatan untuk mengetahui bentuk atau struktur vertikal dan horizontal suatu vegetasi dari hutan mangrove.
Pengambilan Contoh Moluska

Pengambilan contoh untuk moluska dilakukan dengan menggunakan transek garis (line transek). Transek garis ditarik dengan arah tegak lurus garis pantai sampai ke batas daratan. Dalam petak-petak contoh yang berukuran 10 x 10 m untuk pengamatan vegetasi dibuat 3 titik sub petak, dimana satu titik menggunakan transek berukuran 0,5 x 0,5 m yang ditarik secara urut untuk pengamatan dan pengambilan contoh moluska dengan jarak antar petak pada transek 10 m. Pengambilan contoh dilakukan dengan tangan atau sekop secara horizontal disesuaikan dengan tipe substrat penyusunnya. Contoh moluska yang terambil, selanjutnya diawetkan dengan menggunakan larutan alkohol 70% kemudian diidentifikasi dengan cara membandingkan contoh moluska yang diperoleh di lapangan dengan koleksi Museum Zoologi Bogor, serta menggunakan buku-buku identifikasi moluska.

Pengambilan Data Kondisi Lingkungan

Data kondisi lingkungan yang diambil diantaranya salinitas, suhu, pH, substrat, perbedaan pasang surut dengan menggunakan alat yang telah disiapkan dan data sekunder berupa data kualitas air pada hutan mangrove rapat dan terbuka di Pulau Rambut.
Analisa Pengolahan Data

1. Vegetasi Mangrove

Data hasil pengukuran di lapangan kemudian diolah dengan beberapa perhitungan sehingga didapatkan hasil akhir berupa Indeks Nilai Penting (INP). Perhitungan-perhitungan tersebut, yaitu:

a. Kerapatan (ind/ha) (K) = \(\frac{\sum \text{individu jenis } i}{\text{Luas petak contoh}} \)
b. Kerapatan Relatif (%) (KR) = \(\frac{\text{Kerapatan jenis } i}{\text{Kerapatan seluruh jenis}} \times 100 \%
\)
c. Frekuensi (F) = \(\frac{\sum \text{Petak ditemukan jenis } i}{\sum \text{Petak}} \times 100 \%
\)
d. Frekuensi Relatif (%) (FR) = \(\frac{\text{Frekuensi jenis } i}{\text{Frekuensi seluruh jenis}} \times 100 \%
\)
e. Dominansi (D) = \(\frac{\text{Luas bidang dasar}}{\text{Luas petak contoh}} \)
f. Dominansi Relatif (%) (DR) = \(\frac{\text{Dominansi jenis } i}{\text{Dominansi seluruh jenis}} \times 100 \%
\)
g. INP = KR + FR + DR

Nilai penting ini memberikan suatu gambaran mengenai pengaruh atau peranan suatu jenis mangrove dalam ekosistem tersebut.

2. Struktur Komunitas Moluska

• Kelimpahan

Kelimpahan adalah jumlah individu per satuan luas (Brower dan Zar, 1989) dengan formulasi sebagai berikut:

\[D_i = \frac{n_i}{A} \]

Keterangan:
Di = Kelimpahan individu jenis ke-i (individu / m²)

ni = Jumlah individu jenis ke-i yang diperoleh

A = Luas total area pengambilan contoh
Keanekaragaman (Diversity)

Keanekaragaman spesies dapat dikatakan sebagai keheterogenan spesies dan merupakan ciri khas struktur komunitas. Rumus yang digunakan untuk menghitung keanekaragaman spesies adalah rumus Indeks Diversity Shannon (Brower dan Zar, 1989), yaitu:

\[H' = - \sum_{i=1}^{s} P_i \left(\log_2 P_i \right) \]

Keterangan:
- \(H' \) = Indeks keanekaragaman (diversitas)
- \(P_i \) = Proporsi jumlah individu spesies ke-i terhadap jumlah individu total dimana \(P_i = n_i/N \)
- \(n_i \) = Jumlah individu jenis ke-i yang diperoleh
- \(N \) = Jumlah total individu semua spesies
- \(s \) = Jumlah spesies atau taksa

Kriteria hasil indeks keanekaragaman (\(H' \)) menurut Wilhm (1975) adalah:

- \(H' < 3,32 \) : Keanekaragaman rendah
- \(3,32 < H' < 9,97 \) : Keanekaragaman sedang
- \(H' > 9,97 \) : Keanekaragaman tinggi

Keseragaman (Evenness)

Keseragaman dapat diartikan sebagai penyebaran individu antar spesies yang berbeda dan dapat diperoleh dari hubungan antara keanekaragaman (\(H' \)) dengan keanekaragaman maksimalnya. Keseragaman juga dapat dikatakan sebagai keseimbangan yaitu komposisi individu tiap spesies yang terdapat dalam suatu komunitas. Rumus indeks keseragaman (Brower dan Zar, 1989), yaitu:

\[E = \frac{H'}{H_{max}} \]

Keterangan:
- \(E \) = Indeks keseragaman (Evenness)
- \(H' \) = Indeks keanekaragaman
- \(H_{max} \) = \(\log_2 s ; 3,3219 \log s \)
- \(s \) = Jumlah spesies atau taksa
Kisaran nilai Indeks Keseragaman Shannon – Wiener (E) :
0 < E < 0,5 = Komunitas dalam kedaan tertekan
0,5 < E < 0,75 = Komunitas dalam keadaan agak seimbang
0,75 < E < 1 = Komunitas dalam keadaan seimbang

Nilai indeks keseragaman spesies ini berkisar antara 0 – 1. Bila indeks keseragaman mendekati nilai 0, maka berarti dalam ekosistem tersebut ada kecenderungan terjadi dominansi spesies yang disebabkan oleh adanya ketidakstabilan faktor-faktor lingkungan dan populasi. Bila indeks keseragaman mendekati 1, maka hal ini menunjukkan bahwa ekosistem tersebut dalam kondisi yang relatif merata yaitu jumlah individu untuk tiap spesies relatif sama dan perbedaannya tidak terlalu mencolok (Brower dan Zar, 1989).

▲ Dominansi

Untuk mengetahui ada atau tidaknya dominansi dari spesies tertentu digunakan Indeks Dominansi Simpson (Brower dan Zar, 1989), yaitu :

\[C = \sum_{i=1}^{s} \left(\frac{n_i}{N} \right)^2 \]

Keterangan :
C = Indeks Dominansi Simpson
ni = Jumlah individu spesies ke-i
N = Jumlah total individu spesies ke-i
s = Jumlah spesies atau taksa

Kisaran Nilai Indeks Dominansi Simpson :
0 < C < 0,5 = Dominansi rendah
0,5 < C < 0,75 = Dominansi sedang
0,75 < C < 1 = Dominansi tinggi

Nilai indeks dominansi berkisar antara 0-1. Jika indeks dominansi mendekati 0 berarti hampir tidak ada individu yang mendominasi dan biasanya diikuti dengan indeks keseragaman yang besar. Apabila indeks dominansi mendekati 1 diikuti dengan nilai keseragaman yang semakin kecil (Odum, 1971).
Pola Sebaran Jenis

Untuk mengetahui pola sebaran jenis suatu organisme pada suatu habitat digunakan Indeks Sebaran Morisita (Brower dan Zar, 1989), sebagai berikut:

\[Id = n \sum \frac{X^2 - N}{N(N-1)} \]

Keterangan:
- \(Id \) = Indeks Sebaran Morisita
- \(n \) = Jumlah petak/plot pengambilan contoh
- \(N \) = Jumlah total individu yang terdapat dalam n plot
- \(\sum X^2 \) = Kuadrat jumlah individu per plot

Hasil Indeks Morisita yang diperoleh dikelompokkan sebagai berikut:
- \(Id < 1 \) : Pola sebaran jenis individu bersifat seragam
- \(Id = 1 \) : Pola sebaran jenis individu bersifat acak
- \(Id > 1 \) : Pola sebaran jenis individu bersifat mengelompok

Untuk menguji pola penyebaran digunakan suatu uji statistik yaitu sebaran Chi Square (\(X^2 \)) yaitu untuk membandingkan nilai harapan hitungan dengan nilai pengamatan dengan persamaan sebagai berikut:

\[X^2 = \left(n \sum \frac{X^2}{N} \right) - N \]

Keterangan:
- \(X^2 \) = Chi Square
- \(n \) = Jumlah pengamatan
- \(\sum X^2 \) = Kuadrat jumlah individu jenis ke-i yang ditemukan pada tiap stasiun pengamatan
- \(N \) = Jumlah seluruh individu jenis ke-i

Nilai Chi Square dari perhitungan diatas dibandingkan dengan nilai Chi Square hasil dari tabel pada taraf kepercayaan 95 % (\(\alpha = 0.05 \)). Apabila nilai \(X^2 \) hitung < \(X^2 \) tabel yang berarti pola sebaran jenis bersifat acak.
Penentuan Tipe Substrat

Penentuan substrat dilakukan dengan analisa persentase fraksi substrat tanah yang diperoleh pada setiap jenis substrat meliputi tekstur, komposisi, salinitas dan pH tanah yang dilakukan di Laboratorium Balai Penelitian Tanah Bogor. Hasil analisis yang didapat lalu diklasifikasikan berdasarkan persentase liat, debu, dan pasir ke dalam "segitiga Miller" (Gambar 2).

![Diagram Segitiga Miller]

3. Hubungan Antara Vegetasi Mangrove Dengan Moluska

Untuk melihat hubungan antara mangrove dengan kepadatan moluska digunakan analisa regresi korelasi. Rumus regresi linear yang digunakan adalah:

\[Y = a + bx \]

Keterangan:
- \(Y \) = kepadatan moluska (peubah tetap)
- \(x \) = kerapatan mangrove (peubah bebas)
- \(a \) & \(b \) = nilai konstanta

Rumus regresi polynomial yang digunakan (Steel & Torrie, 1993):

\[Y = \beta_0 + \beta_1x + \beta_2x^2 + \ldots + \beta_nx^n \]

Keterangan: \(\beta \) = konstanta
HASIL DAN PEMBAHASAN

Keadaan Fisik Lokasi Penelitian

Di bagian timur laut terdapat daerah terbuka yang sebelumnya ditumbuhi oleh tegakan mangrove, tetapi karena adanya kerusakan lingkungan akibat limbah dan sampah sehingga hanya ada sisa-sisa pohon mangrove yang mati atau tumbang (Lampiran 13). Walaupun telah dilakukan penanaman mangrove, tapi tidak cukup berhasil mengembalikan keadaan tegakan mangrove seperti semula. Kini hutan mangrove yang rusak tersebut berangsur-angsur mulai pulih, yang ditandai dengan mulai tumbuhnya semai Rhizophora mucronata pada bagian terluar lokasi tersebut.

Di bagian lain Pulau Rambut, hutan mangrovenya masih mempunyai komposisi vegetasi yang masih rapat (Lampiran 13) namun masih terdapat ancaman kerusakan lingkungan apabila tidak dilakukan tindakan pengelolaan lingkungan. Pada bagian utara dan barat merupakan terumbu karang dan di beberapa tempat terdapat tanggul yang tersusun oleh sisa cangkang, pasir dan karang mati. Lantai hutan merupakan lumpur tebal dan halus yang masih terdapat bisa akar-akar mangrove. Lebar jalur tegakan hutan mangrove dari pantai berkisar antara 10 – 200 m. Selain berbagai jenis vegetasi mangrove, fauna lain yang ditemukan pada lantai hutan adalah kepiting (Crustacea).
Karakteristik Fisika dan Kimia Perairan

Kelangsungan hidup gastropoda (moluska) tak lepas dari adanya pengaruh lingkungan abiotik perairan yang terdiri atas faktor fisik maupun kimia seperti suhu, derajat keasaman (pH), salinitas, kandungan substrat dan kualitas air. Setiap stasiun pengamatan memiliki perbedaan kisaran parameter dalam mendukung kehidupan gastropoda baik pada hutan mangrove yang masih rapat maupun hutan mangrove yang terbuka (Tabel 3).

Tabel 3. Nilai Rataan dan Kisaran Parameter Fisika Kimia Perairan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mangrove Rapat</th>
<th>Mangrove Terbuka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stasiun 1</td>
<td>Stasiun 2</td>
</tr>
<tr>
<td>Suhu (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>27.5</td>
<td>27.5</td>
</tr>
<tr>
<td>Salinitas air (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kisaran</td>
<td>32 - 35</td>
<td>32 - 33</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>33.5</td>
<td>32.5</td>
</tr>
<tr>
<td>pH air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kisaran</td>
<td>7</td>
<td>6.5 - 7</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>7</td>
<td>6.75</td>
</tr>
</tbody>
</table>

Suhu

Berdasarkan keadaan tipe hutan mangrove, tidak terdapat perbedaan suhu yang relatif jauh. Hutan mangrove yang rapat (stasiun 1, 2 dan 3), keadaan vegetasinya lebih padat dengan penutupan tajuk yang lebih rapat sehingga fluktuasi suhu yang terjadi lebih rendah yaitu berkisar antara 26 – 28 °C. Sedangkan pada hutan mangrove yang terbuka (stasiun 4, 5 dan 6) dengan keadaan yang jarang ditumbuhi vegetasi mangrove, mempunyai kisaran suhu yang lebih tinggi yaitu
27 – 31 °C karena terjadi penguapan air yang lebih cepat sehingga dapat menaikkan suhu udara disekitarnya.

Salinitas

Berdasarkan hasil pengukuran salinitas air tanah (Tabel 3), didapatkan kisaran nilai salinitas air yang lebih tinggi pada hutan mangrove yang rapat dengan kisaran 32 – 36 ‰ dibandingkan hutan mangrove yang terbuka yang berkisar antara 29 – 35 ‰. Perubahan salinitas pada hutan mangrove rapat lebih lambat dibandingkan dengan hutan mangrove terbuka karena air yang tertahan oleh tumpukan sisa cangkang/karang di bagian depan yang mengurangi masukan air laut.

Nilai salinitas air terendah pada stasiun 4 yaitu berkisar antara 29 – 34 ‰ dengan rataan 31,5 ‰ sedangkan nilai salinitas tertinggi ditunjukkan pada stasiun 3 yaitu berkisar antara 33 – 36 ‰ dengan rataan 34 ‰. Adanya perbedaan salinitas tersebut dapat disebabkan karena pengaruh pasang surut dan kondisi letak yang berbeda. Pada stasiun 3, letaknya berbatasan langsung dengan laut sehingga ada pengaruh dari masuknya air laut dan pengaruh pasang surut yang lebih besar.

Derajat keasaman (pH)

Derajat keasaman (pH) air mempunyai pengaruh pada kehidupan suatu organisme. Tabel 3 memperlihatkan bahwa pH air antar stasiun berkisar antara 6,5 – 8. Pada stasiun 1 dan 5 mempunyai nilai pH yang netral yaitu 7 sedangkan pada stasiun 2 dan 4 memiliki nilai pH air yang berkisar antara 6,5 – 7 dengan rataan 6,75. Stasiun 3 memiliki nilai pH air berkisar antara 6,5 – 7,5 berbeda dengan stasiun 6 yang memiliki nilai pH air tertinggi dengan kisaran 7 – 8 dengan rataan 7,5. Hasil
pengukuran tersebut menunjukkan rata-rata pH air pada masing-masing stasiun relatif sama. Dwisasanti (1987) mendapatkan nilai rata-rata pH air tanah di Pulau Rambut yang menggenang berkisar antara 6,6 – 8,0. Nilai pH yang mendekati netral bahkan netral karena pengaruh air laut yang masuk pada saat air pasang secara berkala.

Pasang surut

Berdasarkan hasil pengamatan, pasang surut yang terjadi di pulau Rambut mengalami pasang surut campuran yang cenderung diurnal yaitu tiap hari terjadi satu kali pasang dan satu kali surut tetapi kadang-kadang untuk sementara terjadi dua kali pasang dan dua kali surut dengan kisaran tinggi dan waktu yang berbeda. Adanya kecenderungan diurnal didukung pula oleh data pasang surut di wilayah Jakarta, tepatnya Tanjung Priuk, yang dekat dengan lokasi penelitian pada bulan September-Oktober dengan tipe pasang surut diurnal (Lampiran 3).

Berdasarkan pengamatan, hutan mangrove yang terbuka mempunyai kisaran pasang-naik mencapai 40 cm dengan waktu pasang yang lebih lama dibandingkan pada hutan mangrove yang rapat. Jarak pengambilan contoh dari pantai ke arah darat pada hutan mangrove yang rapat maupun terbuka relatif sama yaitu 1,5 m. Posisi lokasi mangrove terbuka lebih menyorok ke arah laut seperti terlihat pada peta lokasi penelitian (Lampiran 1) menyebabkan pengaruh pasang surut lebih besar dibandingkan pada hutan mangrove rapat.

Sedangkan pada hutan mangrove yang rapat mempunyai kisaran pasang naik mencapai 25 cm dengan waktu yang relatif singkat. Adanya perbedaan waktu penggenangan air pada kedua tipe hutan mangrove tersebut, mungkin disebabkan karena topografi pada hutan mangrove yang terbuka lebih rendah dibandingkan hutan mangrove yang rapat, sehingga air lebih mudah masuk dan tertahan lebih lama selain pengaruh pasang surut. Akibat kombinasi antara pasang surut dan waktu menurut Nybakken (1992), adanya perbedaan waktu relatif antara lamanya suatu daerah tertentu berada di udara terbuka dengan lamanya tergenang air, serta kecenderungan pada organisme untuk membentuk irama tertentu dalam melakukan kegiatannya. Pergerakan massa air akibat pasang surut dapat dilihat pada (Lampiran 2).
Adanya pengaruh pasang surut tersebut mempengaruhi parameter lingkungan lainnya seperti suhu, salinitas, pH dan kondisi substrat. Hal ini disebabkan karena adanya masukan air laut yang mempengaruhi keadaan habitat dan daya adaptasi dari gastropoda (moluska).

Substrat

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Tekstur (%)</th>
<th>pH Tanah</th>
<th>Salinitas Tanah</th>
<th>C-Organik (%)</th>
<th>Tipe Substrat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pasir</td>
<td>Debu</td>
<td>Liat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20.69</td>
<td>31.26</td>
<td>48.05</td>
<td>6.36</td>
<td>19.05</td>
</tr>
<tr>
<td>2</td>
<td>21.44</td>
<td>44.49</td>
<td>34.07</td>
<td>6.21</td>
<td>19.08</td>
</tr>
<tr>
<td>3</td>
<td>24.27</td>
<td>28.64</td>
<td>47.09</td>
<td>7.04</td>
<td>19.32</td>
</tr>
<tr>
<td>4</td>
<td>8.50</td>
<td>22.66</td>
<td>68.84</td>
<td>7.08</td>
<td>20.3</td>
</tr>
<tr>
<td>5</td>
<td>40.01</td>
<td>19.94</td>
<td>40.05</td>
<td>7.11</td>
<td>22.9</td>
</tr>
<tr>
<td>6</td>
<td>2.79</td>
<td>3.9</td>
<td>93.31</td>
<td>7.33</td>
<td>24.7</td>
</tr>
</tbody>
</table>

Dari hasil analisa substrat diatas, didapatkan bahwa kandungan substrat yang dominan pada semua stasiun pengamatan yaitu liat. Kandungan liat tertinggi terlihat pada stasiun 6 dengan persentase liat 93,31 %, debu 3,9 % dan pasir 2,79 %. Untuk kandungan liat terendah pada stasiun 2 dengan persentase liat 34,07 %, debu 44,49 % dan pasir 21,44 % dengan tipe substrat lempung berliat. Tekstur liat yang bersifat halus disukai oleh gastropoda (Macnae 1968).
Gambar 3. (a) Grafik Rata-rata Persentase Fraksi Substrat Tanah. (b) Grafik Rata-rata Persentase C-Organik

Tekstur liat yang ada di lokasi penelitian berupa lumpur tebal dengan tekstur yang lebih halus pada hutan mangrove terbuka dibandingkan pada hutan mangrove yang rapat. Umumnya gastropoda menyukai daerah berlumpur karena partikel organik yang halus dengan kandungan organik yang tinggi.

Berdasarkan hasil pengukuran, nilai salinitas tanah pada tiap stasiun tidak berbeda jauh namun nilai tersebut mempunyai perbedaan yang mencolok dengan nilai salinitas air (Tabel 3) pada tiap stasiun. Nilai salinitas tanah tertinggi (Tabel 4) terlihat pada stasiun 6 sebesar 24,7 % sedangkan nilai terendah pada stasiun 1 sebesar 19,05 %. Pada hutan mangrove yang rapat mempunyai nilai salinitas tanah yang lebih rendah dibandingkan dengan hutan mangrove yang terbuka. Pada substrat lumpur, air tertahan di dalam ruangan-ruangan yang terdapat diantara partikel substrat (air interstital) yang semula tedapat di atas substrat sehingga mempengaruhi tingkat perubahan salinitas pada substrat. Perubahan salinitas air interstital terjadi jauh lebih lambat daripada air yang terdapat diatasnya karena lambatnya pertukaran antara keduanya (Nybakken 1992).

Faktor lain dari fraksi tanah adalah pH tanah yang mempunyai kisaran antara 6,21 (stasiun 1) dan 7,33 (stasiun 6). Perbedaan ini kemungkinan disebabkan oleh adanya sampah-sampah organik yang kemudian terakumulasi di dalam tanah. Nilai
pH tanah secara berurutan dari stasiun 1 sampai stasiun 6 semakin tinggi sehingga terdapat kenaikan pH tanah walaupun nilainya tidak terlalu besar.

Kandungan C-Organik dalam substrat pada Gambar (3b) dapat dilihat bahwa nilai kandungan karbon organik pada semua stasiun termasuk tinggi. Nilai kandungan C-Organik yang tertinggi pada stasiun 4 sebesar 11,32 % sedangkan nilai terendah terdapat pada stasiun 6 sebesar 8,85 %. Adanya perbedaan kandungan karbon organik disebabkan karena kandungan tekstur liat yang berbeda pada masing-masing stasiun. Letak lokasi stasiun pengamatan dan aliran air dalam hutan mangrove juga dapat mempengaruhi banyaknya masukan sisa-sisa organisme yang membusuk.

Kualitas Air

Kualitas air pada suatu ekosistem dapat mempengaruhi kehidupan vegetasi maupun fauna yang ada. Sama halnya dengan keadaan kualitas air di hutan mangrove Pulau Rambut baik pada hutan mangrove yang rapat maupun hutan mangrove yang terbuka. Hasil analisis kualitas air yang dilakukan pada habitat mangrove di Suaka Margasatwa Pulau Rambut ditunjukkan pada Tabel 5.

Tabel 5. Data Kualitas Air Mangrove Utuh dan Mangrove Rusak di Pulau Rambut

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Satuan</th>
<th>Mangrove Rapat</th>
<th>Mangrove Terbuka</th>
<th>Baku Mutu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>1.</td>
<td>Fisika :</td>
<td>NTU</td>
<td>30</td>
<td>20</td>
<td>≤ 30*</td>
</tr>
<tr>
<td></td>
<td>Kekeruhan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Padatan</td>
<td>mg/l</td>
<td>48</td>
<td>324</td>
<td>≤ 80*</td>
</tr>
<tr>
<td></td>
<td>Tersuspensi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kimia :</td>
<td>mg/l</td>
<td>10,22</td>
<td>8,65</td>
<td>≤ 45*</td>
</tr>
<tr>
<td>1.</td>
<td>BOD₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>COD</td>
<td>mg/l</td>
<td>329,97</td>
<td>154,23</td>
<td>≤ 80</td>
</tr>
<tr>
<td>3.</td>
<td>NH₃-N (Amonia)</td>
<td>mg/l</td>
<td>0,146</td>
<td>0,084</td>
<td>≤ 0,3*</td>
</tr>
<tr>
<td>4.</td>
<td>Timah Hitam (Pb)</td>
<td>mg/l</td>
<td>0,018</td>
<td>0,032</td>
<td>≤ 0,075</td>
</tr>
<tr>
<td>5.</td>
<td>Tembaga (Cu)</td>
<td>mg/l</td>
<td><0,001</td>
<td><0,001</td>
<td>≤ 0,06</td>
</tr>
<tr>
<td>6.</td>
<td>Deterjen</td>
<td>mg/l</td>
<td>0,140</td>
<td>0,630</td>
<td>≤ 1,0*</td>
</tr>
<tr>
<td>7.</td>
<td>Minyak</td>
<td>mg/l</td>
<td>0,20</td>
<td>0,85</td>
<td>≤ 5*</td>
</tr>
</tbody>
</table>

Keterangan : * = Parameter kunci
(a) = Baku Mutu yang Diperbolehkan
(b) = Baku Mutu yang Diinginkan
Berdasarkan hasil diatas, terdapat perbedaan nilai kualitas air yang didapatkan antara hutan mangrove yang rapat dan terbuka sehingga mempengaruhi keadaan lingkungan masing-masing. Kualitas air dinilai berdasarkan dengan baku mutu air laut untuk konservasi biota laut menurut Kep.02/MENKLH/I/1988 (Surat Keputusan Menteri Negara Kependudukan dan Lingkungan Hidup).

Nilai kekeruhan dari hutan mangrove yang rapat lebih tinggi yaitu 30 NTU dibandingkan hutan mangrove yang terbuka yaitu 20 NTU, namun keduaanya masih dibawah nilai baku mutu air laut yang diperbolehkan. Nilai padatan tersuspensi menunjukkan bahwa terdapat perbedaan yang cukup jelas pada hutan mangrove yang rapat yaitu sebesar 48 mg/l yang masih dibawah nilai baku mutu, sedangkan pada hutan mangrove yang terbuka melebihi nilai baku mutu yang diperbolehkan yaitu sebesar 324 mg/l. Hal ini menunjukkan bahwa terdapat banyak pengendapan dan pembusukan bahan-bahan organik pada hutan mangrove terbuka yang dipengaruhi oleh arus air dan pasang surut.

Pada hasil analisis kimia yang ditunjukkan Tabel 5, terlihat bahwa nilai COD berada diatas ambang batas baku mutu yang diperbolehkan pada kedua tipe hutan tersebut. Sedangkan nilai BOD₅, amonia (NH₃-N), tembaga (Cu), deterjen dan kadar minyak masih dibawah ambang batas baku mutu air yang diperbolehkan. Hal ini menunjukkan bahwa perairan telah mengalami kontaminasi walau dengan tingkat pencemaran yang tidak terlalu besar.

Pada hutan mangrove yang rapat, memiliki nilai BOD₅ dan NH₃-N (amonia) yang lebih tinggi dibandingkan pada hutan mangrove yang terbuka tetapi masih dibawah ambang batas baku mutu air yang diperbolehkan untuk konservasi biota laut. Sedangkan nilai COD yaitu 327,97 mg/l pada hutan mangrove yang rapat berada diatas ambang batas baku mutu yang diperbolehkan dengan nilai yang lebih tinggi dibandingkan pada hutan mangrove yang terbuka. Berarti makin tinggi COD maka makin banyak oksigen yang dibutuhkan untuk menguraikan bahan organik tersebut dan hal ini menunjukkan bahwa air lingkungan mengandung banyak bahan buangan organik yang berasal dari limbah sampah yang ada. Kualitas air yang ada tersebut masih memungkinkan bagi biota laut untuk hidup, tetapi bila keadaan ini dibiarkan
maka tidak mustahil apabila tingkat pencemaran akan bertambah hingga akhirnya membahayakan kehidupan biota laut termasuk gastropoda (moluska).

Pada hutan mangrove yang terbuka, memiliki nilai COD yang berada diatas ambang batas baku mutu air yang diperbolehkan untuk konservasi biota laut. Sedangkan nilai kandungan timah hitam (Pb), deterjen dan minyak memiliki kecenderungan nilai yang lebih tinggi dibandingkan pada hutan mangrove yang rapat walaupun masih berada dibawah ambang batas baku mutu air yang diperbolehkan. Hal ini dapat disebabkan karena kandungan bahan buangan organik yang cukup banyak sehingga dapat menyebabkan persediaan oksigen berkurang.

Nilai kandungan tembaga (Cu) pada kedua ekosistem tersebut relatif sama dan berada pada baku mutu air yang diinginkan untuk kehidupan biota laut. Hutan mangrove yang terbuka mempunyai kecenderungan tingkat pencemaran yang mungkin lebih tinggi apabila zat-zat pencemar seperti deterjen, minyak dan logam berat tersebut meningkat. Adanya kandungan zat-zat pencemar tersebut dipengaruhi oleh adanya limbah dan sampah-sampah yang terdampar kemudian mengalami pembusukan yang mempengaruhi lingkungan perairan.

Dibandingkan dengan baku mutu menurut Kep-02/MENKLH/I/1988 untuk keperluan biota laut, maka ada 2 parameter fisika-kimia air pada hutan mangrove yang terbuka yang nilainya lebih tinggi dari baku mutu yaitu padatan tersuspensi dan COD sedangkan pada hutan mangrove yang rapat ada 1 parameter kimia air yang melebihi baku mutu yaitu COD. Hal ini dipengaruhi oleh adanya gerakan pasang surut yang menyebabkan kekeruhan akibat pengadukan sedimen yang mengendap pada habitat hutan mangrove tersebut. Secara umum kualitas air pada hutan mangrove yang terbuka maupun rapat masih dapat mendukung kelangsungan hidup vegetasi maupun biota laut seperti gastropoda.
Analisa Vegetasi Mangrove

Vegetasi mangrove yang ada di Pulau Rambut cukup beragam dan setiap jenis mangrove mempunyai ciri khas masing-masing dalam menyesuaikan tempat tumbuhnya. Tingkat pertumbuhan pohon mangrove yang dijumpai dibedakan antara pohon, pancang dan semai. Dari hasil pengamatan di lapangan, ditemukan 3 jenis pohon mangrove yaitu Rhizophora mucronata, Ceriops tagal dan Xylocarpus granatum. Vegetasi yang mendominasi adalah Rhizophora mucronata dan Ceriops tagal.

Perbedaan mencolok antara hutan mangrove yang rapat dengan mangrove yang terbuka dapat dilihat dari jumlah dan jenis pohon mangrove yang ditemukan. Komposisi mangrove pada hutan mangrove rapat baik pohon, pancang dan semai lebih tinggi dibandingkan dengan hutan mangrove terbuka karena keadaan habitat yang masih mendukung pertumbuhan pohon mangrove (Tabel 6).

Tabel 6. Komposisi Vegetasi pada Hutan Mangrove yang Rapat dan Terbuka

<table>
<thead>
<tr>
<th>No.</th>
<th>Pengamatan Vegetasi</th>
<th>Mangrove Rapat</th>
<th>Mangrove Terbuka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tingkat Pohon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jumlah jenis total (Ni)</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>- Kerapatan total (ind/ha)</td>
<td>627</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>- INP* (Rhizophora mucronata)</td>
<td>257</td>
<td>300</td>
</tr>
<tr>
<td>2.</td>
<td>Tingkat Pancang</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jumlah jenis (Ni)</td>
<td>79</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>- Kerapatan total (ind/ha)</td>
<td>2107</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>- INP* (Ceriops tagal)</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(Rhizophora mucronata)</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Tingkat Semai</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jumlah jenis total (Ni)</td>
<td>144</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>- Kerapatan total (ind/ha)</td>
<td>24000</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>- INP* (Rhizophora mucronata)</td>
<td>1768</td>
<td>200</td>
</tr>
</tbody>
</table>

Keterangan: INP* = INP (jenis dominan)

Pada hutan mangrove yang rapat (Lampiran 4) memiliki komposisi vegetasi tingkat pohon yang didominasi oleh Rhizophora mucronata dengan nilai kerapatan sebesar 566 individu/ha dan tingkat pancang didominasi oleh Ceriops tagal sebesar

Pada hutan mangrove yang terbuka hanya dijumpai 2 jenis pohon yaitu *Rhizophora mucronata* dan *Ceriops tagal* dalam jumlah yang relatif sedikit (Lampiran 5). Hal ini disebabkan karena adanya degradasi lingkungan yang terjadi sehingga banyak pohon yang mati dan jarang sekali pohon yang masih tumbuh. Nilai kerapatan tingkat pohon sebesar 6 individu/ha pada jenis *Rhizophora mucronata* dengan nilai INP tertinggi yaitu 300%. Pada tingkat pancang terdapat nilai yang sama antara jenis *Rhizophora mucronata* dan *Ceriops tagal* yaitu sebesar 26 individu/ha dengan nilai INP yang sama pula sebesar 100%. Pada tingkat semai didominasi pula oleh *Rhizophora mucronata* dengan nilai kerapatan 666 individu/ha dengan INP sebesar 200%.

Pada hutan mangrove yang rapat, ditemukan asosiasi antara *Rhizophora mucronata*, *Ceriops tagal* dan *Xylocarpus granatum*. *Ceriops tagal* dan *Xylocarpus granatum* tumbuh pada daerah dengan kondisi genangan pasang yang tidak terlalu tinggi dan keadaan substrat liat yang lebih kering. Adaptasi yang dilakukan jenis *Ceriops tagal* dan *Xylocarpus granatum* adalah tipe akar papan untuk menopang dasar batang pohon. Namun perkembangan pohon mangrove di lokasi ini dipengaruhi oleh adanya invasi sampah sehingga mempengaruhi pertumbuhan dan perkembangan vegetasi mangrove. Hal ini terlihat pada profil arsitektur pohon mangrove pada hutan mangrove rapat dengan komposisi pohon mangrove yang agak kosong pada beberapa bagian hutan mangrove seperti terlihat pada Lampiran 9, 10 dan 11. Hal ini mengindikasikan bahwa telah terjadi kerusakan lingkungan yang menyebabkan kematian pada pohon mangrove yang dapat mempengaruhi kehidupan makhluk hidup lainnya yang hidup di ekosistem tersebut seperti gastropoda (moluska).

Pada stasiun 1, komposisi pohon tidak terlalu banyak dan pada bagian muka banyak terdapat pohon yang mati atau kering terutama jenis *Ceriops tagal*. Pada stasiun 2, terdapat penyebaran pohon yang cukup merata walaupun masih ada bagian yang agak kosong, sedangkan pada stasiun 3, komposisi pohon cukup padat pada bagian muka hutan dengan penutupan tajuk yang lebih besar karena tidak terlalu banyak sampah yang masuk dibandingkan pada stasiun 1 dan 2. Berbeda pada hutan mangrove yang terbuka, miskin akan tingkat pertumbuhan pohon sehingga tidak terdapat komposisi pohon yang dapat digambarkan melalui profil pohon.

Berdasarkan hasil perhitungan jumlah individu tiap jenis mangrove pada semua stasiun maka dapat dilihat kerapatan mangrove baik untuk tingkat pohon, pancang dan semai pada tiap stasiun (Gambar 4).
Gambar 4. Grafik Kerapatan Mangrove pada Lokasi Pengamatan. (a) Semai (ind/ha), (b) Pancang (ind/ha), (c) Pohon (ind/ha).

Kerapatan semai mangrove (Lampiran 6) tertinggi pada stasiun 1 sebesar 14.500 individu/ha sedangkan kerapatan semai yang terendah pada stasiun 5 dan 6 masing-masing sebesar 166 individu/ha. Hal ini berkaitan dengan kondisi lingkungan, pasang surut dan topografi yang mempengaruhi proses berkembangnya biji mangrove untuk tumbuh. Pada tingkat pancang, nilai kerapatan tertinggi pada stasiun 2 yang didominasi oleh jenis Ceriops tagal sebesar 960 individu/ha dan nilai terendah pada stasiun 4 yaitu 0 individu/ha. Stasiun 2 juga didominasi tingkat pancang, daerah tersebut mempunyai karakteristik yang lebih cocok untuk Ceriops tagal untuk tumbuh dan berkembang. Pada tingkat pohon (Tabel 4c), nilai kerapatan tertinggi pada stasiun 3 sebesar 273 individu/ha sedangkan nilai terendah pada stasiun 4 dan 6 sebesar 0 individu/ha. Berdasarkan nilai kerapatan diatas, stasiun 3 memiliki komposisi dan struktur vegetasi yang stabil dibandingkan dengan stasiun lain karena proporsi tiap tingkatan vegetasi baik pohon, pancang maupun semai lebih seimbang.
sehingga akan mendukung regenerasi pertumbuhan vegetasi selanjutnya apabila keadaan lingkungan dan faktor pembatasnya tidak berubah.

Struktur Komunitas Gastropoda

Komposisi dan Kelimpahan Gastropoda

Miskinnya komposisi jenis gastropoda yang didapatkan dari hasil penelitian disebabkan karena adanya degradasi lingkungan yang terjadi di Pulau Rambut akibat dari sampah-sampah baik cair maupun padat, sehingga mempengaruhi keberadaan dan kelangsungan hidup gastropoda. Selain itu, perbedaan letak lokasi pengamatan yang memungkinkan ada jenis-jenis gastropoda yang tidak terambil.
Tabel 7. Kelimpahan Gastropoda pada Hutan Mangrove yang Rapat dan Terbuka (ind/m²)

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Spesies</th>
<th>Mangrove Rapat</th>
<th>Mangrove Terbuka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I II III Total</td>
<td>VI V VI Total</td>
</tr>
<tr>
<td>1</td>
<td>Terebralia palustris</td>
<td>88 156 220 464</td>
<td>244 128 12 384</td>
</tr>
<tr>
<td>2</td>
<td>Terebralia sulcata</td>
<td>12 8 16 36</td>
<td>140 100 16 256</td>
</tr>
<tr>
<td>3</td>
<td>Terebralia mauriisi</td>
<td>4 12 12 28</td>
<td>100 132 16 248</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>104 176 248 528</td>
<td>484 360 44 888</td>
</tr>
</tbody>
</table>

Pada hutan mangrove yang rapat ditemukan jenis *Terebralia palustris* dalam jumlah kehadiran yang tinggi dan kelimpahan yang tertinggi sebesar 464 ind/m² dibandingkan pada hutan mangrove yang terbuka sebesar 384 ind/m² (Tabel 7). Namun berbeda dengan jenis lainnya yaitu *Terebralia sulcata* dan *Terebralia mauriisi* yang cenderung lebih banyak ditemukan pada hutan mangrove terbuka dengan nilai kelimpahan masing-masing 256 ind/m² dan 248 ind/m² dibandingkan pada hutan mangrove yang rapat berturut-turut sebesar 36 ind/m² dan 28 ind/m².

Kesesuaian keadaan lingkungan menyebabkan adanya perbedaan komposisi gastropoda pada kedua ekosistem tersebut. Seperti pada hasil penelitian Yasman (1999), studi perbandingan struktur komunitas gastropoda di hutan mangrove pada pulau berkarang, memiliki komposisi gastropoda yang lebih besar akibat adanya perbedaan tipe substrat dan vegetasi pada pantai barat Pulau Handeuleum (Taman Nasional Ujung Kulon) dengan kerapatan vegetasi yang tinggi, ditemukan 12 jenis dari 8 famili sedangkan pada pantai utara Pulau Penjalaran Barat (Teluk Jakarta) ditemukan 20 jenis dari 13 famili dengan kerapatan vegetasi yang rendah.

Pasang surut menunjukkan pengaruh penggenangan air yang ada di dalam ekosistem, yang dapat berakibat langsung terhadap keberadaan gastropoda. Hal ini terlihat pada perbedaan jumlah gastropoda yang ditemukan baik pada saat pasang maupun surut yang cukup jelas antara hutan mangrove yang rapat dan terbuka seperti ditunjukkan pada Gambar 5 & 6.
Gambar 5. Grafik Jumlah Gastropoda Akibat Pengaruh Pasang (a) Mangrove Rapat, (b) Mangrove Terbuka

Pada hutan mangrove yang terbuka, ditemukan gastropoda dalam jumlah individu yang lebih banyak dibandingkan hutan mangrove yang rapat pada saat pasang dengan perbedaan jumlah yang relatif besar. Sedangkan pada saat surut, jumlah gastropoda yang ditemukan juga lebih banyak pada hutan mangrove yang terbuka dibanding dengan hutan mangrove yang rapat. Secara keseluruhan, jumlah individu gastropoda yang ditemukan lebih tinggi pada saat pasang dibandingkan pada saat surut pada kedua tipe hutan tersebut.

Gambar 6. Grafik Jumlah Gastropoda Akibat Pengaruh Surut (a) Mangrove Rapat, (b) Mangrove Terbuka
Waktu penggenangan air pasang yang lebih lama pada hutan mangrove yang terbuka dibandingkan hutan mangrove yang rapat juga mempengaruhi keberadaan gastropoda. Hal ini berkaitan dengan adaptasi gastropoda untuk menjaga kelembaban tubuhnya, mencari makan dan berkembangbiak bagi kelangsungan hidupnya. Seluruh hewan intertidal hanya aktif jika pasang naik dan tubuhnya terendam air, termasuk pemakan detritus (Nybakken 1993). Selain itu, kebiasaan hidup jenis famili Potamididae yang ditemukan di lokasi penelitian yaitu menyukai daerah berlumpur, berair dan terbuka. Adanya perbedaan dalam komposisi gastropoda pada suatu ekosistem didukung pula oleh pendapat Budiman (1991), yang menyatakan bahwa kekayaan jenis moluska di hutan mangrove diduga sangat bergantung kepada kemampuan jenis untuk beradaptasi terhadap kondisi lokal dan jumlah tipe habitat di dalam ekosistem yang dapat mengakomodasi jenis tersebut untuk hidup, baik lebar hutan dan perbedaan pengaruh laut terutama pasang surut.

Hutan mangrove yang rapat, mempunyai susunan tingkat pertumbuhan pohon mangrove lebih padat sehingga mempengaruhi banyaknya ketersediaan makanan untuk gastropoda namun akibat keadaan lingkungan yang tidak terlalu mendukung kehidupan gastropoda. Adanya sampah-sampah cair maupun padat yang masuk apabila pasang, kemudian tertahan didalam hutan dapat mengganggu ketersediaan ruang bagi gastropoda dan kandungan substrat sebagai tempat hidup bagi gastropoda. Selain itu, waktu pasang yang terjadi lebih singkat karena keadaan topografi yang lebih tinggi dibandingkan pada hutan mangrove yang terbuka. Hal ini mempengaruhi banyaknya gastropoda yang ditemukan pada hutan mangrove yang rapat relatif lebih sedikit dibandingkan pada hutan mangrove yang terbuka.

Pada hutan mangrove yang terbuka, keadaan lingkungannya cukup mendukung dengan tidak adanya sampah yang masuk sehingga tidak mempengaruhi kandungan substrat yang ada. Ketersediaan ruang yang cukup banyak juga mendukung pergerakan gastropoda karena kecenderungan pola hidup yang berkelompok. Walaupun serasah yang ada tidak banyak, namun dengan adanya aliran air saat pasang yang membawa daun/serasah mangrove, gastropoda masih mendapatkan suplai makanan. Adanya batang pohon mangrove yang mati atau

Keanekaragaman (H’), Keseragaman (E) dan Dominansi (C) Jenis Gastropoda

Berdasarkan hasil perhitungan keanekaragaman Shannon, diperoleh hasil bahwa setiap stasiun mempunyai nilai keanekaragaman yang tidak jauh berbeda seperti yang tercantum pada Tabel 8.

Tabel 8. Nilai Indeks Keanekaragaman (H’), Keseragaman (E) dan Dominansi (C) Gastropoda

<table>
<thead>
<tr>
<th>Indeks</th>
<th>Mangrove Rapat</th>
<th></th>
<th></th>
<th>Mangrove Terbuka</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>St. I</td>
<td>St. II</td>
<td>St. III</td>
<td>St. IV</td>
<td>St. V</td>
<td>St. VI</td>
</tr>
<tr>
<td>Keanekaragaman (H’)</td>
<td>0.744</td>
<td>0.621</td>
<td>0.62</td>
<td>1.486</td>
<td>1.574</td>
<td>1.573</td>
</tr>
<tr>
<td>Keseragaman (E)</td>
<td>0.107</td>
<td>0.089</td>
<td>0.089</td>
<td>0.213</td>
<td>0.226</td>
<td>0.226</td>
</tr>
<tr>
<td>Dominansi (C)</td>
<td>0.731</td>
<td>0.792</td>
<td>0.793</td>
<td>0.381</td>
<td>0.338</td>
<td>0.339</td>
</tr>
</tbody>
</table>
Nilai indeks keanekaragaman, keseragaman dan dominansi pada hasil pengamatan terdapat perbedaan yang cukup jelas antara kisaran nilai yang ada pada beberapa stasiun pengamatan. Sedangkan pada tiap stasiun pada masing-masing tipe hutan mangrove menunjukkan nilai yang hampir sama. Nilai indeks keanekaragaman yang diperoleh berkisar antara 0,62 – 1,574. Pada hutan mangrove yang rapat nilai keanekaragamananya lebih rendah dengan kisaran sebesar 0,62 – 0,744 dibandingkan pada hutan mangrove yang terbuka dengan kisaran sebesar 1,486 – 1,574. Hal ini disebabkan karena adanya jenis yang sangat dominan yaitu Terebralia palustris. Perbandingan perbedaan nilai indeks keanekaragaman, keseragaman dan dominansi jenis gastropoda akan lebih jelas terlihat pada Gambar 7.

Gambar 7. Grafik Nilai Indeks Keanekaragaman, Keseragaman dan Dominansi jenis Gastropoda

Tingginya keanekaragaman pada hutan mangrove yang terbuka berkaitan dengan adanya substrat liat yang menyediakan bahan organik lebih banyak serta kondisi lingkungan yang dapat diadaptasi dengan baik. Sebaliknya, pada hutan mangrove yang rapat, adanya komposisi pohon mangrove menunjang ketersediaan bahan makanan, namun kondisi lingkungannya terkontaminasi oleh sampah-sampah yang mengurangi kehadiran jenis-jenis gastropoda. Penggenangan air merupakan salah satu faktor lain yang mempengaruhi tingkat keanekaragaman gastropoda. Didukung pula oleh hasil penelitian Yona (2002) di Prapat Benoa, Bali, menyatakan bahwa pada saat air naik mempunyai tingkat keanekaragaman gastropoda yang lebih tinggi dengan kisaran antara 1,09 – 1,92 dibandingkan pada saat air surut yaitu antara 0,56 – 1,36. Pada saat air naik, ada percampuran antara air tawar dan air laut sehingga

Nilai indeks keseragaman yang diperoleh berkisar antara 0,089 – 0,226. Nilai keseragaman pada hutan mangrove yang terbuka lebih tinggi dengan kisaran 0,213 – 0,226 dibandingkan dengan hutan mangrove yang rapat yang berkisar antara 0,089 – 0,107. Berarti jumlah individu pada hutan mangrove yang rapat dan terbuka mempunyai komposisi yang relatif sama walaupun apabila dihubungkan dengan kondisi komunitas dan lingkungan secara umum, kedua tipe hutan tersebut berada dalam komunitas yang tertekan yang berarti ada kecenderungan terjadi dominansi spesies yang disebabkan oleh adanya ketidakstabilan faktor-faktor lingkungan dan populasi. Hal ini dapat dilihat dari tingginya jumlah individu Terebralia palustris hampir pada semua stasiun dibandingkan jenis gastropoda lainnya.

Nilai indeks dominansi gastropoda berkisar antara 0,338 – 0,793. Berdasarkan hasil tersebut, terlihat adanya perbedaan kisaran nilai yang jelas antara hutan mangrove yang rapat dan terbuka. Kisaran nilai dominansi pada hutan mangrove yang terbuka berkisar antara 0,338 – 0,381 sedangkan kisaran nilai dominansi hutan mangrove yang rapat lebih tinggi yaitu antara 0,731 – 0,793. Perbedaan tersebut mencerminkan adanya perbedaan struktur komunitas pada kedua tipe hutan tersebut. Pada hutan mangrove yang rapat, terdapat jenis gastropoda yang mendominasi jenis lainnya berarti bahwa struktur komunitas dalam keadaan labil sehingga tidak banyak jenis gastropoda yang bertahan dalam keadaan lingkungan tersebut kecuali Terebralia palustris.

Sedangkan pada hutan mangrove yang terbuka, hampir tidak ada individu yang mendominasi yang menunjukkan bahwa struktur komunitas dalam keadaan stabil, kondisi lingkungan cukup mendukung kelangsungan hidup gastropoda. Menurut Sumitro (1985), makin stabil suatu ekosistem akan semakin banyak didapatkan keanekaragaman jenis fauna, baik fauna yang umum maupun yang jarang dijumpai sebagai akibat penyesuaian kepada tingkat optimum keadaan lingkungannya.
Pola penyebaran jenis

Menurut Syaffitri (2002), pola penyebaran jenis biota dipengaruhi oleh beberapa faktor yaitu substrat yang merupakan habitat suatu spesies, ketersediaan makanan dalam bentuk detritus dan partikel tersuspensi, pengaruh faktor ekologis seperti faktor fisika, kimia lingkungan dan strategi adaptasi dan interaksi biologis antar populasi yang terdapat dalam komunitas perairan tersebut.

Pola penyebaran jenis gastropoda yang ditemukan di lokasi penelitian bersifat acak dan mengelompok. Kehadiran ketiga jenis moluska suku Potamididae (Terebralia palustris, Terebralia sulcata dan Terebralia mauritsi), hampir semua memiliki nilai indeks penyebaran lebih dari 1, berarti memiliki pola penyebaran individu yang bersifat mengelompok. Pola penyebaran jenis Terebralia sulcata berbeda pada hutan mangrove yang rapat dengan hutan mangrove yang terbuka. Pada hutan mangrove yang terbuka jenis Terebralia sulcata, pola sebaran bersifat mengelompok sedangkan pada ekosistem utuh (Tabel 9) jenis Terebralia sulcata memiliki pola sebaran yang bersifat acak.

Tabel 9. Pola Penyebaran Jenis Gastropoda pada Hutan Mangrove yang Rapat

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Spesies</th>
<th>Id</th>
<th>X^2 Hitung</th>
<th>X^2 Tabel</th>
<th>Pola Penyebaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terebralia palustris</td>
<td>1.14</td>
<td>29.86</td>
<td>23.685</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>2</td>
<td>Terebralia sulcata</td>
<td>0</td>
<td>6</td>
<td>23.685</td>
<td>Acak</td>
</tr>
<tr>
<td>3</td>
<td>Terebralia mauritsi</td>
<td>2.86</td>
<td>25.14</td>
<td>23.685</td>
<td>Mengelompok</td>
</tr>
</tbody>
</table>

Penyebaran jenis-jenis gastropoda pada hutan mangrove yang rapat bersifat mengelompok kecuali untuk jenis Terebralia sulcata. Terebralia palustris dan Terebralia mauritsi dapat dijumpai dalam jumlah yang banyak dan biasanya mengelompok mendekati pohon mangrove. Sedangkan Terebralia sulcata mempunyai pola penyebaran acak yang berarti spesies ini tersebar merata dan mampu hidup di hampir semua stasiun pengamatan.
Tabel 10. Pola Penyebaran Jenis Gastropoda pada Hutan Mangrove yang Terbuka

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Spesies</th>
<th>Id</th>
<th>(X^2) Hitung</th>
<th>(X^2) Tabel</th>
<th>Pola Penyebaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terebralia palustris</td>
<td>1.88</td>
<td>98.06</td>
<td>23.685</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>2</td>
<td>Terebralia sulcata</td>
<td>1.57</td>
<td>49.91</td>
<td>23.685</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>3</td>
<td>Terebralia mauritsi</td>
<td>1.33</td>
<td>34.29</td>
<td>23.685</td>
<td>Mengelompok</td>
</tr>
</tbody>
</table>

Pada hutan mangrove yang terbuka (Tabel 10), semua jenis gastropoda mempunyai pola penyebaran mengelompok. Keadaan habitat yang terbuka dan jarangnya pohon mangrove yang ada, lebih memudahkan terjadinya interaksi seperti mencari makan dan aktivitas bereproduksi. Pola hidup berkelompok ini terjadi karena adanya tekanan terhadap lingkungan sehingga organisme-organisme tertentu hidup bergerombol pada daerah tertentu yang dianggap cocok (Syaffitri 2003).

Penyebaran moluska juga dilihat secara horizontal dan vertikal. Penyebaran horizontal mencakup penyebaran moluska secara mendatar dari arah laut ke darat maupun sebaliknya. Sedangkan penyebaran moluska secara vertikal atau menegak dilihat dari lantai hutan sampai pucuk pohon. Jenis-jenis *Terebralia palustris*, *Terebralia sulcata* dan *Terebralia mauritsi* umumnya menyebar secara mendatar dan dapat dijumpai di hampir semua stasiun mulai dari arah laut sampai ke darat namun tidak pernah ditemukan di bagian terluar yang berbatasan langsung dengan laut terbuka. Pemintakatan moluska secara mendatar dari arah laut ke darat (Gambar 5 & 6) tidak terlalu jelas karena jenis-jenis tersebut dapat hidup bersama. Ini dapat dilihat dari perbandingan antara komposisi jenis gastropoda dengan jarak ditemukannya gastropoda dari bagian muka hingga ke arah belakang bagian hutan.

Penyebaran moluska secara menegak didominasi oleh jenis *Terebralia sulcata* dan hanya ditemui pada ekosistem yang rusak karena mereka umumnya menempel pada akar dan batang pohon yang sudah mati atau tumbang pada saat pasang sampai ketinggian 30 cm dari lantai hutan. *Terebralia sulcata* banyak ditemukan pada batang yang busuk pada areal yang basah seperti pada ekosistem yang rusak karena genangan pasang berlangsung lebih lama dan lebih tinggi dibandingkan pada

Hubungan Kelimpahan Antara Jenis Gastropoda dengan Kerapatan Vegetasi Mangrove

Berdasarkan hasil pengamatan, hubungan antara kelimpahan antara jenis gastropoda dan kerapatan vegetasi mangrove menunjukkan hasil yang berbeda-beda, lihat pada Tabel 11. Hal ini disebabkan karena perbedaan tipe habitat pada hutan mangrove yang rapat dan terbuka yang mempengaruhi keberadaan gastropoda.

Hubungan antara kerapatan vegetasi mangrove baik tingkat semai, pancang maupun pohon tidak berpengaruh nyata terhadap kelimpahan gastropoda jenis Terebralia palustris pada kedua tipe hutan mangrove. Sedangkan gastropoda jenis Terebralia sulcata hanya berpengaruh nyata terhadap kerapatan vegetasi mangrove pada tingkat pancang. Sedangkan untuk gastropoda jenis Terebralia mauriti berpengaruh nyata terhadap kerapatan vegetasi mangrove pada tingkat pancang dan pohon. Hal ini dapat dilihat dari uji F yang dilakukan pada model matematik hubungan (Tabel 11) dengan ketentuan apabila F hitung > F tabel maka hubungan tersebut mempunyai pengaruh yang nyata, dan sebaliknya.
Tabel 11. Hubungan Kelimpahan Antara Jenis Gastropoda dengan Kerapatan Vegetasi Mangrove

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Fungsi</th>
<th>F hit.</th>
<th>F tab.</th>
<th>Hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terebralia palustris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Semai</td>
<td>(Y = 26.5160 + 5.40026 \times -0.674351 \times^2) R-Sq = 3.3%</td>
<td>0.456</td>
<td>3.34</td>
<td>Tidak berpengaruh nyata</td>
</tr>
<tr>
<td>2.</td>
<td>Pancang</td>
<td>(y = 26.1 + 19.6 \times) R-Sq = 1.3%</td>
<td>0.37</td>
<td>4.18</td>
<td>Tidak berpengaruh nyata</td>
</tr>
<tr>
<td>3.</td>
<td>Pohon</td>
<td>(Y = 25.0675 + 428.743 \times -6224.77 \times^2 + 20344.8 \times^3) R-Sq = 5.6%</td>
<td>0.513</td>
<td>2.89</td>
<td>Tidak berpengaruh nyata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terebralia sulcata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Semai</td>
<td>(Y = 13.0341 - 5.59058 \times + 0.492177 \times^2) R-Sq = 11.0%</td>
<td>1.671</td>
<td>3.34</td>
<td>Tidak berpengaruh nyata</td>
</tr>
<tr>
<td>2.</td>
<td>Pancang</td>
<td>(y = 13.8 - 37.2 \times) R-Sq = 16.4%</td>
<td>5.49</td>
<td>4.18</td>
<td>Berpengaruh nyata</td>
</tr>
<tr>
<td>3.</td>
<td>Pohon</td>
<td>(y = 13.0 - 84.9 \times) R-Sq = 12.9%</td>
<td>4.15</td>
<td>4.18</td>
<td>Tidak berpengaruh nyata</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terebralia mauritsh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Semai</td>
<td>(y = 11.1 - 1.58 \times) R-Sq = 10.6%</td>
<td>3.31</td>
<td>4.18</td>
<td>Tidak berpengaruh nyata</td>
</tr>
<tr>
<td>2.</td>
<td>Pancang</td>
<td>(y = 13.3 - 38.0 \times) R-Sq = 21.4%</td>
<td>7.61</td>
<td>4.18</td>
<td>Berpengaruh nyata</td>
</tr>
<tr>
<td>3.</td>
<td>Pohon</td>
<td>(y = 12.3 - 82.1 \times) R-Sq = 15.1%</td>
<td>4.96</td>
<td>4.18</td>
<td>Berpengaruh nyata</td>
</tr>
</tbody>
</table>

Apabila dilihat dari nilai koefisien determinasi \((R^2)\) terlihat bahwa hubungan korelasi antara kelimpahan gastropoda dan vegetasi mangrove tergolong rendah. Adanya hubungan yang tidak berpengaruh nyata antara kerapatan vegetasi mangrove dan kelimpahan antara jenis gastropoda dapat disebabkan oleh perbedaan tipe habitat yang ada, sehingga lebih dipengaruhi oleh faktor-faktor antara lain keadaan lingkungan sekitar hutan mangrove terutama pasang surut, waktu penggenangan air, dan kondisi substrat yang sesuai dengan tempat hidup jenis-jenis gastropoda tersebut. Selain itu dipengaruhi pula oleh adanya ketersediaan makanan, ruang dan daya adaptasi dari gastropoda terhadap lingkungan pada kedua tipe hutan tersebut akibat adanya penutupan sampah. Berbeda halnya dengan hasil penelitian Harto (2002) di
KESIMPULAN DAN SARAN

Kesimpulan

2. Kepadatan dan keanekaragaman gastropoda pada hutan mangrove yang terbuka (jarang vegetasi) lebih tinggi dibandingkan pada hutan mangrove yang rapat (ada naungan vegetasi). Hal ini disebabkan karena kondisi lingkungan khususnya substrat berlumpur, terbuka, ketersediaan ruang dan makanan serta waktu pasang (penggenangan air) yang relatif lebih lama sehingga mendukung populasi dan kelangsungan hidup gastropoda.
4. Kelimpahan dan keanekaragaman gastropoda lebih banyak dipengaruhi oleh kondisi penggenangan lahan serta penutupan sampah dibandingkan dengan kondisi kerapatan tegakan mangrovenya.

Saran

1. Perlu dilakukan penelitian lebih lanjut pada bagian lain dari hutan mangrove Pulau Rambut sehingga dapat diketahui lebih banyak jenis-jenis gastropoda dan mangrove yang ada. Selain itu, penambahan parameter-parameter lain seperti kandungan serasah mangrove, kandungan oksigen yang berpengaruh dalam mendukung keberadaan gastropoda.
2. Penanggulangan terjadinya degradasi lingkungan yang semakin besar di Suaka Margasatwa Pulau Rambut dengan adanya usaha-usaha pelestarian seperti
penanaman vegetasi mangrove pada ekosistem yang rusak bahkan yang terancam rusak, penanganan sampah, penyediaan fasilitas dan prasarana untuk para jagawana, dan membatasi pengunjung yang datang untuk mencegah terjadinya kerusakan lingkungan lebih lanjut sehingga tidak mengganggu kelangsungan hidup flora dan fauna yang ada termasuk gastropoda (moluska).
DAFTAR PUSTAKA

LAMPIRAN
Lampiran 1. Peta Lokasi Penelitian Pulau Rambut
Lampiran 2. Data pasang surut Pulau Rambut
Lampiran 3. Data Pasang Surut di Perairan Tanjung Priok

(Bulan September – Oktober)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEPTEMBER 1996</td>
<td></td>
</tr>
<tr>
<td>06*</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5*</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8*</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>11*</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8*</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>16*</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8*</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>21*</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8*</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>26*</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8*</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8*</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

OKTOBER 1996

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
06*	6	6	6	6	5	5	5*	5	5	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8*	8	8	7
11*	6	6	6	6	5	5	5	5	5	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8*	8	8	7
16*	6	6	5	5	5	5	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	7	7	7	8	8	8*	8	8	7
21*	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	8	8	8*	8	8	7
26*	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	8	8	8*	8	8	7
31	6	6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	8	8	8*	8	8	7

Sumber: Daftar Pasang Surut, TNI-AL Dinas Hidro Oceanografi
Lampiran 4. Hasil Analisa Vegetasi Mangrove Rapat di Lokasi Pengamatan

<table>
<thead>
<tr>
<th>Tingkat Vegetasi</th>
<th>Ni</th>
<th>K (ind/ha)</th>
<th>KR (%)</th>
<th>F</th>
<th>FR (%)</th>
<th>D</th>
<th>DR (%)</th>
<th>INP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tingkat Pohon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizophora mucronata</td>
<td>85</td>
<td>566.667</td>
<td>90.4255</td>
<td>1</td>
<td>75</td>
<td>7.81529</td>
<td>91.6215</td>
<td>257.047</td>
</tr>
<tr>
<td>Ceriops tagal</td>
<td>7</td>
<td>46.6667</td>
<td>7.44581</td>
<td>0.26667</td>
<td>20</td>
<td>0.48543</td>
<td>5.69092</td>
<td>33.1377</td>
</tr>
<tr>
<td>Xylocarpus granatum</td>
<td>2</td>
<td>13.3333</td>
<td>2.12766</td>
<td>0.06667</td>
<td>5</td>
<td>0.22925</td>
<td>2.6876</td>
<td>9.81526</td>
</tr>
<tr>
<td>Jumlah</td>
<td>94</td>
<td>626.667</td>
<td>100</td>
<td>1.33333</td>
<td>100</td>
<td>8.52997</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Tingkat Pancang								
Rhizophora mucronata	24	640	30.3797	0.8	50	-	-	80.3797
Ceriops tagal	55	1466.67	69.6203	0.8	50	-	-	119.62
Jumlah	79	2106.67	100	1.6	100	-	-	200

Tingkat Semai								
Rhizophora mucronata	139	23166.7	96.5278	0.8	80	-	-	176.528
Ceriops tagal	5	833.333	3.47222	0.2	20	-	-	23.4722
Jumlah	144	24000	100	1	100	-	-	200

Lampiran 5. Hasil Analisa Vegetasi Mangrove Terbuka di Lokasi Pengamatan

<table>
<thead>
<tr>
<th>Tingkat Vegetasi</th>
<th>Ni</th>
<th>K (ind/ha)</th>
<th>KR (%)</th>
<th>F</th>
<th>FR (%)</th>
<th>D</th>
<th>DR (%)</th>
<th>INP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tingkat Pohon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizophora mucronata</td>
<td>1</td>
<td>6.66667</td>
<td>100</td>
<td>0.06667</td>
<td>100</td>
<td>0.06138</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1</td>
<td>6.66667</td>
<td>100</td>
<td>0.06667</td>
<td>100</td>
<td>0.06138</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Tingkat Pancang								
Rhizophora mucronata	1	26.667	50	0.06667	50	-	-	100
Ceriops tagal	1	26.667	50	0.06667	50	-	-	100
Jumlah	2	53.3333	100	0.13333	100	-	-	200

Tingkat Semai								
Rhizophora mucronata	4	666.667	100	0.2	100	-	-	200
Jumlah	4	666.667	100	0.2	100	-	-	200

Lampiran 6. Kerapatan Vegetasi Mangrove Tiap Stasiun pada Lokasi Pengamatan

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kerapatan (ind/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semai</td>
</tr>
<tr>
<td>1</td>
<td>14500</td>
</tr>
<tr>
<td>2</td>
<td>1666</td>
</tr>
<tr>
<td>3</td>
<td>7833</td>
</tr>
<tr>
<td>4</td>
<td>333</td>
</tr>
<tr>
<td>5</td>
<td>166</td>
</tr>
<tr>
<td>6</td>
<td>166</td>
</tr>
</tbody>
</table>
Lampiran 7. Komposisi Jenis Gastropoda yang Ditemukan Pada Mangrove Rapat di Lokasi Pengamatan Pulau Rambut

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Spesies</th>
<th>I</th>
<th>II</th>
<th>Total</th>
<th>III</th>
<th>Total</th>
<th>Jumlah Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Terebralia palustris</td>
<td>20 36 0 20 12</td>
<td>88 24 36 36 52</td>
<td>156</td>
<td>4 28 40 60 88</td>
<td>220</td>
<td>464</td>
</tr>
<tr>
<td>2</td>
<td>Terebralia sulcata</td>
<td>4 0 0 4 4</td>
<td>12</td>
<td>0 0 0 4 4</td>
<td>8</td>
<td>4 4 4 0 4</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Terebralia mauritisi</td>
<td>0 0 4 0 0</td>
<td>4</td>
<td>0 4 0 0 8</td>
<td>12</td>
<td>12 0 0 0 0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Jumlah individu</td>
<td>24 36 4 24 16</td>
<td>104</td>
<td>24 40 36 56 20</td>
<td>176</td>
<td>20 32 44 60 92</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Keanekaragaman (H')</td>
<td>0.74418</td>
<td>0.62111</td>
<td></td>
<td></td>
<td></td>
<td>0.61984</td>
</tr>
<tr>
<td></td>
<td>Keseragaman (E)</td>
<td>0.10688</td>
<td>0.08921</td>
<td></td>
<td></td>
<td></td>
<td>0.08902</td>
</tr>
<tr>
<td></td>
<td>Dominansi (D)</td>
<td>0.73076</td>
<td>0.79235</td>
<td></td>
<td></td>
<td></td>
<td>0.79344</td>
</tr>
</tbody>
</table>

Lampiran 8. Komposisi Jenis Gastropoda yang Ditemukan Pada Mangrove Terbuka di Lokasi Pengamatan Pulau Rambut

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Spesies</th>
<th>VI</th>
<th>Total</th>
<th>V</th>
<th>Total</th>
<th>VI</th>
<th>Total</th>
<th>Jumlah Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Terebralia palustris</td>
<td>76 52 80 20 16</td>
<td>244</td>
<td>52 12 16 24 24</td>
<td>128</td>
<td>8 0 0 4 0</td>
<td>12</td>
<td>384</td>
</tr>
<tr>
<td>2</td>
<td>Terebralia sulcata</td>
<td>16 40 52 16 16</td>
<td>140</td>
<td>40 12 20 12 16</td>
<td>100</td>
<td>12 0 0 4 0</td>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>3</td>
<td>Terebralia mauritisi</td>
<td>8 16 32 28 16</td>
<td>100</td>
<td>24 44 24 16 24</td>
<td>132</td>
<td>0 4 4 4 4</td>
<td>16</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Jumlah individu</td>
<td>100 108 164 64 48</td>
<td>484</td>
<td>116 68 60 52 64</td>
<td>360</td>
<td>80 4 4 12 4</td>
<td>44</td>
<td>888</td>
</tr>
<tr>
<td></td>
<td>Keanekaragaman (H')</td>
<td>1.48582</td>
<td>1.57449</td>
<td></td>
<td></td>
<td></td>
<td>1.57261</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keseragaman (E)</td>
<td>0.21340</td>
<td>0.22614</td>
<td></td>
<td></td>
<td></td>
<td>0.22587</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dominansi (D)</td>
<td>0.38050</td>
<td>0.33802</td>
<td></td>
<td></td>
<td></td>
<td>0.33884</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 9. Profil Arsitektur Pohon Mangrove Rapat di Stasiun 1

Y (Tinggi Pohon)

Skala 1 : 250

X Jarak (Cm)

Y (Posisi Pohon)

X Jarak (Cm)

Keterangan Jenis Vegetasi:
(a) Rhizophora mucronata
(b) Ceriops tagal
Lampiran 10. Profil Arsitektur Pohon Mangrove Rapat di Stasiun 2

Y (Tinggi Pohon)

Skala 1:250

X
Jarak (Cm)

Y (Posisi Pohon)

X
Jarak (Cm)

Keterangan Jenis Vegetasi:
(a). Rhizophora mucronata
(b). Ceriops tagai
Lampiran 11. Profil Arsitektur Pohon Mangrove Rapat di Stasiun 3

Y (Tinggi Pohon)

X
Jarak (Cm)

Y (Posisi Pohon)

X
Jarak (Cm)

Keterangan Jenis Vegetasi:
(a) Rhizophora mucronata
(b) Ceriops tagal
(c) Xylocarpus granatum
Lampiran 12. Beberapa Jenis Gastropoda Yang Ditemukan di Lokasi Pengamatan

Terebralia sulcata
Terebralia palustris

Littorina scabra

Telescopium telescopium
Terebralia mauritsi

Lampiran 13. Foto Keadaan Hutan Mangrove di Pulau Rambut

(Hutan Mangrove Rapat)

(Hutan Mangrove Terbuka)

(Limbah Sampah dan Pencemaran Lingkungan)