Coastal Landuse Change Detection Using Remote Sensing Technique:
(Case Study in Banten Bay, West Java Island, Indonesia)

By

Puvadol Doydee
P36500005/MIT

Graduate Program
Bogor Agricultural University
2002
ABSTRACT

Various forms of coastal landuse covering the study area has been observed to have undergone changes as evidently detected between the satellite images sensed in 1994 and 2001 at Banten Bay. It is important to identify what these changes are. Therefore, an appropriate change detection must be selected. In this study, three main objectives were set: 1) To determine the image preprocessing and image processing techniques that is needed for digital coastal landuse change detection, 2) To perform digital coastal landuse supervised classification, and 3) To study the coastal landuse change of Banten bay in two dates.

The image preprocessing step involved removing errors from the raster data. This was done performing basic processes, such as, radiometric correction, geometric correction and image calibration. The image processing step comprised of supervised classification and change detection techniques. Supervised classification was employed in this study to transform multispectral image data into user defined thematic information classes and to serve as a reference for the quantitative results of the change detection techniques. On the other hand, change detection techniques tested on this study to show the best results included Red Green Method, Image Differencing Method, Image Ratioing Method and Principal Component Analysis Method (PCA).

Red Green Method gave the best result for detecting the coastal landuse change because the number of changed area closely resembled the total number of changed area reference. Through careful comparison it was observed that Red Green Method is suitable for detecting areas changes in the paddyfields increase and settlement increase; Image Differencing Method is better to detect areas changes in agriculture increase, fishponds decrease and natural area decrease; Image Ratioing Method gave the best result for monitoring areas change in fishponds increase, paddyfields decrease and agriculture decrease because the number of each changed area (per hectare) nearly coincides more with the size of changed area (per hectare) of each increase and decrease reference.

Every coastal landuse category increased in utility area except for the natural area. The observed reduction in the area size of the natural area is due to the growth rate of the population and increased activities along this area. Based from field checking, some parts of agriculture and paddyfields became fishponds in LONTAR zone.

Key words: Coastal Landuse, Remote Sensing, Landsat, Supervised Classification and Change Detection.
DECLARATION LETTER

I, Mr. Puvadol Doydee, hereby declare that the thesis title:

Coastal Landuse Change Detection Using Remote Sensing Technique:
(Case Study in Banten Bay, West Java Island, Indonesia)

contains correct results from my own work, and that it have not been published ever before. All data sources and information used factual and clear methods in this project, and has been examined for its factualness.

Bogor, August 2002

Puvadol Doydee
P36500005/MIT
THESIS

Coastal Landuse Change Detection Using Remote Sensing Technique: (Case Study in Banten Bay, West Java Island, Indonesia)

By

Puvadol Doydee
P36500005/MIT

A Thesis Submitted to Graduate School of Bogor Agricultural University, Indonesia
In fulfill of the requirements for the degree of Master of Science in Information Technology for Natural Resources Management

Graduate Program
Bogor Agricultural University
2002
Thesis Title: Coastal Landuse Change Detection Using Remote Sensing Technique: (Case Study in Banten Bay, West Java Island, Indonesia)

Student Name: Puvadol Doydee

Student ID: P36500005

Study Program: Master of Science in Information Technology for Natural Resources Management

Thesis approved by the advisory board:

Dr. Ir. Vincentius P. Siregar
Supervisor

Dr. -Ing. Fahmi Amhar
Co-supervisor

Chairman of Study Program

Date: August, 2002
Mr. Puvadol Doydee was born on December 20, 1975 at Phetchaburi Province, Thailand. He grew up in a modest family together with 2 younger sisters. High school days not only involved enjoying the company of friends at Phrommanusorn Phetchaburi Province high school, but also making careful decisions after graduation. It was a time of making big decisions for a very expansive future that lay ahead. Decisions and circumstances lead him in becoming a fisheries biologist. This choice was made because of his interest in knowing more about fisheries science, its nature and the field study involved. Up till now, he never regretted making this decision.

Mr. Puvadol was deeply enthusiastic with Fisheries, learning as much as he could in this field. This lead him in earning a Bachelor’s Degree from the Department of Fishery Management, Faculty of Fisheries, at Kasetsart University, Bangkok, Thailand in 1998. As soon as he graduated he started working as a fisheries biologist at the Department of Fishery Management, Faculty of Fisheries, at Kasetsart University. Currently, he is still working with this institution as a faculty and fisheries biologist.

Among Mr. Puvadol’s other interests are coastal zone management, coastal area planning and also small-scale fisheries management. In 2000, he was selected by SEAMEO-SEARCA (SEAMEO Regional Center for Graduate Study and Research in Agriculture) for its scholarship for the Master of Science in Information Technology for Natural Resources Management program. This program is hosted by the Bogor Agricultural University (IPB) and is based at the SEAMEO-BIOTROP campus. His decision to enroll and attend this graduate program significantly changed his life. GIS (Geographic Information System) and Remote Sensing became his life since then. He is really keen on recent developments in GIS and remote sensing in order to apply these technologies in coastal zone management.
ACKNOWLEDGMENTS

Firstly, I would like to express my sincere thanks and faithful appreciation to the SEAMEO Regional Center for Graduate Study and Research in Agriculture (SEAMEO-SEARCA), Philippines for awarding me the scholarship for this Master of Science program. I would like to express my heartfelt thanks to the chairman of the study program Dr. Ir. Handoko for accepting me in this study program. I would also like to thank my supervisor Dr. Ir. Vincentius P. Siregar and my co-supervisor Dr.-Ing. Fahmi Amhar for their guidance, technical comments and encouragement throughout the period of my study.

I am very grateful to Associate Professor Dr. Kungwan Juntarashote, Chairman of the Department of Fishery Management, Faculty of Fisheries, Kasetsart University for his kind encouragement. My profound appreciation goes to Ms. Puangpis Kositsamith who always showed concern for me. My sincere gratitude and appreciation goes to Mr. Nyoman Sukmantalya for providing all the data that I needed for this study and Mr. Suryano for helping me once, working together at Banten Bay. You made my study run well. I would like to extend my thanks to all my instructors who delivered the Information Technology knowledge and shared many experiences to me. Furthermore, appreciation is extended to my classmates. Special thanks to the MIT program for their kindness of taking care and helping me throughout the program. I am very thankful.

Finally, I would like to express my unending love and deep thanks to my mother, Mrs. Juan Doydee, my father, Mr. Sudjai Doydee and both of my younger sisters Miss Jansuda Doydee and Miss Preeyaporn Doydee. I am very grateful for their love, understanding and encouragement, which enabled me to finish this program. I dedicated this thesis to my beloved country THAILAND.
LIST OF CONTENTS

ABSTRACT..i
DECLARATION LETTER..ii
APPROVAL SHEET...iv
AUTOBIOGRAPHY..v
ACKNOWLEDGMENTS..vi
LIST OF CONTENTS..vii
LIST OF FIGURES...ix
LIST OF TABLES...x

INTRODUCTION..1
1.1 Background..1
1.2 Objectives...5

LITERATURE REVIEW..6
2.1 Coastal Zone...6
2.2 Shoreline (Coastline)..7
2.3 Remote Sensing Technique for Coastal Management...............................8
2.4 Landuse and Coastal Landuse...9
 2.4.1 Coastal Landuse Change...10
 2.4.2 Coastal Landuse Change Monitoring..11
2.5 Landsat Imagery...12
 2.5.1 Landsat-5 TM (Thematic Mapper)..12
 2.5.2 Landsat-7 ETM+ (Enhanced Thematic Mapper Plus)....................13
2.6 Classification...15
 2.6.1 Supervised Classification...15
 2.6.2 Knowledgebase Classification..17
2.7 Change Detection...19
2.8 Validation Method..20
 2.8.1 Error Matrix...20
 2.8.2 Ground Truth...20

METHODOLOGY..22
3.1 Time and Location...22
3.2 Data Sources...23
 3.2.1 Remote Sensing Data..23
 3.2.2 Topographic Maps..23
 3.2.3 Geomorphological Map...23
3.3 Required Tools...23
 3.3.1 Software...23
 3.3.2 Hardware...24
3.4 Methodology...24
 3.4.1 Image Preprocessing..26
 3.4.2 Image Processing..28
 3.4.3 Image Analysis..32
4 RESULTS AND DISCUSSION

4.1 Radiometric Correction .. 33
4.2 Geometric Correction .. 34
4.3 Image Calibration ... 36
4.4 Coastal Landuse in 1994 and 2001 ... 36
4.5 Change Detection Techniques .. 39
 4.5.1 Red Green Method ... 39
 4.5.2 Image Differencing Method .. 40
 4.5.3 Image Ratioing Method .. 41
 4.5.4 Principal Component Analysis Method 41
4.6 Coastal Landuse Change Analysis ... 43

5 CONCLUSION AND RECOMMENDATION 50
5.1 Conclusion ... 50
5.2 Recommendation .. 52

REFERENCES ... 53

APPENDIX ... 55
LIST OF FIGURES

Figure 1. Coastal zone boundary... 7
Figure 2. Basic steps in supervised classification.. 15
Figure 3. Equiprobability contours defined by a maximum likelihood classifier... 16
Figure 4. Landuse inventory.. 19
Figure 5. Example error matrix... 21
Figure 6. The Study Area.. 22
Figure 7. Methodology flowchart... 25
Figure 8. Image preprocessing flowchart... 26
Figure 9. Transform line.. 33
Figure 10. Image 1994: before and after corrected... 33
Figure 11. Ground Control Points.. 35
Figure 12. Dataset information of image 1994... 35
Figure 13. Comparing Landsat 2001 calibration... 36
Figure 14. Coastal landuse in 1994... 37
Figure 15. Coastal landuse in 2001.. 37
Figure 16. Banten Bay Coastal Landuse 1994... 38
Figure 17. Banten Bay Coastal Landuse 2001... 38
Figure 18. Comparing the image 1994 as red with image 2001 as green......... 39
Figure 19. The result of red green method... 40
Figure 20. The result of image differencing method....................................... 41
Figure 21. The result of image ratioing method.. 42
Figure 22. The result of principal component analysis method....................... 42
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>TM Bands and TM Technical Specifications</td>
<td>13</td>
</tr>
<tr>
<td>Table 2</td>
<td>ETM+ Bands and ETM+ Technical Specifications</td>
<td>14</td>
</tr>
<tr>
<td>Table 3</td>
<td>Comparing The DN value for histogram adjustment</td>
<td>34</td>
</tr>
<tr>
<td>Table 4</td>
<td>Area of coastal landuse between two dates</td>
<td>43</td>
</tr>
<tr>
<td>Table 5</td>
<td>Coastal landuse change between 1994 and 2001</td>
<td>44</td>
</tr>
<tr>
<td>Table 6</td>
<td>Comparison of change detection techniques in total reference</td>
<td>45</td>
</tr>
<tr>
<td>Table 7</td>
<td>Comparison of change detection techniques in each increase reference</td>
<td>46</td>
</tr>
<tr>
<td>Table 8</td>
<td>Comparison of area change increase difference in each coastal landuse category</td>
<td>46</td>
</tr>
<tr>
<td>Table 9</td>
<td>Comparison of change detection techniques in each decrease reference</td>
<td>47</td>
</tr>
<tr>
<td>Table 10</td>
<td>Comparison of area change difference decrease in each coastal landuse category</td>
<td>48</td>
</tr>
</tbody>
</table>