LAJU DEKOMPOSISI SERASAH MANGROVE Rhizophora mucronata Lamk
DI PULAU UNTUNG JAWA, KEPULAUAN SERIBU, JAKARTA

Oleh :
TRIANI HANDAYANI
C06400052

SKRIPSI

INSTITUT PERTANIAN
BOGOR

PROGRAM STUDI ILMU KELAUTAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2004
RINGKASAN

Hutan mangrove mampu menghasilkan bahan organik yang tinggi sekitar 90% partikel organik yang ada di dalam air dilaporkan berasal dari pohon-pohon tersebut terutama daunya, dan berkontribusi 35-60% kandungan unsur hara yang larut di perairan pantai (Brown, 1984 dalam Nirwani, 1999). Karena itu sangat penting dalam menentukan produktivitas perairan. Penelitian tentang dinamika serasah mangrove berupa produksi dan laju dekomposisi mempunyai arti penting karena serasah merupakan sumberan terbesar dari ekosistem mangrove terhadap kesuburan estuaria dan perairan pantai melalui jalan detritus atau dekomposisi. Tujuan penelitian ini adalah untuk mengetahui produksi dan laju dekomposisi serasah mangrove dan kontribusinya bagi kesuburan perairan sekitarnya.

Penelitian ini dilaksanakan selama 75 hari pada bulan Juli-September 2003, di kawasan hutan mangrove di Kelurahan Pulau Untung Jawa, Kecamatan Kepulauan Seribu Selatan, DKI Jakarta, sedangkan kegiatan analisis unsur hara dilakukan di Laboratorium Tanah Fakultas Pertanian IPB Bogor. Alat yang digunakan untuk mengukur produksi serasah adalah jala penampungan yang berukuran 1 m x 1 m berbatu dari jaring nilon sedangkan untuk pengukuran laju dekomposisi serasah digunakan litter bag (20x30 cm) dengan mata jaring berukuran 1 cm.

Banyaknya produksi serasah yang gugur ditentukan dengan memasang jala penampung serasah pada masing-masing stasiun. Pengambilan jatuhan serasah dilakukan setiap 15 hari sekali selama 75 hari. Komponen-komponen serasah dipisahkan menurut bagian-bagiannya, yaitu daun, bunga, ranting dan buah, kemudian ditimbang bobotnya. Serasah tersebut kemudian dikeringkan didalam oven dengan suhu 80 °C sampai tercapai berat konstan / selama 2 x 24 jam dan dinyatakan dalam satuan gr/m²/15 hari.

Penentuan kadar nitrogen dan fosfor dilakukan untuk mengetahui lebih lanjut mengenai kontribusi unsur hara dalam hal ini Nitrogen dan Fosfor yang merupakan hasil dari pendekomposisian serasah daun mangrove. Analisis unsur hara nitrogen dan fosfor dilakukan di 4 kali selama pendekomposisian serasah, yaitu diawal pendekomposisian, hari ke-15, hari ke-45, dan hari ke-75. metode yang digunakan untuk menentukan unsur nitrogen dengan menggunakan metode Kjelhadi dan kandungan fosfor dengan metode pengabuan kering dengan ekstraksi HCl 25%.

Besarnya produksi rata-rata serasah yang dihasilkan pada tiap-tiap stasiun menunjukkan bahwa produksi yang terbesar adalah serasah daun yang menyumbang sebesar 85 % dari keseluruhan serasah yang tertampung dalam jala penampung, hal ini dikarenakan serasah daun mempunyai kemampuan yang relatif tinggi untuk gugur dibandingkan dengan komponen serasah lainnya. Hal ini juga disebabkan oleh bentuk daun yang lebar, tipis yang
mudah digugurkan oleh angin dan curah hujan atau dapat pula disebabkan oleh sifat fisiologis dari daun yang penting dalam proses untuk membuat bahan makanan. Serasah lain yang berupa ranting menyumbang sebesar 7 % dan organ reproduksi menyumbang sebesar 8 % dari total serasah.

Perubahan bobot kering serasah daun *Rhizophora mucronata* mengalami penurunan yang bervariasi pada ketiga stasiun pengamatan. Penurunan bobot kering terbesar terjadi pada stasiun 1 yaitu pada daerah pasang surut sebesar 4.15 g/m² dengan persentase penyusutan bobot serasah (bobot serasah yang hilang / terdekomposisi) sebesar 79.25%. Pada stasiun 2 dan stasiun 3 penyusutan serasah tertgolong rendah yaitu berturut-turut sebesar 5.19 g/m dan 5.61 g/m² dengan prosentase sisa dekomposisi serasah sebesar 74.05% dan 71.95%. Ketiga stasiun tersebut juga memiliki kesamaan respon terhadap waktu dekomposisi. Semakin lama waktu dekomposisi, semakin rendah laju dekomposisi serasah per periodenya.

Serasah daun bakau yang mengalami proses pendekomposisian selama 75 hari mempunyai kandungan nitrogen tertinggi pada stasiun 1 yaitu sebesar 0.96%. apabila daun ini mangalami penguraian, sebagian besar kandungan nitrogen yang dilepaskan akan diserap kembali oleh pohon-pohon bakau, sebagian digunakan oleh jasad-jasad renik dalam tanah hutan bakau, sebagian lagi akan larut dan terbawa oleh air surut ke perairan disekitarnya. Untuk kandungan fosfor yang didapatkan mengalami peningkatan pada tahap akhir pendekomposisian tetapi tidak setinggi nitrogen yang dihasilkan.

Berdasarkan hasil penelitian dapat disimpulkan bahwa dengan tingginya produksi serasah yang dihasilkan dalam bentuk daun yaitu sebesar 85 % menyebabkan nilai laju dekomposisi serasah daun yang tinggi untuk produktivitas perairan serta mampu menghasilkan unsur hara Nitrogen sebesar 0,72-0,96% dan unsur Fosfor sebesar 0,38-0,54% untuk kesuburan perairan sekitarnya.
LAJU DEKOMPOSISI SERASAHE MANGROVE *Rhizophora mucronata* Lamk
DI PULAU UNTUNG JAWA, KEPULAUAN SERIBU, JAKARTA

Oleh:
TRIANI HANDAYANI
C06400052

SKRIPSI
Sebagai Salah Satu Syarat untuk
Memperoleh Gelar Sarjana
Pada Fakultas Perikanan dan ILMU KELAUTAN

PROGRAM STUDI ILMU KELAUTAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2004
SKRIPSI

Judul skripsi : LAJU DEKOMPOSISI SERASAH MANGROVE Rhizophora mucronata DI PULAU UNTUNG JAWA, KEPULAUAN SERIBU, JAKARTA
Nama Mahasiswa : Trian Handayani
Nomor Pokok : C06400052
Program Studi : Ilmu Kelautan

Menyetujui:

I. KOMISI PEMBIMBING

Dr. Ir. Joko Purwanto, DEA
Ketua

Ir. Agustinus M. Samosir M. Phil
Anggota

II. FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Dr. Ir. I. Wayan Nurjaya, MSc
Ketua Program Studi

Dr. Ir. Agus Oman Sudrajat, MSc
Wakil Dekan I

Tanggal ujian : 9 Juni 2004
KATA PENGANTAR

Segala puji bagi Allah SWT, pencipta semesta alam dan segala isinya, tempat memohon ampunan dan segala pertolongan. Penulis panjatkan syukur kepada-Nya atas rahmat dan hidayah yang telah diberikan kepada penulis sehingga penyusunan skripsi ini dapat diselesaikan.

Skripsi yang ada dih adapan pembaca ini merupakan salah satu syarat untuk memperoleh gelar sarjana pada Fakultas Perikanan dan Ilmu Kelautan, Insitut Pertanian Bogor. Penulis mengucapkan terima kasih kepada Bapak Dr.Ir Joko Purwanto, DEA selaku pembimbing 1 dan Bapak Ir. Agustinus M Samosir, Mphil selaku pembimbing 2 atas segala bimbingan yang diberikan kepada penulis, dan semua pihak yang telah membantu penulis dalam menyelesaikan penulisan skripsi ini.

Masukan dan saran sangat penulis harapkan untuk perbaikan tulisan ini, penulis berharap semoga tulisan ini dapat bermanfaat bagi pembaca semua.

Bogor, Juni 2004

Penulis
Ucapan Terima Kasih

Semangat dan kerja keras diri sendiri tidaklah sempurna tanpa dorongan dan bantuan yang diberikan orang lain. Untuk itu, ucap tulus terima kasih dari lubuk hati yang terdalam penulis sampaikan pada:

- Allah SWA pemilik segalanya..
- Abah dan Mama Tercinta atas segala kebesaran kasih sayangnya yang tak henti-henti tercurah untuk penulis. *The dream come true ‘bah...*
- Mbak Ika, abang ucha dan de’ catur atas segala sayang yang tulus dan kecerian yang tercipta kepada penulis. Bahagianya memiliki kalian...
- Sendi Ardiannya Syahputra ... Thank atas segala kesetiaan dan pengertian yang tercurah untuk ku... your’s my little star in my heart...
- Sahabat sejati Irma, Sari and Ira... thank dah ngertiin ntie dalam segala suasana. love you forever.. I wish it’s never over..
- Sahabat seperjuangan Seno, Kodel, Fahmi, Tina, Dita, Pulalo, Eling, Frans, Cokri, Tri, Andis, Icha, Esti, Yeni, Fanny, Dini, Rini, Dondy, Iqbal dan all ITK 37 atas kebersamaannya yang indah selama ini. Ayo semangat tetep kompak yach..
- Andika house-ku thanx atas huniannya yang nyaman. Ijo, Eka, sifa (ayo semangat skripsi), M heni, M’indro, M’nela, Utie, Elen, Neng Dewi,uthe, Filtri, Werli, Ani, Pipit, Nokki, Rachma (Jangan pada berantem terus yach!!!)
- Semua orang yang telah dan akan hadir dalam kehidupanku... semoga kisah ini akan indah tercipta..
DAFTAR ISI

DAFTAR ISI ... vii
DAFTAR TABEL .. ix
DAFTAR GAMBAR ... x
DAFTAR LAMPIRAN ... xi

BAB I. PENDAHULUAN

1.1 Latar Belakang .. 1
1.2 Tujuan ... 2

BAB II. TINJAUAN PUSTAKA

2.1 Pengertian Mangrove ... 3
2.2 Produksi Primer Mangrove ... 4
2.3 Produksi Serasah Daun .. 5
2.4 Dekomposisi Serasah ... 6
2.5 Faktor-faktor yang Mempengaruhi Dekomposisi .. 9
2.6 Unsur Hara Hasil Dekomposisi ... 10

BAB III. METODOLOGI

3.1 Waktu dan Lokasi ... 14
3.2 Alat dan Bahan .. 14
3.3 Metode Penelitian .. 15
 3.3.1 Penentuan Stasiun .. 15
 3.3.2 Pengambilan Sampel Serasah Daun .. 15
 3.3.3 Pengukuran Produksi Serasah ... 17
 3.3.4 Perhitungan Laju Dekomposisi Serasah .. 17
 3.3.5 Pengukuran Parameter Fisika dan Kimia Perairan 18
 3.3.6 Analisis Unsur Hara .. 18
3.4 Analisis Data .. 19
 3.4.1 Produktivitas Serasah .. 19
3.4.2 Dekomposisi Serasah 19
3.4.3 Analisis Nitrogen dan Fosfor 20

BAB IV HASIL DAN PEMBAHASAN

4.1 Kondisi Lingkungan .. 21
4.2 Produksi Serasah ... 22
4.3 Dekomposisi serasah ... 25
4.4 Kandungan Unsur Hara Nitrogen dan Fosfor 29

BAB V. KESIMPULAN DAN SARAN 33
DAFTAR PUSTAKA .. 34
LAMPIRAN .. 37
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Karakteristik Fisika-Kimia Lingkungan Perairan</td>
<td>21</td>
</tr>
<tr>
<td>2. Hasil Rata-rata Produksi Serasah Mangrove selama periode waktu 75 hari</td>
<td>23</td>
</tr>
<tr>
<td>3. Penyusutan Bobot Kering Serasah Daun Rhizophora mucronata</td>
<td>25</td>
</tr>
<tr>
<td>4. Nilai Konstanta Dekomposisi (K) Serasah pada tiap stasiun pengamatan (Olson, 1963 dalam Subkhan 1991)</td>
<td>27</td>
</tr>
<tr>
<td>Gambar</td>
<td>Halaman</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1. Kantong serasah yang telah diisi serasah daun R. mucronata</td>
<td>15</td>
</tr>
<tr>
<td>2. Lokasi pengambilan stasiun pengamatan</td>
<td>16</td>
</tr>
<tr>
<td>3. Penempatan Litter bag pada masing-masing stasiun</td>
<td>18</td>
</tr>
<tr>
<td>4. Produksi Rata-rata Serasah Rhizophora mucronata selama periode</td>
<td>24</td>
</tr>
<tr>
<td>waktu 75 hari</td>
<td></td>
</tr>
<tr>
<td>5. Fluktuasi Presentase Sisa Dekomposisi Serasah Untuk Setiap Periode</td>
<td>26</td>
</tr>
<tr>
<td>Pengamatan (per 15 hari)</td>
<td></td>
</tr>
<tr>
<td>6. Kandungan unsur Nitrogen dalam serasah daun</td>
<td>30</td>
</tr>
<tr>
<td>Rhizophora mucronata</td>
<td></td>
</tr>
<tr>
<td>7. Kandungan unsur Fosfor dalam serasah daun</td>
<td>31</td>
</tr>
<tr>
<td>Rhizophora mucronata</td>
<td></td>
</tr>
<tr>
<td>Nomor</td>
<td>Daftar Lampiran</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Laju Dekomposisi Serasah Mangrove Rhizophora mucronata</td>
</tr>
<tr>
<td>2.</td>
<td>Produksi Serasah Daun Rhizophora mucronata</td>
</tr>
<tr>
<td>3.</td>
<td>Persiapan Sampel Daun Sebelum dianalisis</td>
</tr>
<tr>
<td>4.</td>
<td>Penentuan Kadar Nitrogen dengan Metode Kjehdahl</td>
</tr>
<tr>
<td>5.</td>
<td>Penentuan Kadar Fosfor dengan Pengabuan Kering dan Bray 1</td>
</tr>
<tr>
<td>6.</td>
<td>Kandungan Unsur Nitrogen Serasah Daun Rhizophora mucronata</td>
</tr>
<tr>
<td>7.</td>
<td>Kandungan Unsur Fosfor Serasah Daun Rhizophora mucronata</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

1.1 Latar Belakang

Hutan mangrove merupakan ekosistem yang unik dan berfungsi ganda dalam lingkungan hidup. Disebut unik karena dapat hidup dibawah pengaruh laut dan daratan, dimana terjadi interaksi kompleks antara sifat fisika, sifat kimia dan sifat biologi. Sebagai salah satu ekosistem yang unik, hutan mangrove juga merupakan sumber daya yang potensial, karena mempunyai tiga fungsi pokok yaitu fungsi ekonomi, fungsi ekologis, dan fungsi lain (pariwisata, penelitian, dan pendidikan).

Arti penting hutan mangrove dari aspek sosial ekonomis dapat dibuktikan dengan kegiatan masyarakat memanfaatkan hutan mangrove untuk mencari kayu dan juga tempat wisata alam. Kayu dari Rhizophora sesuai untuk dijadikan arang karena sifat kayunya yang lambat terbakar.

Secara ekologis, hutan mangrove dapat menjamin terpeliharanya lingkungan fisik, seperti penahan ombak, angin dan intrusi air laut sehingga kehadiran hutan mangrove di tepi laut turut melindungi kawasan-kawasan pinggir laut dari ombak dan arus yang besar. Hutan mangrove juga dapat menjamin terpeliharanya lingkungan biota menjadi tempat berkembangbiaknya ikan, udang dan kepiting serta berbagai jenis burung dan mamalia lainnya. Fungsi ekologis terpenting dari hutan mangrove adalah dalam siklus nutrien dan aliran energi, dimana mangrove merupakan penghasil serasah yaitu materi organik yang telah mati yang terdapat di lantai hutan yang tersusun atas tumbuhan mati dan potongan organ. Hasil dari produksi serasah di mangrove berperan sebagai bahan makanan bagi makrobentos dan menyokong rantai makanan di hutan mangrove yang terdiri dari ikan, crustasea, burung, mamalia kecil dan invertebrat serta penghasil unsur hara bagi perairan sekitarnya. Bahan organik yang terbentuk di kawasan hutan bakau turut dieksport ke ekosistem disekitarinya.

Hutan mangrove mempunyai kombinasi baik dalam hal menghasilkan serasah dan laju dekomposisi. Hal-hal yang mempengaruhi, selain faktor jenis tumbuhan, umur, iklim, perbedaan lingkungan dapat juga mempengaruhi produktivitas serasah. Misalnya zonasi yang lebih dekat pantai dan terkena pengaruh pasang surut secara langsung akan menghasilkan serasah yang berbeda bila dibandingkan dengan zonasi yang lebih jauh dari garis pantai dan tidak terkena pengaruh pasang surut air laut (Lugo dan Snedaker, 1974).
Proses dekomposisi serasah bakau yang terjadi mampu menunjang kehidupan mahluk hidup didalamnya. Dekomposisi bahan organik yang terjadi dikawasan mangrove termasuk proses biologi yang penting di dalam daur hara kawasan, baik hara tanah maupun hara sumber detritus. Bahan organik yang tersedia di kawasan tersebut berasal dari bagian-bagian pohon, terutama yang berupa daun.

Penelitian tentang dinamika serasah mangrove berupa produksi dan laju dekomposisi mempunyai arti penting karena serasah merupakan sumberan terbesar dari ekosistem mangrove terhadap kesuburan estuaria dan perairan pantai melalui jalur detritus atau dekomposisi. Berdasarkan hal tersebut perlu dilakukan suatu kajian mengenai produksi dan laju dekomposisi serasah mangrove. Perkiraan jumlah dan komposisi guguran serasah diperlukan untuk mengetahui siklus nutrien, produksi primer dan menentukan struktur dan fungsi ekosistem sehingga studi kuantitatif jatuhkan serasah diperlukan dalam ekologi.

1.2 Tujuan

Tujuan penelitian ini adalah untuk mengetahui produksi dan laju dekomposisi serasah mangrove pada kondisi lingkungan yang berbeda.
II. TINJAUAN PUSTAKA

2.1 Pengertian Mangrove

Hutan mangrove merupakan komunitas pantai tropis, yang didominasi oleh beberapa jenis pohon mangrove yang mampu tumbuh dan berkembang pada daerah pasang-surut pantai berlumpur. Komunitas vegetasi ini umumnya tumbuh dan berkembang pada daerah intertidal dan supratidal yang cukup mendapat aliran air, dan terlindung dari gelombang besar dan arus pasang surut yang kuat. Karena itu hutan mangrove banyak ditemukan dipantai-pantai teluk yang dangkal, estuaria, delta dan daerah pantai yang terlindung.

Hutan mangrove dikatakan sebagai hutan yang terdapat disepanjang pantai atau muara sungai dan dipengaruhi oleh pasang surut air laut, yakni tergenang pada waktu pasang dan bebas genangan pada waktu surut (Berdasarkan SK Dirjen Kehutanan No.60/kpts/Dj./I/1978). Snedaker (1978) memberikan pengertian yang lebih panjang mengenai hutan mangrove, yakni suatu kelompok jenis tumbuhan berkayu yang tumbuh disepanjang garis pantai tropika dan subtropika yang terlindung dan memiliki semacam bentuk lahan pantai dengan tipe tanah anaerob. Hutan mangrove adalah hutan dengan
vegetasi yang hidup dimuara sungai, daerah pasang surut, dan tepi laut (Baehaqie dan Indrawan, 1993).

Berbagai pengertian mangrove tersebut sebenarnya mempunyai arti yang sama, yaitu formasi hutan khas daerah tropika dan sedikit subtropika, terdapat di pantai rendah dan tenang, berlumpur, sedikit berpasir, serta mendapat pengaruh pasang surut air laut. Mangrove juga merupakan mata rantai penting dalam pemeliharaan keseimbangan siklus biologi di suatu perairan.

2.2 Produksi Primer Mangrove

Mangrove dikenal sebagai sumber bahan organik bagi ekosistem laut dan estuari yang menyokong kehidupan berbagai organisme akuatik. Bahan organik yang berupa daun, batang dapat jatuh ke air selanjutnya masuk ke dalam sistem estuari dan menjadi dasar bagi jaring-jaring makanan kompleks.

Menurut Chapman (1976), jatuhan serasah yang tersusun atas struktur vegetatif dan reproduktif lebih menggambarkan suatu bagian dari produktifitas primer bersih yang dapat diakumulasi pada dasar hutan, mengalami pengurangan in-situ dan diangkut ke estuari atau perairan pantai. Produktivitas mangrove yang tinggi ini secara langsung terkait dengan rantai makanan melalui aliran energi yang didasarkan pada jatuhan serasah atau detritus.

Produksi primer bersih merupakan bagian dari produksi primer fotosintesis tumbuhan yang tersisa setelah beberapa bagian digunakan untuk respirasi tumbuhan.
yang bersangkutan. Fotosintesis dan respirasi adalah dua elemen pokok dari produksi primer bersih. Komponen-komponen produksi primer bersih adalah keseluruhan dari organ utama tumbuhan meliputi daun, batang dan akar. Selain itu, tumbuhan eptif seperti alga pada pneumatofor, dasar pohon dan permukaan tanah juga memberikan sumberan kepada produksi primer bersih.

Clough (1986) menyatakan produksi primer bersih mangrove berupa materi tergantung dalam biomass tumbuhan yang selanjutnya akan lepas sebagai serasah atau dikonsumsi oleh organisme heterotrop atau dapat juga dinyatakan sebagai akumulasi materi organik baru dalam jaringan tumbuhan sebagai kelebihan dari respirasi yang biasanya dinyatakan dalam berat kering materi organik.

2.3 Produksi Serasah Daun

Produksi serasah daun setiap jenis mangrove berbeda, hal ini dapat disebabkan oleh faktor internal dan eksternal yang saling berkaitan. Perbedaan jumlah serasah ini dapat disebabkan oleh adanya beberapa faktor lingkungan yang mempengaruhi produktivitas, kesebaran tanah, kelembaban tanah, kerapatan, musim dan tegakan.

Selain itu penimbunan serasah juga dipengaruhi oleh umur dan jenis tumbuhan mangrove. Mangrove dengan tegakan tua akan menghasilkan jatuhan serasah lebih
banyak dan tegakan *Rhizophora* biasanya menghasilkan serasah lebih banyak dibandingkan dengan tegakan *Avicennia*.

2.4 Dekomposisi Serasah

Dekomposisi serasah adalah proses penghancuran bahan organik yang berasal dari binatang dan tanaman menjadi senyawa-senyawa sederhana (Sutedjo *et. al.* 1991). Sedangkan serasah adalah sisa-sisa organisme baik tanaman ataupun hewan yang ditemukan di permukaan tanah.

Ada beberapa definisi yang dikemukakan tentang dekomposisi antara lain dekomposisi didefinisikan sebagai penghancuran bahan organik mati secara gradual yang dilakukan oleh agen biologi maupun fisika. Dekomposisi bahan organik dipandang sebagai reduksi komponen-komponen organik dengan berat molekul yang lebih tinggi menjadi komponen dengan berat molekul yang lebih rendah melalui mekanisme enzimatis (Saunder 1980).

Smith (1980) menyatakan bahwa proses dekomposisi adalah gabungan dari proses fragmentasi, perubahan struktur fisik dan kegiatan enzim yang dilakukan oleh dekomposer yang merubah bahan organik menjadi senyawa anorganik. Definisi-definisi tersebut menggambarkan bahwa proses dekomposisi bukan saja dilakukan oleh agen biologis seperti bakteri tetapi juga melibatkan agen-agen fisika.

Selama proses dekomposisi, sangat banyak substansi yang terbentuk. Substansi ini akhirnya dipecahkan oleh mikroorganisme. Proses dekomposisi berlangsung secara berkelanjutan sampai bahan organik yang komplek secara berangsur-angsur diubah menjadi elemen yang sederhana atau senyawa anorganik. Akhir dari proses dekomposisi bahan organik dan pembebasan elemen dalam mineralisasi adalah pembentukan secara lengkap siklus pertukaran elemen kimia esensial yang digunakan untuk membangun kehidupan organisme di alam (Waksman, 1952).

Dekomposisi secara anaerobik lebih lambat dibandingkan bila ada cukup oksigen, dekomposisi anaerobik dari senyawa organik adalah sebagai berikut:

\[
\text{C}_6\text{H}_{12}\text{O}_6 \quad \longrightarrow \quad 3 \text{CO}_2 + 3 \text{CH}_4
\]

Gula

Atau lebih lengkapnya proses dekomposisi secara anaerobik adalah sebagai berikut:

\[
\text{Bahan organik} + \text{N} + \text{P} \quad \longrightarrow \quad \text{CO}_2 + \text{CH}_4 + \text{N} + \text{P}
\]

Sedangkan pada kondisi aerobik adalah sebagai berikut:

\[
\text{Bahan organik} + \text{O}_2 + \text{N} + \text{P} \quad \longrightarrow \quad \text{CO}_2 + \text{H}_2\text{O} + \text{N} + \text{P}
\]

Produk akhir dari proses dekomposisi aerobik dapat digunakan langsung oleh produser di perairan sedangkan, hasil dekomposisi anaerobik menghasilkan asam-asam organik yang dalam keadaan ekstrem dapat tertimbun hingga tingkat racun dapat tercapai. Produk akhir kedua proses tersebut terhadap bahan organik berupa karbon organik, nitrogen, sulfur dan hidrogen (Soepandi, 1983).

Serasah daun kemudian dimanfaatkan oleh organisme perairan, selain itu jika serasah daun mangrove direndam air maka zat-zat yang terlarut melumer dalam jangka waktu yang pendek masuk ke dalam perairan sekitarnya. Demikian pula jika alirnya cukup teraduk, zat-zat organik yang terlarut membentuk bulu partikel dipermukaan air sehingga dapat dimakan oleh organisme pemakan suspensi atau pemakan serasah daun.

2.5 Faktor-faktor yang Mempengaruhi Dekomposisi

Sebagai suatu proses yang dinamis, dekomposisi memiliki dimensi kecepatan yang mungkin berbeda dari waktu ke waktu tergantung faktor-faktor yang mempengaruhinya. Faktor-faktor tersebut umumnya adalah faktor lingkungan yang mempengaruhi pertumbuhan dekomposer disamping faktor bahan yang akan didekomposisi.

Faktor lingkungan kimia yang mempengaruhi proses pendekomposisian adalah pH tanah dikawasan mangrove terhadap keberadaan makrobentos (dekomposer). Jenis tanah banyak dipengaruhi keasaman tanah yang berlebihan, yang mengakibatkan tanah sangat peka terhadap terjadinya proses biologi. Jika keadaan lingkungan berubah dari keadaan alaminya, keadaan pH tanah juga akan dapat berubah. Terbukanya tajuk yang terjadi secara langsung akan meningkatkan pH tanah, sebagai akibat dari terlarutnya garam-garam air laut di dalam tanah. Oksida mikroba dalam tanah yang berfungsi sebagai dekomposer akan mampu menekan peningkatan pH tanah.

Proses dekomposisi bahan organik secara alami akan berhenti bila faktor-faktor pembatasnya tidak tersedia atau telah dihabiskan dalam proses dekomposisi itu sendiri. Perlu diingat pula bahwa faktor lingkungan yang mendukung proses dekomposisi dalam kondisi yang terbatas dan bukan hanya dimanfaatkan oleh bakteri tetapi juga organisme lainnya.

2.6 Peranan Unsur Hara Dekomposisi

Siklus biogeokimia atau siklus organik anorganik adalah siklus unsur atau senyawa kimia yang mengalir dari komponen abiotik ke biotik dan kembali lagi ke komponen abiotik. Siklus unsur-unsur tersebut tidak hanya melalui organisme, tetapi juga melibatkan reaksireaksi kimia dalam lingkungan abiotik sehingga disebut siklus biogeokimia.

Hara merupakan faktor penting dalam memelihara keseimbangan ekosistem mangrove, hara dalam ekosistem mangrove dibagi kedalam dua kelompok yaitu: (a) Hara anorganik, penting untuk kelangsungan hidup organisme mangrove. Hara ini terdiri dari N, P, K, Mg, Ca, dan Na. Sumber utama hara anorganik adalah curah hujan, limpasan sungai, endapan, air laut dan bahan organik yang terurai di mangrove: (b) Detritus organik, merupakan bahan organik yang berasal dari bloorganik yang melalui beberapa tahap pada proses microbial. Sumber utama detritus organik ada dua, yakni: (1) Autotchthonous, seperti serasah mangrove, fitoplankton, diatom, bakteri, jamur, alga pada pohon atau akar dan tumbuhan lain di mangrove, (2) Allochthonous, seperti partikel-partikel dari aliran sungai, partikel tanah dari erosi darat, tanaman dan hewan yang mati di daerah pesisir atau laut (Aksomkoe, 1993).

Kadar bahan organik selalu lebih banyak daripada kadar unsur-unsur lain (2:3). Sering kali kadar bahan organik dalam lapisan berada dalam keadaan kritis. Nitrogen dan Fosfor terdapat dalam jumlah sedikit, sebagian besar dari kedua unsur tersebut berada dalam bentuk yang tidak tersedia bagi tanaman.

Pada ekosistem pesisir dan estuaria, tampaknya nitrogen bahkan menjadi unsur utama yang mampu membatasi pertumbuhan sebagian besar jenis tanaman halofia (Stewart et al., 1979). Secara individual, nitrogen merupakan unsur penting dalam penyusunan asam amino, asam nukleat, protein yang berperan dalam sebagian besar proses metabolisme tanaman.

Dekomposisi bahan organik tanah melepaskan unsur hara yang semula berbentuk organik menjadi bentuk-bentuk inorganik yang tersedia bagi tanaman. Hampir seluruh nitrogen dan fosfor berada dalam bentuk organik. Karena sebagian besar N dalam tanah berada dalam bentuk N organik maka dekomposisi N organik merupakan proses yang menjadikan N tersedia bagi tanaman.

Dekomposisi yang merupakan proses biokimia kompleks membebaskan karbon dioksida. Akhirnya nitrogen dibebaskan dalam bentuk amonium, dan bila keadaan baik amonium ini dioksidasikan menjadi nitrit kemudian nitrat. Kedua proses terakhir disebut nitrifikasi, sedangkan yang pertama disebut mineralisasi. Rangkaian proses diatas dapat disimpulkan sebagai berikut:

\[
\begin{align*}
\text{N-organik} & \rightarrow \text{Amonium} \rightarrow \text{Nitrit} \rightarrow \text{Nitrat} \\
(\text{protein, Asam amino, Dan sebagainya})
\end{align*}
\]

\[\text{Mineralisasi} \quad \text{Nitrifikasi}\]

Perubahan N organik menjadi N inorganik dilakukan oleh jasad mikro yang sangat peka terhadap tanah. Suhu rendah, genangan air, dan kemasaman yang tinggi menekan reaksi-reaksi biokimia. Jasad nitrifikasi sangat peka terhadap keadaan demikian.

Cadangan nitrogen utama adalah nitrogen bebas, N\textsubscript{2}, yang meliputi 78% isi dari atmosfer. Dalam bentuk ini nitrogen tidak segera tersedia bagi tanaman. Masuknya nitrogen ke dalam biosfer terutama disebabkan oleh kegiatan jasad mikro penambah nitrogen, baik yang hidup bebas, maupun bersimbiosis dengan tanaman. Bila tanaman atau jasad mikro-bebas-penambah nitrogen mati, bakteri dekomposisi melepaskan asam amino dari protein, dan bakteri amonifikasi kemudian melepaskan amonium dari grup

Fosfor adalah salah satu hara esensial bagi pertumbuhan tanaman dan merupakan unsur yang kritis setelah nitrogen (Black, 1986). Tanaman menyerap fosfor dalam bentuk fosfat, dimana sebagian besar dalam bentuk anion fosfat yang monovalen (H$_2$PO$_4^-$) dan sedikit sebagai anion divalent (HPO$_4^{2-}$) (Salisbury dan Ross, 1995).

Dalam tanaman, fosfat mudah terdistribusi dari satu organ ke organ lainnya. Menurut kosentrasinnya pada daun tua, terakumulasi pada daun muda dan merangsang pembentukan bunga dan biji. Oleh karena itu, tanda-tanda defisiensi unsur ini akan terjadi lebih dulu pada daun yang tua (Salisbury dan Ross, 1995).

Fosfor dalam larutan tanah merupakan sebagian kecil dari P total yang diambil oleh tanaman dan pengambilannya bersifat irreversible sehingga tanah harus secara kontinyu membebaskan P ke dalam larutan tanah untuk menunjang pertumbuhan tanaman (Komul, 1996).

Fosfat organik dari hewan dan tumbuhan yang mati diuraikan oleh dekomposer (pengurai) menjadi fosfat anorganik. Fosfat anorganik yang terlarut di air tanah atau air laut akan terkikis dan mengendap di sedimen laut. Oleh karena itu, fosfat banyak

Rangkaian proses pelapukan batuan fosfat dapat disimpulkan sebagai berikut:

\[
\text{Ca}_3(\text{PO}_4)_2 + 4\text{H}_2\text{O} + 4\text{CO}_2 \rightarrow \text{Ca}(\text{H}_2\text{PO}_4)_2 + 2 \text{Ca}(\text{HCO}_3)_2
\]

Bentuk ion fosfat yang dapat diserap oleh tanaman sangat ditentukan oleh pH tanah. Dalam keadaan alkalin bentuk \(HPO_4^{2-} \) merupakan ion fosfat yang larut. Bila pH tanah menurun, dua bentuk ion fosfat \(HPO_4^{2-} \) dan \(H_2PO_4^{-} \) akan ditemukan. Makin rendah pH makin dominan ion \(H_2PO_4^{-} \). Kedua bentuk ion fosfat itu diserap oleh tanaman.

Di samping pH dan faktor-faktor yang berhubungan dengan reaksi tanah, bahan organik dan jasad mikro jelas mempengaruhi ketersedian fosfor. Seperti halnya dengan nitrogen, dekomposisi yang cepat dibarengi dengan meningkatnya populasi jasad mikro untuk sementara dapat menyebabkan fosfor diikat dalam tubuh jasad mikro.

III. METODOLOGI

3.1 Waktu dan Lokasi

3.2 Alat dan Bahan

Alat yang digunakan dalam penelitian ini terdiri dari alat eksperimen yaitu kantong serasah/ litter bag (wadah serasah daun untuk dekomposisi yang terbuat dari kain nylon) berukuran 20 cm x 30 cm dengan mata jaring berukuran 1 cm yang dilengkapi tali pengerut pada bagian salah satu ujungnya dan diikatkan pada akar mangrove (Gambar 1). Jala penampung jatuhan serasah yang mempunyai luas 1 m x 1 m dengan mata jaring 1 cm. Alat lainnya adalah timbangan, oven, kantong plastik, tali rafia, meteran, kamera (data visual), kantong kertas HVS polio, penggaris dan alat tulis, termometer, refraktometer, serta pH indicator, patok bambu dan kertas koran.

Bahan yang digunakan pada penelitian ini antara lain serasah mangrove Rhizophora mucronata yang akan diteliti bobot basah dan keringnya. Sedangkan untuk analisis kimia bahan-bahan yang digunakan disesuaikan dengan kebutuhan analisis Kjehdall (Lampiran 2) untuk penentuan Nitrogen dan analisis pengabuan kering dengan HCl 25% untuk penentuan Fosfor, adapun bahan yang digunakan adalah aguades, H₂SO₄, H₂SO₄ 2.0 N, NaOH 30 %, H₃BO₃ 4 %, H₃BO₃, HCl 0,02 N, HCl pekat, larutan magnesium asetat, indicator jingga metil, batu didih, serbuk pereduksi baku dan bubuk campuran selenium.
3.3 Metode Penelitian

3.3.1 penentuan stasiun

Penentuan stasiun dilakukan setelah melakukan survei lokasi penelitian terlebih dahulu, ditetapkan stasiun dari arah laut ke daratan di kawasan hutan mangrove Pulau Untung Jawa sebagai berikut: stasiun 1 daerah pasang surut yaitu daerah dimana mangrove seialu terkena pasang surut air laut secara langsung, stasiun 2 di daerah sekitar tambak yang ditumbuhi oleh hutan bakau, dan stasiun 3 daerah tergenang/ kolam air payau yaitu daerah yang tidak terkena pasang surut air laut secara langsung. Untuk lebih jelasnya dapat dilihat pada gambar peta lokasi pengambilan sampel pada gambar 2.

3.3.2 Pengambilan Sampel Serasah Daun

Pengambilan serasah daun bakau dilakukan pada masing-masing stasiun, yang mayoritas ditumbuhi oleh jenis *Rhizophora mucronata*, dengan dilakukan pengambilan langsung serasah daun bakau dari lantai hutan mangrove. Kemudian serasah dimasukkan ke dalam kantong plastik dengan dan dibawa ke laboratorium untuk dilakukan pengovenan. Pengovenan dilakukan selama 2 x 24 jam pada suhu oven 80\(^{\circ}\) C.
Gambar 2. Lokasi Pengambilan Stasiun Pengamatan

Ket:
Warna hijau : Hutan Mangrove
3.3.3 Pengukuran produksi serasah

Pengumpulan jatuhan serasah dilakukan dengan menempatkan jala penampungan serasah berdasarkan jalur transek yang diletakkan pada masing-masing stasiun yaitu pada daerah yang terkena pasang surut air laut, daerah sekitar tambak dan daerah air tergenang atau kolam air payau. Jala penampungan serasah yang digunakan mempunyai luas 1 m x 1 m terbuat dari bahan nilon. Tiga jala penampung serasah ditempatkan pada masing-masing tegakan di setiap stasiun. Dalam penempatannya, jala penampung serasah digantungkan pada 4 tegakan pohon bakau / diikatkan pada patok bambu dan bebas dari genangan air pasang.

Pengambilan jatuhan serasah dilakukan setiap 15 hari sekali selama 75 hari. Komponen-komponen serasah dipisahkan menurut bagian-bagiannya, yaitu daun, bunga, ranting dan buah, kemudian ditimbang bobotnya. Serasah kemudian dikeringkan didalam oven dengan suhu 80°C sampai tercapai berat konstan / selama 2 x 24 jam dan dinyatakan dalam satuan gr/m²/15 hari.

3.3.4 Perhitungan laju dekomposisi serasah

3.3.5 Pengukuran parameter fisika dan kimia perairan

Pada penelitian ini diukur beberapa parameter fisika dan kimia lingkungan di kawasan mangrove Pulau Untung Jawa. Parameter fisik dapat menggambarkan keadaan lingkungan suatu daerah. Dalam penelitian ini parameter yang diukur antara lain adalah suhu (thermometer), salinitas (refraktrometer) dan tipe substrat (tekstur). Sedangkan parameter kimia yang diukur antara lain adalah pH (keasaman), TSS (Total Suspended Solid) dan Fosfat yang terkandung dalam perairan tersebut.

3.3.6 Analisis unsur hara

Penentuan kadar Nitrogen total dilakukan dengan menggunakan metode Kjelldahl, yaitu: Nitrogen (organik dan anorganik) didekstruksi dengan H₂SO₄ pekat diubah menjadi
garam Amonium Sulfat, kemudian didestilasi dengan penambahan NaOH 50% untuk melepas NH₄⁺ yang ditangkap dengan larutan Boric acid. Jumlah N diketahui setelah penitrat dengan larutan HCl encer. Setelah volume nitrat untuk contoh dengan titran pada blanko menunjukkan volume titran yang diperlukan untuk menentukan kadar Nitrogen dalam contoh. Selanjutnya penerapan kadar Nitrogen dilakukan dengan rumus berikut:

\[\text{Kadar N dalam daun} = \frac{a \times 0.02 \times 14}{b} \times 100 \% \]

Dengan :
- a : selisih volume (ml)
- b : bobot bahan kering dalam 0,1 gram tepung daun.
- 0,02 : normalitas HCl (sebelumnya distandarisasi terlebih dahulu untuk mengetahui nilai normalis yang tepat)
- 14 : bobot atom nitrogen

Sedangkan penentuan unsur Fosfor dilakukan dengan menggunakan metode pengabuan kering dengan pengekstaksi HCl 25%. Setelah melalui pengenceran, Fosfor dibelah menjadi Phospomolibdic dengan larutan Amonium Molybdate-Boric acid. Kemudian direduksi dengan larutan pereduksi Ascorbic acid menimbulkan warna biru yang dapat diukur kerapatan optiknya dengan menggunakan spektrofotometer pada panjang gelombang tertentu. Tahap selanjutnya adalah buat kurva tetra berkisar antara 0 – 5 ppm untuk P.

3.4 Analisis Data
3.4.1 Produksi serasah

Data yang diperoleh dari hasil serasah pada ketiga stasiun dimasukkan kedalam tabel Rata-rata serasah yang dihasilkan gr/m²/15 hari.

3.4.2 Laju Dekomposisi Serasah

Data perubahan massa serasah selama 15 hari dalam 75 hari yang terdekomposisi digunakan untuk menentukan nilai laju dekomposisi serasah yang dihitung dengan menggunakan rumus William dan Gfray (1974) yaitu:

\[R = \frac{W_1 - W_0}{T_1 - T_0} \]
Dengan: \(R = \) laju dekomposisi
\(T = \) waktu
\(W_1 = \) berat kering sample pada waktu \(T_1 \)
\(W_0 = \) berat kering sample pada waktu \(T_0 \)

Pendugaan nilai Konstanta laju dekomposisi serasah dilakukan menurut persamaan berikut (Olson, 1963 dalam Subkhan, 1991)
\[\frac{X_t}{X_0} = e^{-kt} \]

dimana:
\(X_t = \) Berat serasah setelah periode waktu pengamatan ke-\(t \)
\(X_0 = \) Berat awal serasah
\(k = \) Laju dekomposisi serasah
\(e = \) Bilangan logaritma natural \((2,72)\)
\(t = \) periode pengamatan

Model diatas ditransformasikan menjadi bentuk linier sederhana:
\[Y = bX \]

Dimana:
\[Y = \log \frac{X_t}{X_0} \quad ; \quad b = -k \quad ; \quad x = t \]

Sehingga didapat:
\[k = \frac{\log X_0 / X_t}{t} \]

3.4.3 Analisis Nitrogen dan Fosfor

Analisis nitrogen dan fosfor secara deskriptif dilakukan terhadap data \% kadar nitrogen dan \% kadar fosfor. Semua data yang diperoleh ditempatkan ke dalam tabel. Untuk data \% N dan \% P, juga ditempatkan dalam grafik histogram yang menggambarkan hubungan antara kadar nitrogen dan kadar fosfor yang terdapat di setiap stasiun pengamatan. Hal ini dilakukan untuk memudahkan pembacaan dan pemahaman terhadap data yang ada.
IV. Hasil dan Pembahasan

4.1 Kondisi lingkungan

Parameter fisika perairan yang diukur adalah suhu dan salinitas, sedangkan parameter kimia yang diukur adalah pH, kandungan TSS dan kandungan Fosfor. Hasil pengukuran parameter kimia dan fisika dapat dilihat pada tabel berikut:

Tabel 1 Karakteristik Fisika-Kimia Lingkungan Perairan

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter Stasiun</th>
<th>pH</th>
<th>Suhu (°C)</th>
<th>Salinitas (‰)</th>
<th>TSS (ppm)</th>
<th>Fosfat (ppm)</th>
<th>Tinggi genangan (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stasiun 1</td>
<td>8</td>
<td>30-32</td>
<td>34-35</td>
<td>0.0009</td>
<td>0.651</td>
<td>40-70</td>
</tr>
<tr>
<td>2.</td>
<td>Stasiun 2</td>
<td>7</td>
<td>26-27</td>
<td>30-32</td>
<td>0.0020</td>
<td>0.677</td>
<td>50-60</td>
</tr>
<tr>
<td>3.</td>
<td>Stasiun 3</td>
<td>7</td>
<td>28-30</td>
<td>30-31</td>
<td>0.0021</td>
<td>0.769</td>
<td>30-50</td>
</tr>
</tbody>
</table>

Berdasarkan tabel diatas didapatkan pH perairan pada stasiun-stasiun pengamatan dengan kertas penunjuk pH (pH indicator) menunjukkan reaksi yang sedikit alkali berkisar antara 7-8 dimana pH tertinggi terdapat pada stasiun 1, dengan demikian air laut yang masuk ke dalam hutan pada waktu air pasang dapat menetralkan keasaman tanah mangrove yang terdapat dalam hutan bakau tersebut. Nilai pH perairan dipengaruhi oleh beberapa faktor, antara lain salinitas, aktivitas fotosintesis, aktivitas biologi, suhu, kandungan oksigen dan adanya katoin serta anion dalam perairan. Perubahan nilai pH sedikit saja akan memberikan petunjuk terganggunya sistem penyanga pada perairan tersebut. Keadaan pH yang tinggi distasiun 1 menyebabkan mikroorganisme yang ada pada stasiun tersebut berkembang secara optimal atau sangat produktif.

Arus akan bergerak menyeret massa air yang mempunyai temperatur tertentu sehingga akan terjadi kontak dengan massa air lain yang mempunyai suhu berbeda.

Nilai salinitas berdasarkan hasil pengukuran berkisar antara 33-35 %o. nilai salinitas tertinggi didapatkan pada stasiun 1, hal ini disebabkan stasiun 1 lebih dekat ke arah pantai dan mendapat pengaruh langsung dari air laut. Sedangkan salinitas terendah pada stasiun 3 yang merupakan daerah perpaduan antara air laut dan air payau.

Kandungan unsur hara pada substrat lebih berfluktuasi dengan kisaran 0,0009-0,0021 untuk kandungan TSS, 0,651-0,769 ppm untuk fosfat. Rendahnya kandungan fosfat yang didapatkan disebabkan karena fosfor dalam tanah yang diserap tanaman dalam bentuk fosfat memiliki sifat yang kurang statis sehingga konsentrasianya akan mudah menurun (Black, 1968 dalam Yuyun, 2002).

Kisaran kedalaman (tinggi genangan pasang surut) pada tiap-tiap stasiun bervariasi. Tinggi genangan pada stasiun 1 pada saat surut adalah 40-70 cm. Pada stasiun 2 tinggi genangan air pada saat surut berkisar antara 50-60, dan pengaruh pasang pada stasiun 2 tidak terlalu berpengaruh, hal ini disebabkan pada stasiun 2 daerahnya lebih ke arah darat sehingga pengaruh pasut tidak terlalu besar. Sedangkan pada stasiun 3 yang merupakan daerah kolam air payau, tinggi genangan air berkisar antara 30-50 cm dan pengaruh pasang surut air laut sangat kecil dikarenakan daerah tersebut lebih kearah darat (Gambar 2). Sehingga dapat dilihat bahwa keadaan lingkungan pada masing-masing lokasi pengamatan berbeda-beda sesuai dengan parameter lingkungan yang ada pada daerah tersebut. Dengan perbedaan ini akan dapat mempengaruhi proses pendekomposisian yang ada pada masing-masing stasiun pengamatan.

4.2 Produksi Serasah

Dari hasil pengukuran produksi serasah mangrove *Rhizophora mucronata* selama 75 hari dimana pengambilan data dilakukan dalam 15 hari sekali diperoleh komposisi serasah yang tertampung pada jala penampung serasah terdiri dari serasah daun, ranting dan organ reproduksi (bunga dan buah). Hasil tersebut dapat dilihat pada Lampiran 2. lebih jelasnya mengenai produksi total serasah selama periode waktu pengamatan yaitu 75 hari dapat dilihat pada tabel berikut ini:
<table>
<thead>
<tr>
<th>No.</th>
<th>Bagian Stasiun</th>
<th>Daun</th>
<th>Ranting</th>
<th>Bunga & Propagula</th>
<th>Rata-Rata (gr/m²/75hari)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stasiun 1</td>
<td>96,07</td>
<td>7,47</td>
<td>14,28</td>
<td>39,28</td>
</tr>
<tr>
<td>2.</td>
<td>Stasiun 2</td>
<td>144,95</td>
<td>5,23</td>
<td>7,85</td>
<td>52,68</td>
</tr>
<tr>
<td>3.</td>
<td>Stasiun 3</td>
<td>75,44</td>
<td>11,59</td>
<td>9,49</td>
<td>32,17</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>316,46</td>
<td>24,31</td>
<td>31,62</td>
<td>124,13</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 2 dapat diketahui besarnya produksi total serasah yang dihasilkan pada tiap-tiap stasiun menunjukan bahwa produksi yang terbesar adalah serasah daun yang menyumbang sebesar 316,46 g/m² dari total keseluruhan serasah yang tertampung dalam jala penampung karena serasah daun mempunyai periode biologi yang lebih singkat (cepat gugur) dibandingkan dengan komponen serasah lainnya. Hal ini dapat juga disebabkan oleh bentuk daun yang lebar, tipis yang mudah digugurkan oleh angin dan curah hujan atau dapat pula disebabkan oleh sifat fisiologis dari daun yang penting dalam proses untuk membuat bahan makanan. Serasah lain yang berupa ranting menyumbang sebesar 24,31 g/m² dan bunga dan propagula menyumbang sebesar 31,62 g/m² dari total serasah. Rendahnya produksi ini dikarenakan R. Micronata mempunyai ukuran bunga dan propagula yang umumnya lebih besar tetapi jumlahnya lebih sedikit.

Jika dilihat dari kondisi lingkungan yang ada pada setiap stasiun dimana suhu pada ketiga stasiun tersebut berkisar antara 26°C-32°C merupakan suhu rata-rata daerah tropis sehingga suhu tersebut sesuai bagi kehidupan dan produksi daun mangrove dan sesuai untuk pertumbuhan.

Produksi total serasah untuk masing-masing stasiun dapat dilihat pada gambar 4 dibawah ini:
Gambar 4. Produksi total serasah *Rhizophora mucronata* selama periode waktu 75 hari.

Gambar 4 diatas dapat terlihat pola sebaran total produksi serasah mangrove yang terdapat pada masing-masing stasiun. Dimana stasiun 2 adalah stasiun yang paling banyak menghasilkan produksi serasah yaitu sebesar 39,28 g/m²/75 hari dari keseluruhan serasah yang didapat, hal ini disebabkan stasiun 2 memiliki kerapatan yang tinggi dibandingkan stasiun 1 dan 3, sedangkan stasiun yang paling sedikit menghasilkan serasah adalah stasiun 3 yaitu sebesar 52,68 g/m²/75 hari. Untuk stasiun 1 jumlah total rata-rata serasah yang dihasilkan adalah sebesar 32,17 g/m²/75 hari dari total keseluruhan serasah yang diperoleh. Kerapatan dan morfologi daun juga ikut menentukan besar kecilnya serasah yang jatuh atau gugur.

Sebagian kecil daun yang gugur dalam hutan mangrove itu akan dibawa oleh air surut ke laut, sedang sebagian besar tetap tinggal didasar hutan. Dari yang tetap tinggal dihutan
ini, sebagian kecil dimakan oleh binatang, sedang sebagian besar akan mengalami penguraian sebagian atau sepenuhnya yang dilakukan oleh jasad-jasad renik tanah, terutama bakteri.

Semakin tinggi produktivitas gugur daun maka semakin meningkat produktivitas dihutan mangrove. Produksi serasah yang tinggi secara langsung didukung oleh faktor-faktor lingkungan antara lain musim dan suhu udara. Suhu yang optimum untuk pertumbuhan mangrove adalah sekitar 26-32 °C. Untuk musim dan curah hujan akan mempengaruhi produktivitas serasah, semakin tinggi curah hujan maka semakin rendah produksi serasah yang dihasilkan. Berdasarkan hal tersebut pengamatan ini berlangsung pada bulan juli sampai september dimana curah hujan cukup tinggi, sehingga menyebabkan produksi total serasah yang rendah selama periode waktu 75 hari.

4.3 Dekomposisi Serasah

Dekomposisi adalah suatu proses penguraian bahan organik yang berasal dari binatang dan tanaman secara fisik maupun kimia menjadi senyawa-senyawa anorganik sederhana yang dilakukan oleh mikroorganisme tanah yang memberikan hasil berupa hara mineral (sumber nutrisi tanaman) yang secara langsung dimanfaatkan oleh tanaman.

Penelitian kecepatan penguraian serasah dilakukan dengan melihat pengurangan bobot serasah pada kantung serasah (litter bag) berisi contoh serasah yang dibusukkan di lantai hutan. Penyusutan bobot serasah diketahui dari pengurangan berat awal dengan berat sisa dekomposisi.

Serasah daun Rhizophora mucronata selama terdekomposisi 75 hari, dengan periode pengamatan per 15 hari sekali mengalami perubahan bobot kering serasah daun tersebut. Pada tabel 3 terlihat adanya penyusutan bobot kering serasah yang bervariasi dari setiap periode waktu pengamatan (per 15 hari), semakin lama waktu dekomposisi, semakin besar persentase (%) penyusutan serasah daun Rhizophora mucronata.

<table>
<thead>
<tr>
<th>No.</th>
<th>Stasiun</th>
<th>waktu awal</th>
<th>Hari ke-15</th>
<th>Hari ke-30</th>
<th>Hari ke-45</th>
<th>Hari ke-60</th>
<th>Hari ke-75</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stasiun 1</td>
<td>20</td>
<td>14,54</td>
<td>11,38</td>
<td>9,25</td>
<td>6,72</td>
<td>4,15</td>
</tr>
<tr>
<td>2.</td>
<td>Stasiun 2</td>
<td>20</td>
<td>16,87</td>
<td>13,67</td>
<td>10,14</td>
<td>7,49</td>
<td>5,19</td>
</tr>
<tr>
<td>3.</td>
<td>Stasiun 3</td>
<td>20</td>
<td>18,31</td>
<td>15,97</td>
<td>12,87</td>
<td>9,33</td>
<td>5,61</td>
</tr>
</tbody>
</table>
Tabel 3 diatas terlihat perubahan bobot kering serasah daun *Rhizophora mucronata* mengalami penurunan yang bervariasi pada ketiga stasiun pengamatan. Penurunan bobot kering terbesar terjadi pada stasiun 1 yaitu pada daerah pasang surut sebesar 4,15 g/m² dengan persentase penyusutan bobot serasah (bobot serasah yang hilang/terdekomposisi) sebesar 79,25%. Hal ini disebabkan karena daerah tersebut mendapat pengaruh pasang surut air laut secara langsung dimana arus dari laut yang besar menyebabkan proses pendekomposisian serasah berlangsung secara cepat. Faktor lingkungan fisik juga mendukung proses penguraian serasah berjalan cepat. Salah satu contohnya adalah suhu pada stasiun 1 adalah 32 °C yang merupakan suhu optimum berpengaruh terhadap penguraian daun mengrove. Selain itu faktor fisika lain yang juga berpengaruh terhadap proses pendekomposisian serasah adalah salinitas dan tingginya genangan saat pasang.

Pada stasiun 2 dan stasiun 3 penurunan serasah tergolong rendah yaitu berturut-turut sebesar 5,19 g/m dan 5,61 g/m³ dengan prosentase sisa dekomposisi serasah sebesar 74,05% dan 71,95%. Rendahnya persentase tersebut diduga berkaitan dengan kerapatan pohon yang relatif tinggi, dengan rapatnya pohon maka akan terbatas cahaya yang masuk ke lantai hutan yang kemungkinan akan berpengaruh terhadap rendahnya suhu tanah yang tidak mendukung aktivitas mikroorganisme dalam mendekomposisikan bahan organik. Ketiga stasiun tersebut juga memiliki kesamaan respon terhadap waktu dekomposisi. Semakin lama waktu dekomposisi, semakin rendah laju dekomposisi serasah per periodenya.

![Diagram dekomposisi serasah](image)

Gambar 5. fluktuasi prosentase sisa dekomposisi serasah untuk setiap periode pengamatan (per 15 hari)

Berdasarkan Gambar 5 diatas terlihat prosentase (%) sisa serasah daun selama periode waktu terdekomposisi, yaitu pada stasiun 1 sebesar 20,75% yang merupakan
prosentase terendah sedangkan prosentase sisa dekomposisi terbesar pada stasiun 3 sebesar 28,05% (lampiran 1).

Seperti diketahui bahwa proses dekomposisi melalui beberapa tahapan, dan juga didukung dengan hadirnya mikroorganisme yang berperan dalam perombakan beberapa zat yang dikeluarkan oleh serasah daun mangrove. Unsur-unsur tersebut makin berkurang akhirnya pada waktu tertentu akan habis dan hanya tinggal bagian-bagian yang tidak diperlukan dan merupakan bahan baku humus. Hakim et al (1986) menyatakan bahwa penambahan bahan organik ke dalam tanah akan meningkatkan jumlah dan aktivitas mikroorganisme tanah dan akan kembali seperti semula sejalan dengan berkurangnya bahan organik tersebut.

Tabel dibawah ini dapat terlihat rata-rata nilai konstanta dekomposisi serasah daun *Rhizophora mucronata* dari tiap-tiap stasiun. Sebagai contoh rata-rata konstanta dekomposisi serasah daun pada stasiun 1 sebesar 0,103 selama periode waktu dekomposisi. Untuk lebih lengkapnya dapat dilihat dari tabel laju dekomposisi dibawah ini:

Tabel 4. Nilai konstanta dekomposisi (k) serasah pada tiap stasiun pengamatan (Olson, 1963 dalam Subkhan 1991)

<table>
<thead>
<tr>
<th>Waktu stasiun</th>
<th>Hari ke-15</th>
<th>Hari ke-30</th>
<th>Hari ke-45</th>
<th>Hari ke-60</th>
<th>Hari ke-75</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasiun1</td>
<td>0,129</td>
<td>0,118</td>
<td>0,108</td>
<td>0,092</td>
<td>0,069</td>
<td>0,103</td>
</tr>
<tr>
<td>Stasiun2</td>
<td>0,136</td>
<td>0,125</td>
<td>0,111</td>
<td>0,097</td>
<td>0,079</td>
<td>0,110</td>
</tr>
<tr>
<td>Stasiun3</td>
<td>0,145</td>
<td>0,138</td>
<td>0,127</td>
<td>0,111</td>
<td>0,085</td>
<td>0,121</td>
</tr>
</tbody>
</table>

Hasil pengukuran rata-rata nilai konstanta dekomposisi (K) serasah pada masing-masing stasiun berturut-turut adalah sebesar 0,103, 0,110 dan 0,121 dari bobot awal per 15
hari selama periode waktu penekomposisian serasah daun mangrove (75 hari). Perbedaan hasil rata-rata konstanta yang didapatkan pada masing-masing stasion ini disebabkan karena laju dekomposisi serasah pada stasion 1 merupakan fungsi eksponensial sehingga konstanta dekomposisi serasah yang dihasilkan lebih kecil dibandingkan dengan stasion 2 dan stasion 3 yang merupakan fungsi linier.

Proses penekomposisian serasah mangrove berlangsung dalam suasana anaerob karena lantai hutan mangrove yang selalu tergenang air. Dekomposisi bahan organik dalam kondisi ini akan menyebabkan terbentuknya senyawa-senyawa tereduksi, seperti amonia, sulfide dan metan serta berbagai jenis senyawa organik lainnya seperti kelompok senyawa fenolik (Stevenson 1982) beberapa mikroorganisme dapat menguraikan senyawa fenol dalam tanah dan air. Penguraian tersebut berlangsung secara perlahan-lahan dan membutuhkan substrat yang kaya akan oksigen dan bahan sumber energi.

Faktor lain yang menentukan laju dekomposisi serasah daun R.mucronata keadaan jenis serasah daun yang terdekomposisi dan lamanya penggenangan oleh pasang surut air
laut. Pada stasiun 3 dimana stasiun tersebut merupakan daerah tergenang yang tidak terkena pengaruh pasang surut air laut secara langsung dan berpadunya suatu kondisi payau yang memiliki tingkat salinitas yang tinggi dengan kondisi air tawar yang memiliki tingkat salinitas yang rendah, mengakibatkan beragamnya mikroorganisme dan makrofauna yang hidup pada daerah tersebut sehingga laju dekomposisi pada stasiun tersebut bervariasi selama waktu dekomposisi 75 hari. Sedangkan pada stasiun 1 yang merupakan daerah pantai dan selalu terkena pasang surut air laut secara langsung mengakibatkan laju dekomposisinya tinggi dibandingkan dengan stasiun yang lain. Hal ini menunjukkan pengenangan pasang surut air laut berpengaruh terhadap laju dekomposisi. Dimana dengan lamanya proses pendekomposisian dan lamanya genangan, akan mengakibatkan semakin banyak serasah yang terdekomposisi.

Pengaruh faktor pH juga sangat menentukan proses dekomposisi serasah, hal ini berhubungan dengan keberadaan makrobentos (dekomposer) yang lebih menyukai daerah yang memiliki pH tinggi. Stasiun 1 memiliki pH tertinggi dibandingkan stasiun 2 dan stasiun 3 sehingga lebih banyak makrobentos yang hidup pada daerah tersebut dan menyebabkan proses pendekomposisian berlangsung cepat.

4.4 Kandungan Unsur Hara Nitrogen dan Fosfor

Laju dekomposisi memberikan sumbangan unsur hara yang secara langsung maupun tidak langsung berperan untuk pertumbuhan dan perkembangan hutan mangrove. Komposisi kimia dan susunan bahan organik yang berasal dari residu tanaman akan mempengaruhi kualitas dan kuantitas sumbangan hara yang dilepaskan ke perairan sekitar.

Serasah daun Rhizophora mucronata pada proses dekomposisi selama periode waktu pendekomposisian (75 hari) mengandung unsur hara nitrogen yang cukup tinggi dibandingkan dengan kandungan fosfor. Unsur tersebut berperan dalam proses metabolisme tanaman, termasuk proses dekomposisi. Pada penelitian ini terlihat bahwa kandungan unsur hara Nitrogen semakin meningkat dengan semakin lamanya waktu dekomposisi serasah daun Rhizophora mucronata (Lampiran 6).
Gambar 6. Kandungan unsur Nitrogen dalam serasah daun *Rhizophora mucronata*

Berdasarkan Gambar 6 diatas dapat disimpulkan bahwa kandungan nitrogen yang terkandung dalam serasah daun yang terdekomposisi akan mengalami peningkatan sejalan dengan proses dekomposisi pada masing-masing stasiun pengamatan. Pada stasiun 1 terjadi peningkatan kandungan nitrogen yang lebih tinggi dibanding dengan stasiun 2 dan stasiun 3 yaitu sebesar 0,96%. Sedangkan kandungan nitrogen terendah terdapat pada stasiun ke 2 dengan nilai kandungan nitrogen sebesar 0,72% dari keadaan awal pendekomposisian. Sehingga dapat disimpulkan bahwa kandungan nitrogen cenderung akan mengalami peningkatan dengan semakin lamanya proses pendekomposisian, hal ini juga dapat dilihat dari kandungan nitrogen awal yaitu sebesar 0,40%.

Analisis kandungan nitrogen pada stasiun 1 mengalami peningkatan yang tertinggi, hal ini diduga nitrogen berperan dalam proses adaptasi terhadap salinitas tinggi dari lingkungannya dalam rangka dekomposisi serasah daun bakau yang berperan dalam metabolisme serasah sehingga menghasilkan kandungan unsur hara dari anorganik menjadi bahan organik yang diperlukan oleh ekosistem mangrove dan ekosistem perairan secara langsung maupun tidak langsung. Lebih lanjut pada stasiun 1 mengalami penggenangan pasang surut yang relatif lama, sehingga dengan bertambahnya waktu dekomposisi dan lama penggenangan, maka akan memberikan sumbangan kandungan unsur hara N organik semakin meningkat.

Menurut Alexander (1978) dalam Rismunandar (2000), faktor yang mempengaruhi kandungan unsur hara N meningkat dalam proses dekomposisi yaitu faktor fisika, kimia dan biologi lingkungan. Ketiga faktor tersebut mempengaruhi proses dekomposisi dengan memberikan sumbangan nitrogen yang tidak tersedia menjadi tersedia melalui peningkatan

Daun bakau yang sudah gugur apabila mengalami penguraian, kandungan nitrogen yang dilepaskan akan diserap kembali oleh pohon-pohon bakau, sebagian digunakan oleh jasad renik dalam tanah hutan bakau, sebagian hilang sebagai N₂, sedang sebagian lagi akan larut dan terbawa oleh air surut ke perairan disekitarnya.

Fosfor merupakan salah satu unsur hara esensial bagi pertumbuhan tanaman dan merupakan unsur yang kritis setelah nitrogen. Selain itu fosfor merupakan bagian penting dari gula fosfat yang terlibat dalam respirasi, fotosintesis dan metabolisme tanaman.

Kandungan unsur fosfor yang terdapat pada serasah daun Rhizophora mucronata selama periode waktu pendekomposision (75 hari) dengan periode penganalisaan pada awal pendekomposision, hari ke-15, hari ke-45 dan akhir pendekomposision (hari ke-75) terlihat pada lampiran 7. Umumnya kandungan fosfor pada serasah daun akan meningkat dengan semakin lamanya proses pendekomposision serasah.

Gambar 7. Kandungan unsur Fosfor dalam serasah daun Rhizophora mucronata

Gambar diatas dapat disimpulkan bahwa kandungan unsur hara fosfor selama proses pendekomposision akan mengalami peningkatan seperti halnya kandungan nitrogen. Namun kenaikan fosfor relatif lebih rendah dibandingkan dengan unsur nitrogen, Kandungan fosfor tertinggi terdapat pada stasiun 1 dimana terdapat fosfor sebesar 0,54% dibanding stasiun 2 dan stasiun 3 yang masing-masing memiliki kandungan fosfor sebesar 0,45% dan 0,38%.

Berdasarkan hasil analisis pada saat kondisi awal sampai akhir pendekomposision terlihat adanya peningkatan kandungan fosfor yang terdapat pada serasah daun yang didekomposisikan pada periode waktu 75 hari. Kandungan fosfor dalam serasah relatif rendah, hal ini dapat disebabkan oleh sifat fosfor yang mudah bergerak didalam tanaman,
sehingga bila terjadi kekurangan unsur ini pada suatu tanaman, maka fosfor yang ada pada jaringan tanaman akan dialokasikan ke jaringan yang masih aktif sehingga serasah yang merupakan jaringan tua akan mengandung fosfor yang relatif lebih kecil dibandingkan dengan organ tanaman yang belum jatuh (masih aktif).

Secara umum dapat dikatakan bahwa kandungan unsur hara yang terdekomposisi bervariasi berdasarkan kondisi (status nutrien), kondisi lokasi hutan mangrove dan lamanya penggenangan pasang surut air laut pada tiap stasiun. Melihat perbedaan tersebut maka sangat mempengaruhi sumbangan unsur hara N dan P terhadap ekosistem hutan mangrove dan ekosistem perairan tersebut.
V. Kesimpulan dan Saran

Kesimpulan
Berdasarkan hasil penelitian dapat disimpulkan bahwa dengan tingginya produksi serasah yang dihasilkan dalam bentuk daun yaitu sebesar 85 % menyebabkan nilai laju dekomposisi serasah daun yang tinggi untuk produktivitas perairan pada masing-masing stasiun pengamatan serta mampu menghasilkan unsur hara Nitrogen sebesar 0,72-0,96% dan unsur Fosfor sebesar 0,38-0,54% untuk produktivitas perairan sekitarnya.

Saran
Penulis menyarankan agar dilakukan penelitian lanjutan peranan mikroorganisme dan makrofauna dalam pendekomposisian serasah pada berbagai stasiun.
DAFTAR PUSTAKA

Clough, B. F 1986. Factors Regulating Ecosystem Primary Productivity Workshop Mangrove Ecosystem Dinamic. UNDP/ UNESCO. Pp. 79-85

LAMPIRAN
Lampiran 1. Laju Dekomposisi Serasah Mangrove Rhizophora Mucronata

Sisa dekomposisi serasah (g/m²)

<table>
<thead>
<tr>
<th>No.</th>
<th>Stasiun</th>
<th>awal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stasiun 1</td>
<td>20</td>
<td>14,54</td>
<td>11,38</td>
<td>9,25</td>
<td>6,72</td>
<td>4,15</td>
</tr>
<tr>
<td>2.</td>
<td>Stasiun 2</td>
<td>20</td>
<td>16,87</td>
<td>13,67</td>
<td>10,14</td>
<td>7,49</td>
<td>5,19</td>
</tr>
<tr>
<td>3.</td>
<td>Stasiun 3</td>
<td>20</td>
<td>18,31</td>
<td>15,97</td>
<td>12,87</td>
<td>9,33</td>
<td>5,61</td>
</tr>
</tbody>
</table>

Prosentase sisa dekomposisi serasah (%)

<table>
<thead>
<tr>
<th>No.</th>
<th>Stasiun</th>
<th>awal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stasiun 1</td>
<td>100</td>
<td>72,70</td>
<td>56,90</td>
<td>46,25</td>
<td>33,60</td>
<td>20,75</td>
</tr>
<tr>
<td>2.</td>
<td>Stasiun 2</td>
<td>100</td>
<td>84,35</td>
<td>68,35</td>
<td>50,70</td>
<td>37,45</td>
<td>25,95</td>
</tr>
<tr>
<td>3.</td>
<td>Stasiun 3</td>
<td>100</td>
<td>91,55</td>
<td>79,85</td>
<td>64,35</td>
<td>46,65</td>
<td>28,05</td>
</tr>
</tbody>
</table>

Penyusutan bobot serasah (g/m²)

<table>
<thead>
<tr>
<th>No.</th>
<th>Stasiun</th>
<th>awal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stasiun 1</td>
<td>0</td>
<td>5,46</td>
<td>8,62</td>
<td>10,75</td>
<td>13,28</td>
<td>15,85</td>
</tr>
<tr>
<td>2.</td>
<td>Stasiun 2</td>
<td>0</td>
<td>3,13</td>
<td>6,33</td>
<td>9,86</td>
<td>12,51</td>
<td>14,81</td>
</tr>
<tr>
<td>3.</td>
<td>Stasiun 3</td>
<td>0</td>
<td>1,69</td>
<td>4,03</td>
<td>7,31</td>
<td>10,67</td>
<td>14,39</td>
</tr>
</tbody>
</table>

Prosentase penyusutan bobot serasah (%)

<table>
<thead>
<tr>
<th>No.</th>
<th>Stasiun</th>
<th>awal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stasiun 1</td>
<td>0</td>
<td>27,30</td>
<td>43,10</td>
<td>53,75</td>
<td>66,40</td>
<td>79,25</td>
</tr>
<tr>
<td>2.</td>
<td>Stasiun 2</td>
<td>0</td>
<td>15,65</td>
<td>31,65</td>
<td>49,30</td>
<td>62,55</td>
<td>74,05</td>
</tr>
<tr>
<td>3.</td>
<td>Stasiun 3</td>
<td>0</td>
<td>8,45</td>
<td>20,05</td>
<td>36,55</td>
<td>53,35</td>
<td>71,95</td>
</tr>
</tbody>
</table>
Lampiran. 2 Produksi Serasah Daun Rhizophora mucronata

<table>
<thead>
<tr>
<th>Hari</th>
<th>Stasiun 1</th>
<th>Stasiun 2</th>
<th>Stasiun 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>18,57</td>
<td>32,44</td>
<td>18,00</td>
</tr>
<tr>
<td>30</td>
<td>21,40</td>
<td>28,42</td>
<td>15,23</td>
</tr>
<tr>
<td>45</td>
<td>17,57</td>
<td>29,60</td>
<td>13,63</td>
</tr>
<tr>
<td>60</td>
<td>19,25</td>
<td>26,58</td>
<td>12,70</td>
</tr>
<tr>
<td>75</td>
<td>19,28</td>
<td>28,69</td>
<td>13,34</td>
</tr>
<tr>
<td>Total</td>
<td>96,07</td>
<td>144,95</td>
<td>75,44</td>
</tr>
</tbody>
</table>
Lampiran. 3 Penyiapan sample daun sebelum dianalisis

Sample daun yang diambil, dibungkus kertas koran dan ditempatkan dalam kantong plastik untuk memperkecil kemungkinan rusaknya sample pada saat dibawa dari lapangan ke laboratorium. Daun dikeringudarakan selama 7 – 10 hari di laboratorium, baru kemudian digiling dengan menggunakan blender hingga menjadi tepung halus. Tepung daun yang telah terbentuk dibagi kedalam tiga kantong plastik, masing-masing untuk pengukuran kadar air, nitrogen dan fosfor.

Penentuan kadar air

Penentuan kadar air daun dilakukan dengan menggunakan rumus umum berikut:

\[\text{Kadar air} = \frac{B_0 - B_1}{B_0} \times 100\% \]

dengan:

- \(B_0 \) = berat tepung daun sebelum dioven
- \(B_1 \) = berat tepung daun setelah dioven

Penentuan kadar air ini dilakukan untuk memperoleh persen bahan kering yang terdapat dalam setiap gram daun. Nilai persentase bahan kering ini kemudian digunakan untuk penentuan persentase kadar nitrogen dan fosfor yang ada pada daun *Rhizophora mucronata.*
Lampiran. 4 Penentuan kadar Nitrogen dengan metode Kjehdahl

Sebanyak 0,1 gram tepung daun dimasukkan kedalam labu destilasi bersama-sama dengan 1 gram Se, 3 ml H₂SO₄ dan batu didih. Labu digoyang-goyangkan agar bahan terkena asam secara merata. Kemudian labu dipanaskan dengan nyala kecil sampai cairan didalamnya berwarna coklat (± ¼ jam). Api diperbesar hingga cairan berwarna hijau jernih. Labu diangkat dan setelah dingin tambahkan 50 ml aquades, baru kemudian dituangkan 10 ml NaOH 30 %. Amoniak yang terbentuk ditampung dalam labu erlemeyer 150 ml yang telah diisi dengan 10 ml H₃BO₄ 4% dan 3 tetes indicator jingga metil. Penyulingan dilakukan sampai jumlah cairan dalam Erlenmeyer menjadi 50 ml. Cairan dalam Erlenmeyer kemudian dititrasi dengan HCl 0,02 N. Selain itu dilakukan pula titrasi blanko. Selisih antara volume titran untuk contoh dengan titran untuk blanko menunjukan volume titran yang diperlukan untuk menentukan kadar nitrogen dalam contoh. Selanjutnya, penetapan kadar nitrogen dilakukan dengan rumus berikut:

\[
\text{Kadar N dalam daun} = \frac{a \times 0.02 \times 14}{b} \times 100\%
\]

dengan:

a : selisih volume (ml)
b : bobot bahan kering dalam 0,1 gram (100 mg) tepung daun
0,02 : normalitas HCl (sebelum distandarisasi terlebih dahulu untuk mengetahui nilai normalitas yang tepat)
14 : bobot atom Nitrogen
Lampiran. 5 Penentuan kadar fosfor dengan metode Pengabuan Kering dan Bray I

Prosedur penentuan kadar fosfor terbagi dalam 2 tahap, yaitu:

1. Penyiapan ekstrak kering melalui metode pengabuan kering dengan langkah-langkah sebagai berikut:
 a. Siapkan pereaksi yang dibutuhkan untuk metode ini yaitu terdiri atas H$_2$SO$_4$ 2.0 N dan larutan magnesium asetat (40 gram magnesium asetat / 100 ml H$_2$O).
 b. Sebanyak 0,5 garm tepung daun ditempatkan diatas pinggan pengabuan 100 ml, lalu ditambahkan 5 ml larutan magnesium asetat dan 10 ml H$_2$O. larutan tersebut diuapkan di atas penangas air sampai kering. Cawan dan isinya kemudian dimasukkan ke dalam muffle oven dan dipinjarkan pada suhu 6000 C sehingga warnanya kelabu (± 30 menit). Cawan didinginkan, baru kemudian ditambahkan 10 ml H$_2$SO$_4$ 2 N. cawan diputar-putar agar contoh terkena asam merata. Tuangkan aquades 15 ml, dan diuapkan kembali di atas penangas air sampai mencapai volume kurang dari 5 ml. Cawan kemudian dipindahkan, dan kembali ditambah aquades 20 ml. Bila cawan telah dingin, tepi cawan digosok dengan karet dan isinya kemudian disaring ke dalam labu ukur 100 ml. Cawan dibisas dan disaring beberapa kali hingga volume cairan dalam labu ukur tepat 100 ml. Baru kemudian dilakukan penetapan P menggunakan metode Bray I. Dilakukan pula penetapan blanko dan juga pembuatan kurva standar untuk P.

2. Penetapan kadar fosfor dilakukan dengan metode Bray sebagai berikut:
 a. Untuk prosedur ini dibutuhkan larutan pereaksi P-B dan pereduksi P-C dari metode Bray I, yaitu:
 • Larutan P-B
 Sebanyak 5 gram H$_3$BO$_3$ dilarutkan dalam 500 ml H$_2$O dan ditambahkan 75 ml HCl pekat. Kemudian tambahan larutan molybdat (3,8 gram NH$_4$ – malybdat dilarutkan dalam 300 ml H$_2$O pada suhu 600 C, kemudian didinginkan) dan diencerkan menjadi 1 liter.
 • Larutan P-C
 Sebanyak 8 gram serbuk pereduksi baku (campuran gilingan dari 2,5 gram 1-amino-2-naptol-4-sulphanic acid;5 gram Na$_2$SO$_3$ dan 146 gram Na$_2$S$_2$O$_3$) dilarutkan dalam 50 ml air panas, dan dibiarankan 12-16 jam sebelum dipakai.
b. Tahapan penetapan kadar P adalah sebagai berikut:

- Pipet sebanyak 5 ml dari larutan ekstrak yang dibuat dengan prosedur pada (A), lalu tuangi 5 ml larutan P-B dan aduk. Baru kemudian tambahkan 5 tetes larutan pereduksi (P-C).
- Tunggu setengah jam dan baca kerapatan optik dengan spectrophotometer pada panjang gelombang 660 mu. Kemudian buat kurva tera berkisar antara 0 - 5 ppm untuk P.
- Kadar P ditentukan melalui persamaan berikut:

$$\% \text{ P (tanaman)} = \frac{V_c \times C_c \times f_p}{\text{bobot contoh}} \times 100\%$$

dengan:
- V_c : volume contoh (ml)
- C_c : konsentrasi contoh yang diperoleh melalui kurva tera (ppm)
- F_p : faktor pengenceran
Lampiran.6 Kandungan unsur Nitrogen Serasah daun *Rhizophora mucronata*

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Periode waktu</th>
<th>% N total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasiun1</td>
<td>Awal</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>Hari ke-15</td>
<td>0,55</td>
</tr>
<tr>
<td></td>
<td>Hari ke-45</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td>Hari ke-75</td>
<td>0,98</td>
</tr>
<tr>
<td>Stasiun2</td>
<td>Awal</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>Hari ke-15</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>Hari ke-45</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>Hari ke-75</td>
<td>0,83</td>
</tr>
<tr>
<td>Stasiun 3</td>
<td>Awal</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>Hari ke-15</td>
<td>0,50</td>
</tr>
<tr>
<td></td>
<td>Hari ke-45</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td>Hari ke-75</td>
<td>0,76</td>
</tr>
<tr>
<td>Stasiun</td>
<td>Periode waktu</td>
<td>% F total</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Stasiun1</td>
<td>Awal</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-1</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-6</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-12</td>
<td>0,54</td>
</tr>
<tr>
<td>Stasiun2</td>
<td>Awal</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-1</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-6</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-12</td>
<td>0,45</td>
</tr>
<tr>
<td>Stasiun3</td>
<td>Awal</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-1</td>
<td>0,06</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-6</td>
<td>0,13</td>
</tr>
<tr>
<td></td>
<td>Minggu ke-12</td>
<td>0,38</td>
</tr>
</tbody>
</table>
RIWAYAT HIDUP

Penulis dilahirkan di Magelang pada tanggal 10 Januari 1983. sebagai anak ketiga dari empat bersaudara, dari pasangan Sjachril dan Suprapti.

Penulis diterima di INSTITUT PERTANIAN BOGOR melalui jalur USMI (Undangan Seleksi Masuk IPB) pada tahun 2000 dan memilih program studi Ilmu Kelautan, Jurusan Ilmu dan Teknologi Kelautan, Fakultas Perikanan dan Ilmu Kelautan.
