PENGARUH PERBEDAAN JENIS UMPAN TERHADAP HASIL TANGKAP RAWAI TUNA DI SEKITAR PERAIRAN KEPULAUAN ENGGANO

Oleh:
Heru Santoso
C 28.1904

SKRIPSI
Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan

PROGRAM STUDI
PEMANFAATAN SUMBERDAYA PERIKANAN
FAKULTAS PERIKANAN
INSTITUT PERTANIAN BOGOR
1995
SKRIPSI

Nama Mahasiswa : Heru Santoso
Nomor Pokok : C 28.1904
Program Studi : Pemanfaatan Sumberdaya Perikanan

Menyetujui :
I. Komisi Pembimbing,

Prof.Dr.Ir. Daniel R. Monintja
Ketua

Ir. Diniah, M.Si.
Anggota

II. Fakultas Perikanan IPB,

Ir. Diniah, M.Si.
Ketua Program Studi

Dr. Ir. Kadarwan Soewardi
Pembantu Dekan I

RINGKASAN

Perairan Kepulauan Enggano merupakan perairan yang cukup luas untuk dijadikan daerah penangkapan ikan oleh nelayan sekitar dan daerah lainnya. Perairan ini terletak di Samudera Indonesia sebelah barat Sumatera.

Tujuan penelitian ini adalah untuk mengetahui efektivitas penggunaan jenis umpan yang berbeda terhadap hasil tangkapan rawai tuna dan untuk mengetahui jenis umpan terbaik yang memberikan hasil tangkapan terhadap semua jenis dan setiap jenis hasil tangkapan.

Pelaksanaan percobaan penangkapan ikan dengan alat tangkap rawai tuna dilakukan di lokasi 05°40′ - 06°32′ Lintang Selatan dan 102°38′ - 103°19′ Bujur Timur. Penurunan pancing dilakukan sebanyak 12 kali ulangan. Setiap ulangan dioperasikan 32 basket alat tangkap rawai tuna dan satu basket terdiri dari 8 mata pancing.

Umpan yang digunakan dalam kegiatan ini adalah cumicumi (Loligo sp.), bandeng (Chanos chanos), kembung (Rastrelliger sp.) dan layang (Decapterus sp.). Pemasangan umpan pada mata pancing dengan cara menancapkan mata pancing pada punggung umpan, sehingga ikan umpan terlihat berenang.
Hasil tangkapan yang diperoleh selama percobaan adalah 20 ekor yellowfin tuna (Thunnus albacares) dengan berat 608 kg, 18 ekor bigeye tuna (Thunnus obesus) dengan berat 634 kg, 11 ekor albacore (Thunnus alalunga) dengan berat 223 kg, 7 ekor sword fish dengan berat 187 kg dan 5 ekor cucut atau hiu dengan berat 210 kg. Ikan yang tertangkap dengan umpan bandeng berjumlah 20 ekor dengan berat 649 kg. Umpan cumi-cumi dan layang masing-masing menghasilkan 14 ekor ikan dengan berat 439 kg dan 425 kg. Sedangkan umpan kembung menghasilkan ikan sebanyak 13 ekor dengan berat 349 kg. Hasil uji statistik menunjukkan bahwa penggunaan empat jenis umpan tidak berpengaruh terhadap jenis dan berat ikan hasil tangkapan.
KATA PENGANTAR

Laporan penelitian ini disusun berdasarkan hasil penelitian dengan judul "Pengaruh Perbedaan Jenis Umpan Terhadap Hasil Tangkap Rawai Tuna di Sekitar Perairan Kepulauan Enggano". Penelitian dilakukan dengan menggunakan KM. Madidihang milik Sekolah Tinggi Perikanan.

Pada kesempatan ini penulis mengucapkan terima kasih yang seluas-luasnya kepada yang terhormat:

(1) Prof. Dr. Ir. Daniel R. Monintja dan Ir. Diniah, M. Si. selaku Komisi Pembimbing yang telah memberikan bimbingan dan pengarahan sehingga terwujud tulisan ini;
(2) Bapak Ketua Sekolah Tinggi Perikanan yang telah memberikan kesempatan untuk melaksanakan tugas belajar di Institut Pertanian Bogor;
(3) Nakhoda dan semua anak buah kapal Kapal Latih KM. MADIDIHANG yang telah membantu dalam pelaksanaan percobaan di lapangan;
(4) Saudara Suharto, Suharyanto, Mardiyono, Syarif Samsudin dan rekan-rekan mahasiswa jurusan PSP Fakultas Perikanan Institut Pertanian Bogor yang telah banyak membantu penulis.

Penulis berharap semoga tulisan ini bermanfaat bagi yang memerlukannya.

Bogor, Nopember 1995
Penulis.
DAFTAR ISI

KATA PENGANTAR .. i
DAFTAR ISI ... ii
DAFTAR TABEL ... iv
DAFTAR GAMBAR .. v
DAFTAR LAMPIRAN .. vi

1 PENDAHULUAN .. 1
 1.1 Latar Belakang ... 1
 1.2 Tujuan Penelitian .. 3
 1.3 Manfaat Penelitian ... 3
 1.4 Tempat dan Waktu Penelitian 3

2 TINJAUAN PUSTAKA .. 4
 2.1 Perikanan Rawai Tuna ... 4
 2.2 Musim dan Daerah Penangkapan 6
 2.3 Kebiasaan Makan dan Beberapa Jenis Umpan 8
 2.4 Hasil Tangkap Rawai Tuna 14
 2.4.1 Ciri-ciri Tuna mata besar (Thunnus obesus) 16
 2.4.2 Ciri-ciri Madidihang (Thunnus albacares) 17
 2.4.3 Ciri-ciri Albakora (Thunnus alalunga) 18
 2.4.4 Ciri-ciri Setuhuk loreng (Makaira mitsukurii) 19
 2.4.5 Ciri-ciri Setuhuk hitam (Makaira makaza) 19
 2.4.6 Ciri-ciri Ikan pedang (Xiphius gladius) 20
 2.4.7 Ciri-ciri Ikan layaran (Istiohorus orientalis) 20
 2.4.8 Ciri-ciri Cucut martil (Sphyraena blochii) 21
 2.4.9 Ciri-ciri Cucut (Carcharias macloti) 21

3 METODE PENELITIAN .. 23
 3.1 Alat dan Bahan .. 23
 3.2 Metode Pengumpulan Data 23
 3.3 Analisis Data ... 25

4 PELAKSANAAN PERCOBAAN ... 27
 4.1 Keadaan Daerah Penelitian 27
 4.2 Umpan yang digunakan ... 27
<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Cara pemasangan umpan</td>
<td>29</td>
</tr>
<tr>
<td>4.4</td>
<td>Alat Tangkap dan Alat Bantu Penangkapan</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Pengoperasian Rawai Tuna</td>
<td>33</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Penurunan alat tangkap (Setting)</td>
<td>33</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Penarikan alat tangkap (Hauling)</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>HASIL DAN PEMBAHASAN</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Hasil Penelitian</td>
<td>37</td>
</tr>
<tr>
<td>5.2</td>
<td>Hasil Analisis Statistik</td>
<td>40</td>
</tr>
<tr>
<td>5.3</td>
<td>Pembahasan</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>KESIMPULAN DAN SARAN</td>
<td>47</td>
</tr>
<tr>
<td>1.</td>
<td>Kesimpulan</td>
<td>47</td>
</tr>
<tr>
<td>2.</td>
<td>Saran</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>DAFTAR PUSTAKA</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>RIWAYAT HIDUP</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>LAMPIRAN</td>
<td></td>
</tr>
</tbody>
</table>
DAFTAR TABEL

1 Jenis-jenis tuna dan non tuna yang ter-tangkap dengan rawai tuna 15

2 Bahan dan ukuran dari setiap bagian alat tangkap rawai tuna 32

3 Komposisi hasil tangkapan rawai tuna di perairan Kepulauan Enggano 38

4 Komposisi hasil tangkapan rawai tuna di perairan Kepulauan Enggano per hauling . 39

5 Hook rate hasil tangkapan rawai tuna setiap hauling di perairan Kepulauan Enggano . 43
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Beberapa cara pemasangan umpan</td>
<td>29</td>
</tr>
<tr>
<td>2 Konstruksi alat tangkap rawai tuna yang digunakan dalam percobaan</td>
<td>31</td>
</tr>
<tr>
<td>3 Hasil tangkapan dan hook rate rawai tuna selama percobaan</td>
<td>43</td>
</tr>
<tr>
<td>Lampiran</td>
<td>Halaman</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1 Sketsa pemasangan umpan pada pancing rawai tuna selama percobaan</td>
<td>54</td>
</tr>
<tr>
<td>2 Suhu permukaan laut dan Posisi stasiun percobaan</td>
<td>55</td>
</tr>
<tr>
<td>3 Peta lokasi percobaan penangkapan dengan rawai tuna</td>
<td>56</td>
</tr>
<tr>
<td>4 Perhitungan uji kenormalan Lilliefors terhadap jumlah hasil tangkapan</td>
<td>57</td>
</tr>
<tr>
<td>pada setiap hauling</td>
<td></td>
</tr>
<tr>
<td>5 Perhitungan sidik ragam hasil tangkap (ekor dan kg) rawai tuna dengan</td>
<td>60</td>
</tr>
<tr>
<td>menggunakan empat jenis umpan berbeda</td>
<td></td>
</tr>
<tr>
<td>6 Gambar beberapa jenis ikan yang biasa tertangkap rawai tuna</td>
<td>62</td>
</tr>
<tr>
<td>7 Gambar empat jenis umpan yang digunakan dalam percobaan penangkapan</td>
<td>65</td>
</tr>
<tr>
<td>rawai tuna</td>
<td></td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

1.1 Latar Belakang

Perairan Indonesia yang luas ini diperkirakan mempunyai potensi perikanan sebanyak 1,685 juta ton ikan pelagis dan 1,252 juta ton ikan demersal, sedangkan potensi perairan ZEE sebanyak 1,172 juta ton ikan pelagis. Diperkirakan 12 persen dari potensi ikan pelagis ini terdiri dari ikan tuna dan cakalang yaitu 207.000 ton per tahun (Tambunan, 1983).

Faktor umpan merupakan hal yang penting dalam usaha mengembangkan industri perikanan rawai tuna. Ikan umpan yang telah digunakan umumnya ikan pelagik kecil. Ikan umpan tersebut antara lain adalah lemuru (Sardinella longiceps), kembung (Rastrelliger spp.), layang (Decapterus spp.), selar bentong (Selar crumenophthalhus), cumi-cumi (Loligo spp.) dan bandeng (Chanos chanos).

Untuk menunjang usaha penangkapan tuna dengan rawai tuna sangat diperlukan penelitian tentang jenis umpan yang cocok agar mendapatkan hasil tangkapan yang optimal. Karena itu, maka penelitian ini dilakukan.
1.2 Tujuan Penelitian

Penelitian ini bertujuan untuk:

(1) Mengetahui efektivitas penggunaan jenis umpan yang berbeda terhadap hasil tangkapan rawai tuna;

(2) Mengetahui jenis umpan terbaik yang memberikan hasil tangkapan terhadap semua jenis dan setiap jenis hasil tangkapan.

1.3 Manfaat Penelitian

Manfaat penelitian yang diharapkan adalah

(1) Menyediakan informasi jenis ikan umpan terbaik dalam usaha penangkapan tuna dengan rawai tuna;

(2) Dapat menjadi masukan bagi usaha perikanan rawai tuna dalam hal memilih jenis umpan.

1.4 Tempat dan Waktu Penelitian

Penelitian ini dilakukan di Samudera Hindia sebelah Barat Pulau Sumatera. Lokasi penangkapan ikan adalah di sekitar perairan Kepulauan Enggano pada 05°40' - 06°32'
2. TINJAUAN PUSTAKA

2.1 Perikanan Rawai Tuna

Rawai tuna adalah alat tangkap dari golongan Line Fishing, terutama ditujukan untuk menangkap tuna dalam ukuran dan jumlah yang besar. Tuna tujuan penangkapan berada di lapisan yang dalam dan mempunyai daerah penyebaran yang luas (Takayama, 1963). Pada prinsipnya, konstruksi rawai tuna terdiri dari gabungan beberapa main line (tali utama), serta branch line yang diberi pelampung pada ujungnya. Kedalaman pancing menurut kebutuhan, yaitu dengan cara mengubah panjang branch line (tali cabang utama) atau float line (tali pelampung).

Menurut Suda (Murjito, 1981), alat tangkap rawai tuna merupakan alat yang paling efektif untuk menangkap ikan jenis tuna, karena alat ini dapat menjangkau penyebaran tuna secara vertikal maupun horizontal. Selain itu, dalam pengoperasian rawai tuna tidak memerlukan umpan yang masih hidup, sehingga dapat mencapai daerah yang luas. Pada perikanan rawai tuna, pengetahuan tentang batas penyebaran tuna secara vertikal memegang peranan penting. Hal ini dimaksudkan agar dapat memperkirakan panjang tali pelampung dan tali cabang utama yang akan digunakan.

Menurut Blackburn (Sukmadinata, 1978), batas penyebaran tuna secara vertikal diketahui dari hasil tangkapan yang diperoleh melalui usaha perikanan tuna. Usaha
perikanan tuna dibedakan menjadi "surface fisheries (purse seine)" dan subsurface hooking fisheries (longline). Penangkapan jenis-jenis tuna di perairan pantai dilakukan dengan menggunakan surface hooking dan surface netting, sedangkan penangkapan di lepas pantai dilakukan dengan menggunakan subsurface hooking. Bluefin tuna, albacore, yellowfin tuna dan bigeye tuna lebih banyak tertangkap dengan menggunakan alat subsurface hooking dibandingkan dengan surface netting dan surface hooking.

Nishimura (1964) menyatakan bahwa melalui deteksi echo sounder dapat diketahui tentang tuna yang banyak hidup pada kedalaman 100-200 meter, dengan kedalaman renang antara 20-200 meter. Bluefin tuna didapat pada kedalaman 60-200 meter, yellowfin tuna didapat pada kedalaman 60-120 meter dan albacore banyak tertangkap pada kedalaman 50-80 meter. Menurut Damanhuri (Muripto, 1981), ikan tuna yang berukuran besar berada di lapisan dalam dengan gerombolan yang lebih sedikit jumlahnya, sedangkan yang berukuran lebih kecil terdapat di dekat permukaan dan dekat daratan dalam jumlah yang lebih besar.

2.2 Musim dan Daerah Penangkapan

Karakteristik daerah penangkapan ikan yang baik adalah sebagai berikut:
(1) Perairan tersebut harus mempunyai kondisi sedemikian rupa sehingga ikan mudah datang bersama-sama secara bergerombol dan perairan tersebut merupakan habitat yang cocok bagi ikan tujuan penangkapan;

(2) Perairan tersebut harus merupakan suatu tempat yang alat tangkap dengan mudah dapat dioperasikan oleh nelayan;

(3) Perairan tersebut harus merupakan suatu tempat yang lokasinya secara ekonomis menguntungkan (Nomura, 1977).

Secara umum ikan menyebar dan beruaya erat hubungannya dengan kepentingan makan dan pemijahan. Ikan tuna merupakan jenis ikan oceanis yang menyukai perairan bersalinitas tinggi. Menurut Blackburn (Gunarso, 1985), ikan tuna menyenangi salinitas yang agak tinggi, berkisar antara 33,0 - 38,0 ppt, khususnya perairan Indonesia bagian timur. Adapun jenis tuna yang hidup di daerah tersebut adalah madidihang (yellowfin tuna) yang berkisar antara 18,0 - 38,0 ppt, albacore berkisar antara 33,7 - 35,2 ppt dan bluefin tuna berkisar antara 18,0 - 38,0 ppt. Perairan Indonesia yang memiliki kedalaman dan bersalinitas tinggi adalah merupakan daerah penangkapan tuna yang cukup potensial. Perairan tersebut yaitu: sebelah Barat Sumatera, Selatan Jawa, Bali, Selat Makassar, Flores, Banda, Utara Sulawesi dan Utara Irian Jaya.
2.3 Kebiasaan Makan dan Beberapa Jenis Umpan

Umpan merupakan salah satu faktor terpenting dalam usaha perikanan tuna dan cakalang. Seperti dikatakan oleh Takayama (Muripto, 1981) bahwa suksesnya usaha penangkapan
ikan dengan alat pole and line dan rawai tuna sangat tergantung pada beberapa faktor, diantaranya adalah persediaan umpan dan jenisnya.

Suatu hal yang cukup penting mengenai umpan adalah harus mudah dikaitkan pada mata pancing, baik melalui dorsal, operculum, mulut, mata ataupun bagian lain. Juga dikatakan oleh Hirayama (Muripto, 1981) bahwa hasil tangkapan rawai tuna sangat dipengaruhi oleh:

1. densitas shoaling di fishing ground;
2. keadaan cuaca dan curah hujan;
3. jarak pancing yang satu dengan lainnya;
4. keadaan jenis umpan.

Penggunaan umpan dalam perikanan rawai tuna harus memenuhi persyaratan teknis dan ekonomis. Persyaratan tersebut adalah:

1. Memiliki warna kulit yang cerah dan mengkilat di dalam air, sehingga dapat menarik perhatian ikan tuna;
2. Mempunyai bau yang anyir;
3. Tahan terkait pada pancing selama di dalam air;
4. Mudah didapat dan tersedia dalam jumlah banyak;
5. Harga relatif murah.

Djatikusumo (1975) menerangkan bahwa untuk keberhasilan suatu usaha penangkapan dengan rawai tuna, umpan yang dipakai harus memenuhi syarat:

1. warna di dalam air mengkilap;
2. sirip tidak terlalu tebal tetapi kuat, punggung harus kuat, tahan di dalam air;
(3) bentuk badan memanjang, panjang berkisar antara 15-20 cm dan panjang maksimum 25 cm, lebar berkisar antara 3-4 cm dan lebar maksimum 5 cm;
(4) dalam keadaan segar;
(5) dapat tersedia dengan mudah dan dalam jumlah banyak.

Beberapa jenis ikan yang biasa digunakan sebagai umpan dalam pengoperasian rawai tuna, diantaranya adalah
(1) Bandeng (Chanos chanos).

Bandeng termasuk famili chanidae. Mempunyai satu sirip punggung dan berjari-jari keras sebanyak 9 buah, sedangkan sirip dubur pertama mempunyai 5 - 6 jari-jari lemah dan 11-12 jari-jari lemah pada sirip dubur kedua. Bentuk badan memanjang dan langsing seperti torpedo. Moncong bandeng agak runcing, ekor bercagak dan mempunyai sisik yang halus. Termasuk ikan pemakan plankton dan bahan-bahan halus lainnya. Hidup di perairan laut sampai muara sungai yang berkadar garam rendah. Panjang badan dapat mencapai 60 cm dengan berat 9 kg, sedangkan untuk umpan biasanya digunakan ukuran panjang 20-25 cm atau dalam berat 1 kg berjumlah 8-10 ekor. Warna bagian punggung agak kegelapan, sedangkan bagian bawah berwarna putih keperakan. Sirip-siripnya berwarna keperakan. Pada lengkung insangnya terdapat tapisan (Mujiman, 1987);
keperakan. Pada lengkung insangnya terdapat tapisan (Mujiman, 1987);

(2) Lemuru (Sardinella longiceps).

(3) Cumi-cumi (Loligo spp.).
dasar perairan pada siang hari, sedangkan pada malam hari menyebar dekat permukaan. Warna seluruh badan adalah putih kemerahan, sedangkan kaki-kakinya berwarna merah kehitaman;

(4) Kembung (Rastrelliger spp.).

berwarna abu-abu kekuningan, sedangkan sirip dada
dan ekor agak kekuning-kuningan, sirip lainnya
bening kekuningan (Djatikusumo, 1975); (5) Layang (Decapterus spp.).
Layang adalah anggota famili Carangidae. Bentuk badan
memanjang dan agak gepeng. Mempunyai dua sirip
punggung, sirip punggung pertama berjari-jari keras
8 buah, sedangkan sirip punggung kedua berjari-jari
keras 1 buah dan 31 - 33 buah jari-jari lemah.
Mempunyai satu sirip dubur berjari-jari keras
sebanyak 3 buah dan 22-27 buah jari-jari lemah.
Termasuk pemakan plankton. Layang hidup di lepas
pantai atau di perairan yang berkadar garam tinggi
dan membentuk gerombolan besar. Panjang badan
layang dapat mencapai 30 cm, umumnya berkisar antara
20 - 25 cm. Warna badan biru kehijauan, pada bagian
atas berwarna hijau pupus, sedangkan bagian bawah
berwarna putih perak. Sirip-siripnya berwarna abu-
abu kekuningan (Djatikusumo, 1975).

Dalam memilih makanannya, jenis tuna kurang begitu
selektif. Watanabe dan Kobe (Tambunan, 1964) mengatakan
bahwa ikan tuna dalam mencari makanannya tidak mempunyai
daya selektif yang tinggi. Pada umumnya terdapat beberapa
jenis makanan yang sama pada berbagai jenis tuna.

2.4 Hasil Tangkap Rawai Tuna

Tujuan utama penangkapan dengan rawai tuna adalah menangkap tuna, tetapi pada kenyataannya banyak jenis ikan lain yang tertangkap seperti ikan hiu, layaran, marlin, tenggiri dan lain-lain, seperti tertera pada Tabel 1.

dan panjang 213 cm. Bigeye tuna terbesar yang tertangkap di Cabo Blanko, Peru tanggal 17 April 1957 oleh Dr. Russel V.A lee mempunyai berat 197,49 kg dan panjang 235 cm. Bluefin tuna terbesar tertangkap di Nort Lake P.E.T. Canada tanggal 19 Oktober 1973 oleh Lee Coffin, mempunyai berat 508,8 kg dan panjang 310 cm.

Tabel 1 : Jenis-jenis tuna dan ikan non tuna yang tertangkap dengan rawai tuna.

<table>
<thead>
<tr>
<th>Nama Ilmiah</th>
<th>Nama Inggris</th>
<th>Nama Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thunnus obesus</td>
<td>Bigeye tuna</td>
<td>Tuna mata besar</td>
</tr>
<tr>
<td>Thunnus albacares</td>
<td>Yellowfin tuna</td>
<td>Madidiang</td>
</tr>
<tr>
<td>Thunnus alalunga</td>
<td>Albacore</td>
<td>Albakora</td>
</tr>
<tr>
<td>Thunnus macoyii</td>
<td>Southern bluefin</td>
<td>Abu-abu</td>
</tr>
<tr>
<td>Thunnus thynnus</td>
<td>Bluefin tuna</td>
<td>-</td>
</tr>
<tr>
<td>Thunnus atlanticus</td>
<td>Blackfin tuna</td>
<td>-</td>
</tr>
<tr>
<td>Katsuwonus pelamis</td>
<td>Skipjack</td>
<td>Cakalang</td>
</tr>
<tr>
<td>Euthynnus affinis</td>
<td>Little tuna</td>
<td>Tongkol</td>
</tr>
<tr>
<td>Istiophorus orientalis</td>
<td>Sailfish</td>
<td>Layaran</td>
</tr>
<tr>
<td>Tetraprurus albidus</td>
<td>White marlin</td>
<td>Setuhuk putih</td>
</tr>
<tr>
<td>Tetraprurus audax</td>
<td>Striped marlin</td>
<td>Setuhuk loreng</td>
</tr>
<tr>
<td>Tetraprurus angustirostris</td>
<td>Spearfish</td>
<td>Layaran</td>
</tr>
<tr>
<td>Makaira indica</td>
<td>Black marlin</td>
<td>Setuhuk hitam</td>
</tr>
<tr>
<td>Scomberomorus spp.</td>
<td>Spanish mackerel</td>
<td>Tenggiri</td>
</tr>
<tr>
<td>Xiphius gladius spp.</td>
<td>Swordfish</td>
<td>Ikan pedang</td>
</tr>
<tr>
<td>Carcharias sp.</td>
<td>Shark</td>
<td>Cucut, hiu</td>
</tr>
</tbody>
</table>

Sumber : Ayodhya, 1981.

2.4.1 Ciri-ciri Tuna matabesar, Thunnus obesus. (Lowe,1839)

Menurut Beaufort (Djatikusumo, 1975), bentuk badan bigeye tuna bulat seperti cerutu, sangat besar dan bagian ekor pendek. Sirip punggung pertama mempunyai jari-jari keras sebanyak 14 - 15 buah, sedangkan sirip punggung

Seluruh badan tertutup sisik yang membesar, terutama pada bagian korselet. *Bigeye tuna* termasuk ikan buas, dapat mencapai panjang 200 cm dan umumnya berkisar antara 50 - 150 cm.

2.4.2 Ciri-ciri Madidihang, *Thunnus albacares* (Bonnaterre, 1788)

Badan bersisik kecil, korselet bersisik agak besar tetapi tidak nyata. Yellowfin tuna termasuk ikan buas. Panjangnya dapat mencapai 195 cm, umumnya berkisar antara 60 - 150 cm.

2.4.3 Ciri-ciri Albakora, *Thunnus alalunga* (Bonnaterre, 1788)

Badan bersisik kecil, sedangkan pada korselet terdapat sisik agak besar tetapi tidak nyata. Albacore termasuk ikan buas, panjang badan dapat mencapai 137 cm dan umumnya berkisar antara 40-100 cm. Warna pada bagian atas adalah hitam kebiruan dan berkilat, sedangkan bagian bawah berwarna putih perak. Sirip punggung pertama sedikit keabuan dengan warna kuning, bagian atas gelap, sirip punggung kedua dan dubur berwarna gelap kekuningan.

2.4.4 Ciri-ciri Setuhuk loreng, *Makaira mitsukuri* (Jordan dan Snyder, 1901)

Bentuk badan memanjang, bagian depan gepeng sedikit membulat ke arah belakang. Rahang atas tumbuh memanjang.

2.4.5 Ciri-ciri Setuhuk hitam, *Makaira mazara*
(Jordan dan Snyder, 1901)

kehitaman, putih sedikit kekuning-kuningan pada bagian bawah dan secara garis besar jenis ini berwarna kehitaman.

2.4.6 Ciri-ciri Ikan pedang, *Xiphius gladius*
(Linnaeus, 1758)

2.4.7 Ciri-ciri Layaran, *Istiophorus orientalis*
(Temminck dan Schlegel, 1844)

punggung pertama tumbuh lebar sekali dan memanjang bagaikan layar terkembang bila terbuka, dapat dilipat pada liang di punggungnya. Sirip perut menyerupai ikat pinggang yang terdiri dari 3 bagian. Sirip perut tumbuh menjadi satu memanjang hingga mencapai lubang dubur (Saanin, 1984).

Ikan layaran termasuk ikan buas yang hidup di perairan dalam dan sering muncul di permukaan dengan layar atau sirip punggung yang dikembangkan. Panjang badan sampai 300 cm. Warna bagian atas ungu kebiruan, bagian bawah abu-abu kekuning-kuningan. Terdapat ban melintang biru keabuan pada bagian tengah badan.

2.4.8 Ciri-ciri Cucut martil, Sphyrna blochii (Cuvier, 1917)

Ikan ini termasuk ikan buas. Hidup di perairan pantai, lepas pantai dan sering masuk ke muara sungai. Panjang badannya bisa mencapai 400 cm. Warna badan bagian
atas gelap atau merah keabuan, sedangkan bagian sisi badan berwarna putih kekuningan dan bagian bawah berwarna putih.

2.4.9 Ciri-ciri Cucut, Carcharias (Hypoprion) macloti (Muller dan Henle, 1839)

3. METODE PENELITIAN

3.1 Bahan dan Alat

Bahan yang digunakan dalam penelitian ini adalah empat jenis umpan, yaitu:

(A) cumi-cumi (Loligo sp.), panjang badan 9-11 cm;
(B) bandeng (Chanos chanos), panjang badan 15-18 cm;
(C) kembung (Rastrelliger sp.), panjang badan 12-14 cm;
(D) layang (Decapterus sp.), panjang badan 16-18 cm.

Alat dan alat bantu yang digunakan adalah
(1) alat tangkap rawai tuna.
 Alat tangkap rawai tuna terdiri dari 32 basket dan menggunakan 8 pancing untuk setiap basketnya;
(2) kapal;
(3) radio buoy;
(4) line hauler;
(5) roller;
(6) peralatan navigasi, peta fishing ground dan daftar isian.

3.2 Metode Pengumpulan Data

Pengumpulan data dilakukan dengan mempergunakan metode percobaan penangkapan ikan (experimental fishing). Operasi penangkapan dilakukan sebanyak 12 kali setting.

Percobaan dilakukan di perairan Kepulauan Enggano dengan 12 tempat setting yang berlainan. Untuk lebih jelasnya, peta lokasi percobaan dapat dilihat pada Lampiran 3.

Setting dilakukan setiap pagi hari jam 05.30. Setting berlangsung sekitar 55 - 60 menit dan lama alat tangkap di dalam air berkisar antara 5 - 6 jam.

Hauling dilakukan setiap siang hari, dimulai antara jam 11.00 - 12.00 dan berlangsung kira-kira selama 120 - 135 menit. Setiap kali hauling dilakukan pencatatan yang meliputi nomor pancing, jumlah, jenis dan berat hasil tangkapan. Dalam penelitian ini diasumsikan bahwa penyebaran ikan di daerah penangkapan ikan adalah merata, sehingga semua umpan mendapat kesempatan yang sama. Selain itu diasumsikan bahwa daerah penangkapan ikan
mempunyai kondisi yang sama dan tidak berubah selama penelitian berlangsung dan semua ikan mempunyai kesempatan yang sama untuk tertangkap.

3.3 Analisis Data

Data yang dihasilkan akan disajikan dalam bentuk tabulasi dan grafik, kemudian dianalisis dengan uji statistik. Selain itu dilakukan pula analisis deskriptif.

Data total hasil tangkapan diuji sebaran kenormalannya dengan "Uji Kenormalan Lilliefors". Bila data menyebar tidak normal, maka analisis selanjutnya menggunakan "uji pangkat bertanda Wilcoxon". Bila data menyebar normal, selanjutnya dilakukan "uji F" (Nasoetion dan Barizi, 1979).

Nilai pengamatan adalah \(Y_1, Y_2, \ldots, Y_n \)

\[
\bar{Y} = \frac{1}{n} \sum Y_i \\
S = \sqrt{\frac{1}{n-1} \sum (Y_i - \bar{Y})^2} = \sqrt{\frac{1}{n-1} \left[\sum Y_i^2 - (\sum Y_i)^2 / n \right]} \\
z_i = \frac{(Y_i - \bar{Y})}{S}
\]

Fungsi sebaran normal baku : \(F(z) = P(Z \leq z) \)

Fungsi sebaran empirik baku \(S(z) \) :

\[
S(z) = \frac{z_1 + z_2 + \ldots + z_n}{n} \text{ yang } \leq z
\]

Uji kenormalan Lilliefors (L) :

\[
L = \max \{ | F(z_1) - S(z_1) |, | F(z_2) - S(z_2) |, \ldots, | F(z_n) - S(z_n) | \}
\]
Kaidah keputusan:

\[\begin{align*}
 \text{jika } L & \leq L_\alpha(n), \text{ terima } H_0 \\
 \text{dengan } & \geq L_\alpha(n), \text{ tolak } H_0
\end{align*}\]

\[H_0 = \text{Data menyebab normal}\]

Untuk menguji adanya perbedaan penggunaan 4 jenis umpan, perlu hipotesis dugaan sementara \((H_0)\) untuk menduga adanya perbedaan hasil tangkapan dengan penggunaan umpan yang berbeda.

Hipotesis \(\longrightarrow\) \(H_0 : \beta_0 = 0\), lawan

\[H_1 : \beta_0 = 0\]

Kaidah keputusan:

\[\begin{align*}
 \text{jika } F \text{ hitung} & \geq F_\alpha(n), \text{ terima } H_0 (tolak } H_1) \\
 \text{dengan } & < F_\alpha(n), \text{ tolak } H_0 (\text{terima } H_1)
\end{align*}\]
4. PELAKSANAAN PERCOBAAN

4.1 Kecadaan Daerah Penelitian

Pada saat penelitian berlangsung bertiup angin musim timur dengan arah 265° - 280° dan kecepatan rata-rata antara 3 - 6 meter/detik. Suhu udara berkisar antara 29,0° - 32,6°C, sedangkan suhu permukaan air laut berkisar antara 27,9° - 29,0°C pada waktu setting dan 28,0° - 29,5° pada waktu hauling (Lampiran 2).

Topografi dasar perairan di lokasi penelitian diduga berbukit-bukit. Hal ini dilihat dari peta laut bahwa kedalaman perairan tergambarkan lebih rendah dibandingkan kedalaman di sekitarnya. Kedalaman perairan tempat setting adalah 1.100 meter, sedangkan kedalaman perairan di sekitarnya adalah 2.152 meter. Hal ini diduga karena di daerah tersebut sering terjadi "up welling".

4.2 Umpan yang Digunakan

Empat jenis umpan yang digunakan dalam percobaan ini adalah cumi-cumi (Loligo, sp.), bandeng (Chanos chanos), kembung (Rastrelliger, sp.) dan layang (Decapeterus, sp.).

Penggunaan empat jenis umpan di dalam penelitian ini secara umum telah memenuhi kriteria persyaratan sebagai umpan yang baik. Walaupun dari tiap-tiap jenis umpan memiliki kekurangan, namun lebih banyak kelebihannya sebagai umpan.
4.2.1 Cumi-cumi (*Loligo*, sp.).

Cumi-cumi yang digunakan sebagai umpan berukuran panjang rata-rata 10 cm. Tekstur badannya masih kenyal dan berwarna putih kemerahan. Tidak berbau busuk.

4.2.2 Bandeng (*Chanos chanos*).

Bandeng yang digunakan sebagai umpan berukuran panjang rata-rata 17 cm. Tekstur badannya masih kenyal dan perut-nya belum pecah. Baunya anyir dan belum berbau busuk. Sisiknya utuh, belum ada yang rontok dan warnanya mengkilap.

4.2.3 Kembung (*Rastrelliger* sp.).

4.2.4 Layang (*Decapterus* sp.).

Layang yang digunakan sebagai umpan berukuran panjang rata-rata 18 cm. Tekstur badannya masih kenyal dan perutnya belum pecah. Baunya anyir dan belum berbau busuk. Sisiknya halus, masih utuh dan belum ada yang rontok. Warna kulit bagian atas cerah kehijauan dan bagian bawah putih mengkilap.
4.3 Cara Pemasangan Umpan

Penggunaan umpan dalam pengoperasian rawai tuna secara umum dikaitkan pada mata pancing supaya tidak lepas pada saat setting maupun di dalam air. Pemasangan umpan pada mata pancing sebaiknya dilakukan pada bagian punggung dekat tengkuk. Mata pancing ditancapkan dari sisi kiri ke sisi kanan ikan supaya posisi ikan umpan dalam air terlihat seperti berenang.

Disamping itu, ada juga yang memasang umpan pada mata pancing dengan cara menancapkan mata pancing pada mata, mulut atau pada tutup insang ikan umpan. Untuk lebih jelasnya, beberapa cara pemasangan umpan dapat dilihat pada Gambar 1. Pada waktu pelaksanaan percobaan, pemasangan umpan menggunakan cara (3) dan (4).

4.4 Alat Tangkap dan Alat Bantu Penangkapan.

Konstruksi basket rawai tuna merupakan untaian atau gabungan dari beberapa main line atau tali utama dan pada sambungannya diikatkan branch line atau tali cabang utama. Pada kedua ujung gabungan tali tersebut dipasang tali pelampung dan pelampung. Konstruksi rawai tuna selengkapnya dapat dilihat pada Gambar 2, sedangkan bahan dari masing-masing bagian tercantum dalam Tabel 2.

Snap merupakan alat bantu yang ditambahkan di ujung atas tali cabang utama (branch line) dan disangkutkan di dekat sambungan antara dua tali utama. Snap sangat berguna untuk memudahkan dalam pemasangan tali cabang utama pada tali utama. Pemasangan snap dilakukan sesaat sebelum setting dan dilepaskan kembali pada saat hauling.
Keterangan gambar:

a = Main line (tali utama)
b = Branch line (tali cabang utama)
c = Tali pelampung
d = Pelampung
E = Snap
F = Tali cabang
G = Swivel (kili-kili)

H = Sekiyama
I = Wire leader
J = Pancing

Gambar 2. Konstruksi alat tangkap rawai tuna yang digunakan dalam percobaan.
<table>
<thead>
<tr>
<th>Nama</th>
<th>Bahan</th>
<th>Diameter & Nomor</th>
<th>Panjang (m)</th>
<th>Jumlah (pt & bh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tali Utama</td>
<td>Vinylon</td>
<td>6,0 mm</td>
<td>50</td>
<td>9 pt</td>
</tr>
<tr>
<td>Tali Cabang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Tali cabang</td>
<td>Vinylon</td>
<td>4,0 mm</td>
<td>20</td>
<td>8 pt</td>
</tr>
<tr>
<td>-Swivel</td>
<td>Kuningan</td>
<td>No.60</td>
<td>0,05</td>
<td>8 bh</td>
</tr>
<tr>
<td>-Sekiyama</td>
<td>Wire dibalut cotton</td>
<td>3,0 mm</td>
<td>10</td>
<td>8 pt</td>
</tr>
<tr>
<td>-Wire leader</td>
<td>Kawat baja</td>
<td>No.30</td>
<td>2,50</td>
<td>8 pt</td>
</tr>
<tr>
<td>-Pancing</td>
<td>Baja anti</td>
<td>No.5</td>
<td>0,070</td>
<td>8 bh</td>
</tr>
<tr>
<td>-Snap</td>
<td>Kawat anti karat</td>
<td></td>
<td>0,125</td>
<td>8 bh</td>
</tr>
<tr>
<td>Tali pelampung</td>
<td>Vinylon</td>
<td>6,0 mm</td>
<td>30</td>
<td>1 pt</td>
</tr>
<tr>
<td>Pelampung</td>
<td>Plastik</td>
<td>300 mm</td>
<td>-</td>
<td>1 bh</td>
</tr>
</tbody>
</table>

Keterangan: pt = potong
bh = buah

Alat bantu yang digunakan dalam pengoperasian alat tangkap rawai tuna adalah:

memudahkan dalam pencarian rawai tuna apabila putus pada saat hauling;
(2) RDF, berguna untuk menangkap sinyal yang dikeluarkan oleh radio buoy;
(3) Line hauler, digunakan sebagai alat bantu untuk menarik tali pada saat hauling;
(4) Roller, digunakan sebagai alat bantu untuk mempermudah berjalannya tali utama dari dalam air laut ke line hauler dan menjaga supaya tali utama tidak bergesekan dengan lambung kapal bagian atas.

4.5 Pengoperasian Rawai Tuna

4.5.1 Penurunan alat tangkap (Setting).

Penurunan atau penglepasan alat tangkap rawai tuna dilaksanakan di buritan kapal pada waktu sebelum matahari terbit atau sekitar pukul 05.30. Bila jumlah pancing yang akan diturunkan lebih banyak, setting dilakukan lebih awal. Sebelum pelaksanaan setting, ada beberapa hal yang perlu dipersiapkan, yaitu:
(1) Mempersiapkan umpan, radio buoy, basket alat tangkap dan kesiapan anak buah kapal;
(2) Menentukan haluan setting, diusahakan angin datang dari buritan kapal. Hal ini dimaksudkan supaya pada saat hauling mudah mengendalikan jalannya kapal, karena angin berasal dari depan.
Kecepatan petugas yang melemparkan pancing berumpan ke dalam air sangat menentukan letak pancing di dalam air. Penurunan alat tangkap atau pelemparan pancing yang cepat, menyebabkan jarak antara dua pelampung di dalam air menjadi dekat, sehingga kedalaman pancing bertambah dalam. Demikian juga kecepatan kapal sangat mempengaruhi kedalaman mata pancing. Apabila kecepatan kapal ditambah dengan asumsi kecepatan atau waktu yang dibutuhkan untuk setting konstan, maka rawai tuna yang diturunkan menjadi renggang, sehingga kedalaman pancing akan berkurang.

Urutan pelaksanaan setting adalah sebagai berikut:

(1) Setiap basket rawai tuna disusun memanjang di atas yang satu dengan basket lainnya. Di setiap sambungan antara basket dan basket diikatkan sebuah tali pelampung dan di ujungnya dipasangkan sebuah pelampung;

(2) Setting dimulai, diawali dengan penglepasan bendera tanda dengan tiang bambu sepanjang 7 meter;

(3) Segulung demi segulung tali utama dilemparkan ke laut dan setiap 9 gulung atau satu basket diselingi dengan pelemparan tali pelampung dan pelampungnya;

(4) Setiap pancing dipasangi umpan menurut urutan jenisnya, kemudian dilempar ke laut. Snap pada ujung tali cabang utama dikaitkan pada tali utama, tepatnya dikaitkan pada bagian sebelum sambungan antar tali
utama. Hal ini dimaksudkan supaya pelepasan snap pada saat hauling tidak menyangkut pada sambungan;

(5) Pada akhir rangkaian tali utama diberi bambu bendera sebagai tanda. Pada awal dan pertengahan rangkaian rawai tuna dipasang radio buoy.

4.5.2 Penarikan alat tangkap (Hauling)

Setelah alat tangkap sekitar 5 - 6 jam di dalam air, dilakukan penarikan alat tangkap (hauling) ke atas geladak kapal bagian depan dengan bantuan alat penarik tali (line hauler). Line hauler dipasang sekitar 90 cm dari tepi lambung kanan, sedangkan roller dipasang pada tepi lambung kanan sejajar line hauler.

Tali utama ditarik line hauler yang terlebih dulu melewati roller dan tertumpuk pada meja di bawah roda line hauler. Kemudian tumpukan tali utama digeser ke meja panjang di sampingnya untuk disusun dan diikat per basket.

Pada saat tali cabang utama mendekati roller, snap ditangkap dan dilepaskan dari tali utama. Kemudian tali cabang utama digulung dengan rapi, diikat dan disusun setiap 10 gulungan dan selanjutnya diikat menjadi satu.

Tuna yang tertangkap diangkat ke geladak dan dilepaskan dari mata pancing. Tuna yang masih hidup dimatikan lebih dulu dengan cara menusuk bagian atas kepala ikan. Kemudian ikan disiangi dengan membuang isi
perut dan insang. Setelah darah dan lendir ikan dibersihkan, ikan langsung dimasukkan ke dalam palka untuk didinginkan. Ikan disusun dalam timbunan es curah.

Hasil tangkapan rawai tuna dicatat dalam tabel hasil tangkap. Pencatatan meliputi jumlah, berat dan jenis ikan, serta nomor pancing tempat terkaitnya ikan.
5. HASIL DAN PEMBAHASAN

5.1 Hasil Penelitian

Hasil tangkapan rawai tuna seluruhnya berjumlah 61 ekor atau 1862 kg, terdiri dari lima jenis ikan yang dapat dikelompokkan menjadi tiga genus. Berat ikan yang tertangkap berkisar antara 16 - 60 kg per ekor. Hasil tangkapan didominasi oleh yellowfin tuna sebanyak 20 ekor (32,78%) atau 608 kg (32,65%) dan bigeye tuna sebanyak 18 ekor (29,51%) atau 634 kg (34,05%). Jenis ikan lainnya yang tertangkap adalah albacore dan sword fish. Sword fish merupakan gabungan dari ikan marlin, layaran dan ikan pedang. Komposisi hasil tangkapan selengkapnya dapat dilihat pada Tabel 3.

Berdasarkan jenis umpan yang digunakan, hasil tangkapan paling banyak diperoleh dengan menggunakan umpan bandeng, yaitu 20 ekor (32,78%) atau 649 kg (34,85%), terdiri dari lima jenis ikan dari tiga genus. Selanjutnya adalah hasil tangkapan dengan menggunakan umpan cumi-cumi, berjumlah 14 ekor (22,95 %) atau 439 kg (23,58%), terdiri dari lima jenis ikan dari tiga genus. Hasil tangkapan dengan menggunakan umpan layang sebanyak 14 ekor (22,95%) atau 425 kg (22,83%), terdiri dari lima jenis ikan tiga genus. Hasil tangkapan dengan menggunakan umpan kembung berjumlah 13 ekor (21,32%) atau 349 kg (18,74 %), terdiri dari lima jenis dari tiga genus.

<table>
<thead>
<tr>
<th>JENIS IKAN</th>
<th>HASIL TANGKAPAN PER JENIS UMPAN</th>
<th>TOTAL</th>
<th>PERSENTASE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CUMI-CUMI</td>
<td>LAYANG</td>
<td>KEMBUNG</td>
</tr>
<tr>
<td>Bigeye tuna</td>
<td>4 ekor</td>
<td>142 kg</td>
<td>5 ekor</td>
</tr>
<tr>
<td>Yellowfin tuna</td>
<td>5 ekor</td>
<td>151 kg</td>
<td>5 ekor</td>
</tr>
<tr>
<td>Albacore</td>
<td>3 ekor</td>
<td>68 kg</td>
<td>2 ekor</td>
</tr>
<tr>
<td>Sword fish</td>
<td>1 ekor</td>
<td>30 kg</td>
<td>1 ekor</td>
</tr>
<tr>
<td>Shark</td>
<td>1 ekor</td>
<td>48 kg</td>
<td>1 ekor</td>
</tr>
<tr>
<td>TOTAL (ekor)</td>
<td>14</td>
<td>439</td>
<td>14</td>
</tr>
<tr>
<td>TOTAL (kg)</td>
<td>14</td>
<td>439</td>
<td>14</td>
</tr>
<tr>
<td>PERSENTASE (%)</td>
<td>22,95</td>
<td>22,95</td>
<td>21,32</td>
</tr>
</tbody>
</table>

Bila dilihat berdasarkan haulling yang dilakukan, hasil tangkapan terbanyak diperoleh pada haulling yang ke 11. Hasil tangkapan tersebut diperoleh sebanyak 7 ekor (11,48 %) dengan berat 249 kg (13,38 %), terdiri dari empat jenis ikan dari dua genus. Untuk lebih lengkapnya dapat dilihat pada Tabel 4.
Tabel 4: Komposisi hasil tangkapan rawai tuna di perairan Kepulauan Enggano per hauling.

<table>
<thead>
<tr>
<th>HAULING KE</th>
<th>JENIS</th>
<th>JENIS UMPAN</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CURI - COMI</td>
<td>LAYANG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ekor</td>
<td>kg</td>
</tr>
<tr>
<td>1</td>
<td>Bigeye Tuna</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Bigeye Tuna</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Bigeye Tuna</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Bigeye Tuna</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Bigeye Tuna</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Bigeye Tuna</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KE</td>
<td>HASIL TANGKAP</td>
<td>JENIS</td>
<td>JENIS UMPAN</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CUMICUMI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ekor</td>
<td>kg</td>
</tr>
<tr>
<td>7</td>
<td>Bigeye Tuna</td>
<td>1 34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Bigeye Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Bigeye Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Bigeye Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Bigeye Tuna</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Bigeye Tuna</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yellowfin Tuna</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Albacore</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sword Fish</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Shark</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>14</td>
<td>439</td>
<td>14</td>
</tr>
</tbody>
</table>
5.2 Hasil Analisis Statistik

Berdasarkan analisis "uji kenormalan Lilliefors" terhadap jumlah hasil tangkapan rawai tuna dengan 4 (empat) jenis umpan yang berbeda diperoleh \(L_{max} \) lebih kecil dari \(L_{0.05}(12) \). Hal ini menunjukkan bahwa data menyebar normal (Lampiran 2). Selanjutnya dilakukan uji statistik dengan Rancangan Acak Lengkap tentang pengaruh penggunaan umpan yang berbeda.

Analisis uji F dengan rancangan acak lengkap terhadap hasil tangkapan rawai tuna dengan 4 perlakuan ikan umpan dan 12 kali fishing, menunjukkan hasil tidak berbeda nyata (non significant). Hal ini berarti bahwa secara statistik penggunaan empat jenis umpan yang berbeda tidak berpengaruh terhadap hasil tangkapan total rawai tuna. Selengkapnya dapat dilihat dalam Lampiran 3.

Uji F terhadap berat dari lima jenis ikan hasil tangkapan menunjukkan bahwa F hitung lebih kecil dari F tabel, yaitu tidak berbeda nyata (non significant). Hal ini berarti bahwa secara statistik penggunaan empat jenis umpan yang berbeda tidak memberikan pengaruh terhadap berat ikan hasil tangkapan rawai tuna. Untuk lebih jelasnya dapat dilihat pada Lampiran 4. Walaupun secara statistik tidak menunjukkan adanya pengaruh, namun pada data yang diperoleh secara nyata menunjukkan adanya perbedaan. Dalam Tabel 3 dapat dilihat bahwa umpan bandeng memberikan hasil tangkapan sebanyak 20 ekor
(32,78%) dengan berat 649 kg (34,85%), sedangkan umpan kembung hanya menghasilkan tangkapan 13 ekor (21,32%) dengan berat 349 kg (18,78%). Dari angka tersebut telah terlihat bahwa penggunaan empat jenis umpan yang berbeda memberi pengaruh terhadap berat ikan hasil tangkapan.

Demikian juga dengan perhitungan rata-rata berat ikan hasil tangkapan. Bigeye tuna yang tertangkap berjumlah 18 ekor dengan berat 634 kg, sehingga berat rata-rata per ekornya adalah 35 kg. Berbeda dengan yellowfin tuna, tertangkap sebanyak 20 ekor dengan berat 604 kg atau berat rata-rata per ekornya adalah 30 kg.

Hook rate (laju pancing) pada setiap hauling dengan menggunakan 256 buah pancing berkisar antara 1,17 - 2,73 dengan rata-rata 1,98 (Tabel 5). Hook rate tertinggi terdapat pada hauling ke 9, 11 dan 12. Walaupun nilai hook rate dari ketiga hauling sama, namun berdasarkan jumlah dan berat tuna yang tertangkap, hauling ke 11 adalah yang terbaik.

Berdasarkan jenis umpan yang digunakan, umpan bandeng menghasilkan hook rate rata-rata tertinggi yaitu 0,65 (Tabel 5). Hook rate rata-rata untuk umpan cumi-cumi dan umpan layang adalah sebesar 0,45, sedangkan hook rate umpan kembung 0,43.

<table>
<thead>
<tr>
<th>HAULING KE</th>
<th>CUMI-CUMI</th>
<th>LAYANG</th>
<th>KEMBUNG</th>
<th>BANDENG</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Z</td>
<td>X Z</td>
<td>X Z</td>
<td>X Z</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 0</td>
<td>2 0,78</td>
<td>1 0,39</td>
<td>1 0,39</td>
<td>4 1,56</td>
</tr>
<tr>
<td>2</td>
<td>0 0</td>
<td>1 0,39</td>
<td>1 0,39</td>
<td>1 0,39</td>
<td>3 1,17</td>
</tr>
<tr>
<td>3</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>3 1,17</td>
<td>3 1,17</td>
</tr>
<tr>
<td>4</td>
<td>1 0,39</td>
<td>0 0</td>
<td>3 1,17</td>
<td>0 0</td>
<td>4 1,56</td>
</tr>
<tr>
<td>5</td>
<td>2 0,78</td>
<td>1 0,39</td>
<td>0 0</td>
<td>1 0,39</td>
<td>4 1,56</td>
</tr>
<tr>
<td>6</td>
<td>2 0,78</td>
<td>0 0</td>
<td>1 0,39</td>
<td>2 0,78</td>
<td>5 1,95</td>
</tr>
<tr>
<td>7</td>
<td>1 0,39</td>
<td>0 0</td>
<td>1 0,39</td>
<td>3 1,17</td>
<td>5 1,95</td>
</tr>
<tr>
<td>8</td>
<td>2 0,78</td>
<td>2 0,78</td>
<td>1 0,39</td>
<td>1 0,39</td>
<td>6 2,34</td>
</tr>
<tr>
<td>9</td>
<td>2 0,78</td>
<td>2 0,78</td>
<td>1 0,39</td>
<td>2 0,78</td>
<td>7 2,73</td>
</tr>
<tr>
<td>10</td>
<td>1 0,39</td>
<td>3 1,17</td>
<td>1 0,39</td>
<td>1 0,39</td>
<td>6 2,34</td>
</tr>
<tr>
<td>11</td>
<td>1 0,39</td>
<td>2 0,78</td>
<td>1 0,39</td>
<td>3 1,17</td>
<td>7 2,73</td>
</tr>
<tr>
<td>12</td>
<td>2 0,78</td>
<td>1 0,39</td>
<td>2 0,78</td>
<td>2 0,78</td>
<td>7 2,73</td>
</tr>
<tr>
<td>TOTAL/RATA²</td>
<td>14 0,45</td>
<td>14 0,45</td>
<td>13 0,43</td>
<td>20 0,65</td>
<td>61 1,98</td>
</tr>
</tbody>
</table>

Keterangan: X = ekor
Z = hook rate (laju pancing)

Gambar 3. Hasil tangkap dan hook rate rawai tuna selama percobaan.
5.3 Pembahasan.

Sedikitnya jumlah pancing dengan umpan spesifik yang digunakan, diduga merupakan faktor penyebab hingga hasil tangkapan tidak berbeda nyata secara statistik. Namun secara deskriptif, umpan bandeng yang lebih banyak memberikan hasil tangkapan (20 ekor atau 32,78%) dibandingkan jenis umpan lainnya (13 - 14 ekor atau 21,32 - 22,95%). Dalam hal ini umpan bandeng mempunyai kelebihan dibandingkan dengan jenis umpan lainnya.
Kelebihan tersebut adalah kulitnya lebih mengkilap, badannya lebih lebar dan tahan di dalam air. Karena itu, disarankan agar menggunakan bandeng sebagai umpan. Selain memenuhi persyaratan sebagai umpan, bandeng dapat tersedia sepanjang tahun, karena bandeng telah dibudidayakan.

Penelitian tentang penangkapan tuna dengan alat tangkap longline yang menggunakan tiga jenis umpan di Samudera Hindia dan Laut Flores telah dilakukan oleh Muripto (1981). Dalam penelitian ini dilakukan sebanyak 13 kali setting dengan menggunakan 200 basket (5 pancing per basket) longline. Hasil tangkapan total diperoleh sebanyak 346 ekor dengan rincian sebagai berikut: dengan umpan layang dihasilkan 130 ekor (37,57%), dengan umpan lemuru dihasilkan 112 ekor (32,37%) dan dengan umpan selar bentong dihasilkan 104 ekor (30,06%). Jenis hasil tangkapan yang diperoleh adalah yellowfin tuna sebanyak 193 ekor (55,78%), bigeye tuna sebanyak 21 ekor (6,07%), hiu atau cucut sebanyak 87 ekor (25,15%), cakalang sebanyak 33 ekor (9,54%), sword fish sebanyak 6 ekor (1,73%) dan white marline sebanyak 6 ekor (1,73%). Hook rate (laju pancing) dengan menggunakan 1.000 mata pancing pada setiap hauling berkisar antara 0,8 - 6,0 dengan rata-rata sebesar 2,66. Berdasarkan jenis umpan yang digunakan, umpan layang menghasilkan hook rate rata-rata tertinggi sebesar 1,00. Hook rate rata-rata umpan lemuru sebesar 0,86 dan hook rate rata-rata umpan selar bentong 0,80. Secara visual hasil yang diperoleh tidak banyak berbeda,

Analisis uji t berpasangan terhadap hasil tangkapan longline dengan 3 jenis umpan berbeda menunjukkan hasil sebagai berikut:

1. Penggunaan umpan layang dan selar bentong memberikan hasil tangkapan yang berbeda sangat nyata;
2. Penggunaan umpan layang dan lemuru memberikan hasil tangkapan yang tidak berbeda nyata;
6. KESIMPULAN DAN SARAN

6.1 Kesimpulan.

Hasil tangkapan yang diperoleh selama penelitian berjumlah 61 ekor ikan dengan berat 1862 kg. Hasil tangkapan tuna berjumlah 49 ekor (80%) dengan berat 1465 kg (79%). Hasil tangkapan didominasi oleh yellowfin tuna berjumlah 20 ekor (32,78%) dengan berat 608 kg (32,65%) dan bigeye tuna berjumlah 18 ekor (29,51%) dengan berat 634 kg (34,05%).

Analisis statistik penggunaan empat jenis umpan berbeda dalam pengoperasian rawai tuna tidak menunjukkan perbedaan nyata dalam jumlah dan berat hasil tangkapan, namun secara visual (nilai absolut) penggunaan umpan bandeng memberikan hasil tangkapan lebih banyak dibanding jenis umpan lainnya. Penggunaan umpan bandeng menghasilkan 14 ekor ikan tuna dengan berat 464 kg dan 6 ekor non tuna dengan berat 175 kg. Jenis tuna yang paling banyak tertangkap dengan umpan bandeng adalah yellowfin tuna (Thunnus albacares) sebanyak 7 ekor dengan berat 215 kg.

Hook rate untuk setiap hauling berkisar antara 1,17 - 2,73. Hook rate tertinggi terjadi pada hauling ke 9, 11 dan 12. Hook rate total hasil tangkapan berdasarkan jenis umpan yang digunakan berkisar antara 0,43- 0,65. Hook rate tertinggi diperoleh dengan menggunakan umpan bandeng, yaitu 0,65.
6.2 Saran

Saran-saran yang dapat dikemukakan untuk efisiensi penggunaan umpan dan pengembangan perikanan rawai tuna adalah sebagai berikut:

(1) Dalam pengoperasian rawai tuna disarankan agar menggunakan ikan bandeng sebagai umpan, selain memenuhi persyaratan sebagai umpan, bandeng mempunyai kelebihan dibandingkan jenis umpan lainnya dan bandeng dapat tersedia sepanjang tahun karena telah dibudidayakan;

(2) Dalam rangka pengembangan penelitian perikanan rawai tuna, terutama yang berhubungan dengan penggunaan umpan, sebaiknya dilakukan penelitian lanjutan yang menggunakan beberapa jenis umpan yang berbeda yang ditinjau bersamaan dengan beberapa parameter lainnya, seperti suhu pada kedalaman tertentu, panjang ikan, kedalaman pancing dan lainnya.
DAFTAR PUSTAKA

AYODOHYOA. 1972. Fish Catching Technique. Correspondence Course Centre, Direktorat Jenderal Perikanan, Departemen Pertanian, Jakarta. 46 hal.

MURANTO, 1972. Managemen Usaha Penangkapan, Correspondence Course Centre. Direktorat Djenderal Perikanan, Departemen Pertanian, Djakarta. 48 hal.

RIWAYAT HIDUP

Penulis dilahirkan di Mojokerto, Jawa Timur, tanggal 16 Agustus 1957. Penulis merupakan anak ke 5 dari 6 bersaudara, putra Bapak Sastro Soediro (almarhum) dan Ibu Toyibah (almarhumah).

Lampiran 1. Sketsa pemasangan umpan pada pancing rawai tuna selama percobaan.

1. Basket ke 1 - 8

2. Basket ke 9 - 16

3. Basket ke 17 - 24

4. Basket ke 25 - 32

Keterangan: A = Cumi-cumi, B = Layang, C = Kembung, D = Bandeng
Lampiran 2. Suhu permukaan laut dan Posisi stasiun percobaan.

<table>
<thead>
<tr>
<th>URUTAN SETTING DAN TANGGAL</th>
<th>STASIUN/POSISSI SETTING</th>
<th>HALUAN SETTING (°)</th>
<th>SUHU PERMUKAAN AIR LAUT (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 31-03-95</td>
<td>05° 40.3’ S 102° 47.8’ T</td>
<td>060</td>
<td>28,0</td>
</tr>
<tr>
<td>2 01-04-95</td>
<td>05° 52.7’ S 103° 03.0’ T</td>
<td>300</td>
<td>27,9</td>
</tr>
<tr>
<td>4 03-04-95</td>
<td>05° 57.1’ S 102° 58.6’ T</td>
<td>265</td>
<td>28,2</td>
</tr>
<tr>
<td>6 05-04-95</td>
<td>06° 05.2’ S 102° 41.6’ T</td>
<td>235</td>
<td>28,6</td>
</tr>
<tr>
<td>7 06-04-95</td>
<td>06° 08.8’ S 102° 48.6’ T</td>
<td>295</td>
<td>28,4</td>
</tr>
<tr>
<td>8 08-04-95</td>
<td>06° 12.3’ S 103° 19.0’ T</td>
<td>155</td>
<td>28,0</td>
</tr>
<tr>
<td>9 09-04-95</td>
<td>06° 10.4’ S 102° 40.5’ T</td>
<td>240</td>
<td>28,2</td>
</tr>
<tr>
<td>10 10-04-95</td>
<td>06° 16.6’ S 103° 04.0’ T</td>
<td>060</td>
<td>28,0</td>
</tr>
<tr>
<td>11 11-04-95</td>
<td>06° 24.2’ S 102° 43.8’ T</td>
<td>285</td>
<td>28,1</td>
</tr>
<tr>
<td>12 12-04-95</td>
<td>06° 31.8’ S 103° 18.7’ T</td>
<td>145</td>
<td>27,9</td>
</tr>
</tbody>
</table>

Lampiran 3. Peta Lokasi Percobaan Penangkapan Dengan Rawai Tuna
Lampiran 4. Perhitungan uji kenormalan Lilliefors terhadap jumlah hasil tangkapan pada setiap hauling.

Nilai pengamatan: 4, 3, 3, 4, 4, 5, 5, 6, 7, 6, 7, 7.

\[
\bar{Y} = \frac{1}{n} \sum Y_i = \frac{1}{12}(4+3+3+4+4+5+5+6+7+6+7+7) = 61/12 = 5,08
\]

\[
S = \sqrt{\frac{1}{n-1} \sum (Y_i - \bar{Y})^2} = \sqrt{\frac{1}{11} \left(\sum Y^2 - (\sum Y)^2/n \right)} = \sqrt{\frac{1}{11} (437-420)} = 1,508
\]

\[
z_1 = \frac{Y_1 - \bar{Y}}{S} = \frac{4 - 5,08}{1,508} = -0,7176
\]

\[
z_2 = \frac{Y_2 - \bar{Y}}{S} = \frac{3 - 5,08}{1,508} = -1,382
\]

\[
z_3 = \frac{Y_3 - \bar{Y}}{S} = \frac{3 - 5,08}{1,508} = -1,382
\]

\[
z_4 = \frac{Y_4 - \bar{Y}}{S} = \frac{4 - 5,08}{1,508} = -0,7176
\]

\[
z_5 = \frac{Y_5 - \bar{Y}}{S} = \frac{4 - 5,08}{1,508} = -0,7176
\]

\[
z_6 = \frac{Y_6 - \bar{Y}}{S} = \frac{5 - 5,08}{1,508} = -0,332
\]

\[
z_7 = \frac{Y_7 - \bar{Y}}{S} = \frac{5 - 5,08}{1,508} = -0,332
\]

\[
z_8 = \frac{Y_8 - \bar{Y}}{S} = \frac{6 - 5,08}{1,508} = 0,6113
\]

\[
z_9 = \frac{Y_9 - \bar{Y}}{S} = \frac{7 - 5,08}{1,508} = 1,828
\]

\[
z_{10} = \frac{Y_{10} - \bar{Y}}{S} = \frac{6 - 5,08}{1,508} = 0,6113
\]

\[
z_{11} = \frac{Y_{11} - \bar{Y}}{S} = \frac{7 - 5,08}{1,508} = 1,828
\]

\[
z_{12} = \frac{Y_{12} - \bar{Y}}{S} = \frac{7 - 5,08}{1,508} = 1,828
\]
Sebaran normal baku:

\[F_1 (z_1) = F (-0.7176) = 0.500 - 0.2642 = 0.2358 \]
\[F_2 (z_2) = F (-1.382) = 0.500 - 0.4163 = 0.0837 \]
\[F_3 (z_3) = F (-1.382) = 0.500 - 0.4183 = 0.0837 \]
\[F_4 (z_4) = F (-0.7176) = 0.500 - 0.2642 = 0.2358 \]
\[F_5 (z_5) = F (-0.7176) = 0.500 - 0.2642 = 0.2358 \]
\[F_6 (z_6) = F (-0.332) = 0.500 - 0.1285 = 0.3715 \]
\[F_7 (z_7) = F (-0.332) = 0.500 - 0.1285 = 0.3715 \]
\[F_8 (z_8) = F (0.6113) = 0.500 + 0.2287 = 0.7287 \]
\[F_9 (z_9) = F (1.828) = 0.500 + 0.4662 = 0.9662 \]
\[F_{10} (z_{10}) = F (0.6113) = 0.500 + 0.2287 = 0.2358 \]
\[F_{11} (z_{11}) = F (1.828) = 0.500 + 0.4662 = 0.9662 \]
\[F_{12} (z_{12}) = F (1.828) = 0.500 + 0.4662 = 0.9662 \]

Nilai Sebaran Empirik Baku:

\[S (z_1) = F (-0.7176) = 1/12 = 0.083 \]
\[S (z_2) = F (-1.382) = 2/12 = 0.167 \]
\[S (z_3) = F (-1.382) = 3/12 = 0.250 \]
\[S (z_4) = F (-0.7176) = 4/12 = 0.333 \]
\[S (z_5) = F (-0.7176) = 5/12 = 0.4166 \]
\[S (z_6) = F (-0.332) = 6/12 = 0.5000 \]
\[S (z_7) = F (-0.332) = 7/12 = 0.583 \]
\[S (z_8) = F (0.6113) = 8/12 = 0.667 \]
\[S (z_9) = F (1.828) = 9/12 = 0.750 \]
\[S (z_{10}) = F (0.6113) = 10/12 = 0.833 \]
\[S (z_{11}) = F (1.828) = 11/12 = 0.917 \]
\[S (z_{12}) = F (1.828) = 12/12 = 1 \]
Nilai Kenormalan Lilliefors (L):

\[
\begin{align*}
[F(z_2) - S(z_2)] &= [0.0837 - 0.167] = 0.0833 \\
[F(z_3) - S(z_3)] &= [0.0837 - 0.250] = 0.1663 \\
[F(z_4) - S(z_4)] &= [0.2358 - 0.333] = 0.0975 \\
[F(z_5) - S(z_5)] &= [0.2358 - 0.4166] = 0.1808 \\
[F(z_6) - S(z_6)] &= [0.3715 - 0.5000] = 0.1285 \\
[F(z_7) - S(z_7)] &= [0.3715 - 0.583] = 0.2115 \\
[F(z_8) - S(z_8)] &= [0.7287 - 0.6667] = 0.062 \\
[F(z_9) - S(z_9)] &= [0.9662 - 0.7500] = 0.2162 (*) \\
[F(z_{10}) - S(z_{10})] &= [0.7287 - 0.8333] = 0.1043 \\
[F(z_{11}) - S(z_{11})] &= [0.9662 - 0.9166] = 0.0502 \\
[F(z_{12}) - S(z_{12})] &= [0.9662 - 1] = 0.0338
\end{align*}
\]

\[
L = 0.2162 \quad \Rightarrow \quad L < L_{0.05(12)}, \text{terima } H_0
\]

Berarti data menyebar normal.
Lampiran 5. Perhitungan sidik ragam hasil tangkapan (ekor dan kg) rawai tuna dengan menggunakan empat jenis umpan berbeda.

Komposisi Hasil Tangkapan Rawai Tuna Dalam 12 Kali Hauling

<table>
<thead>
<tr>
<th>HAULING</th>
<th>HASIL TANGKAP DENGAN UMPAR...</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CUMI-CUMI</td>
<td>LAYANG</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>TOTAL</td>
<td>14</td>
<td>439</td>
</tr>
</tbody>
</table>

Perhitungan sidik ragam untuk jumlah (ekor) hasil tangkapan:

- Faktor koreksi = $\frac{61^2}{4 \times 12} = 77,5208$
- JK perlakuan = $\{(14^2+14^2+13^2+20^2)/12\} - 77,5208 = 80,0833 - 77,5208 = 2,5625$
- JK Total = $113 - 77,5208 = 35,4792$
- JK sisa = JK total - JK perlakuan = $35,4792 - 2,5625 = 32,9167$
- F hitung perlakuan = KT perl. : KT sisa = 0,8542 : 0,7481 = 1,1418
Analisis Keragaman:

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>DB</th>
<th>J K</th>
<th>K T</th>
<th>F hitung</th>
<th>F 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan Sisa</td>
<td>44</td>
<td>32.9167</td>
<td>0.7481</td>
<td>1.1418</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.5625</td>
<td>0.8542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>35.4792</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F hitung < F tabel → tolak H₀ (non significant)

Perhitungan sidik ragam untuk berat (kg) hasil tangkapan:

- Faktor koreksi = $1862^2 = 72.230$
- JK perlakuan = $\frac{4(439^2+425^2+349^2+649^2)}{12} - 72.230 = 4.132$
- JK Total = $142^2+169^2+117^2+\ldots+50^2+72^2 - 72.23 = 241.998 - 72.230 = 169.768$
- JK sisa = JK total - JK perlakuan = 169.768 - 4.132 = 165.636
- F hitung perlakuan = KT perl. : KT sisa = 0.366

Analisis Keragaman:

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>DB</th>
<th>J K</th>
<th>K T</th>
<th>F hitung</th>
<th>F 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan Sisa</td>
<td>44</td>
<td>165.636</td>
<td>3.764</td>
<td>0.366</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.132</td>
<td>1.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>169.768</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F hitung < F tabel → tolak H₀ (non significant)
Lampiran 6. Gambar beberapa jenis ikan yang biasa tertangkap dengan rawai tuna (Sawada, 1977)

(1) Tuna mata besar, Bigeye tuna, *Thunnus obesus* (Lowe, 1839)

(2) Madidihang, Yellowfin tuna, *Thunnus albacares* (Bonnaterre, 1788)

(3) Albakora, *Thunnus alalunga* (Bonnaterre, 1788)
(4) Setuhuk loreng, *Makaira mitsukurii* (Jordan dan Snyder, 1901)

(5) Setuhuk hitam, *Makaira makaza* (Jordan dan Snyder, 1901)

(6) Ikan pedang, *Xiphias gladius* (Linnaeus, 1758)
(7) Ikan layaran *Istiophorus orientalis* (Temminck dan Schlegel, 1844)

(8) Cucut martil, *Sphyra blochii* (Cuvier, 1917)

(9) Cucut, *Carcharias macloti* (Muller dan Henle, 1841)
Lampiran 7. Gambar empat jenis umpan yang digunakan dalam percobaan penangkapan dengan rawai tuna.

(1) Cumi-cumi (Loligo sp.)

(2) Bandeng (Chanos chanos).

(3) Kembung (Rastrelliger sp.).

(4) Layang (Decapterus sp.).