AKTIVASI MIKROORGANISME FILOPLAN DENGAN
SENYAWA BIOPOLIMER UNTUK PENGENDALIAN
Alternaria porri (Ellis) Cif. PADA BAWANG MERAH

oleh:
DYAH LAKSMI N.

INSTITUT PERTANIAN
BOGOR

JURUSAN HAMA DAN PENYAKIT TUMBUHAN
FAKULTAS PERTANIAN
INSTITUT PERTANIAN BOGOR
2000
AKTIVASI MIKROORGANISME FILOPLAN DENGAN
SENYAWA BIOPOLIMER UNTUK PENGENDALIAN
Alternaria porri (Ellis) Cif. PADA BAWANG MERAH

oleh:
Dyah Laksmi N.
A06495012

JURUSAN HAMA DAN PENYAKIT TUMBUHAN
FAKULTAS PERTANIAN
INSTITUT PERTANIAN BOGOR
2000
RINGKASAN

Tujuan penelitian ini adalah untuk mengetahui keefektifan senyawa biopolimer dalam meningkatkan aktivitas mikroorganisme filoplan untuk pengendalian *A. porri*.

Sumber inokulum diperoleh dari daun bawang daun sakit bercak ungu (*Alternaria porri*). Pembuatan suspensi *A. porri* dilakukan dengan cara potongan daun bawang daun sakit tersebut dimasukkan ke dalam tabung reaksi dan dikocok dengan vortex. Suspensi khitin 1% diperoleh dari pencampuran 10 g cangkang keping halus dengan larutan detergen 1%. Suspensi selulosa 1% diperoleh dari pencampuran 10 g kristal selulosa Avicel® dengan 11 l air. Suspensi pati didapat dari air cuci beras 500 g dan 11 l air. Suspensi fungisida Dithane M 45 dibuat sesuai dengan dosis anjuran yaitu 2 g/l. Uji perkecambahan konidia dilakukan dengan cara masing-masing suspensi perlakuan (suspensi khitin 1%, suspensi selulosa 1%, suspensi pati, suspensi fungisida dan air sterilit) dengan 3 ulangan diteteskan pada gelas obyek cekung sebanyak 0,1 ml, kemudian 0,1 ml suspensi konidia *A. porri* (kepadatan konidia 12000 konidia/ml) diteteskan pada gelas obyek tersebut kemudian diinkubasikan selama 3 jam pada suhu ruang dan diamati di bawah mikroskop untuk mengetahui jumlah spora yang berkecambah. Percobaan rumah kaca ada lima macam perlakuan, masing-masing perlakuan dilakukan 5 ulangan. Pada saat tanaman bawang merah berumur 4 minggu setelah tanam (MST), dilakukan pengamatan intensitas penyakit, pengamatan jenis dan jumlah mikroba daun serta penyetem melon seperti suspensi perlakuan. Setelah itu meningg, tanaman diinokulasi dengan suspensi *A. porri* (kepadatan konidia 1000 konidia/ml) tanaman disungkap dengan plastik untuk menjaga kelembaban. Satu minggu setelah inokulasi dilakukan pengamatan jenis dan jumlah mikroba. Pengamatan intensitas penyakit dilakukan sebanyak empat kali dengan selang waktu tiga hari sekali.

Hasil uji perkecambahan konidia menunjukkan bahwa suspensi khitin 1% dan selulosa 1% lebih efektif menghambat perkecambahan konidia *A. porri* daripada

AKTIVASI MIKROORGANISME FILOPLAN DENGAN SENYAWA BIOPOLIMER UNTUK PENGENDALIAN *Alternaria porri* (Ellis) Cif. PADA BAWANG MERAH

Skripsi

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Pertanian pada Fakultas Pertanian Institut Pertanian Bogor

oleh :
Dyah Laksmi N.
A06495012

JURUSAN HAMA DAN PENYAKIT TUMBUHAN
FAKULTAS PERTANIAN
INSTITUT PERTANIAN BOGOR
2000
Judul : AKTIVASI MIKROORGANISME FILOPLAN DENGAN SENYAWA BIPOLIMER UNTUK PENGENDALIAN Alternaria porri (Ellis) Cif. PADA BAWANG MERAH
Nama : DYAH LAKSMI N.
Nomor pokok : A06495012

Menyetujui :

Dosen Pembimbing I
Ir. Titiek Siti Yuliani, SU
NIP. 130906762

Dosen Pembimbing II
Ir. Suryo Wiyono, MSc. Agr
NIP. 132002572

Mengetahui :

Ketua Jurusan HPT
NIP. 131578795

Tanggal lulus : 3 FEB 2000
RIWAYAT HIDUP

Penulis dilahirkan di Semarang pada tanggal 4 Oktober 1976, sebagai anak pertama dari tiga bersaudara dari keluarga Bapak Soedjadi dan Ibu Sri Nuraeni.

Penulis melangsungkan pernikahan dengan Fauzi Achmadi, S.TP pada tahun 1999.
UCAPAN TERIMA KASIH

Alhamdulilahhirrobbil’alamin penulis panjatkan kehadirat Allah SWT karena berkat petunjuk dan rahmatNya sehingga penulis dapat menyelesaikan penelitian dan penulisan skripsi ini.

Pada kesempatan ini penulis ingin menyampaikan terima kasih kepada:

1. Ibu Ir. Titiek Siti Yuliani, SU dan Bapak Ir. Suryo Wijono, MSc. Agr selaku dosen pembimbing yang telah membimbing dan mengarahkan penulis hingga penyelesaian skripsi ini.

2. Ibu Dr. Ir. Sri Hendrastuti Hidayat, MSc., yang telah bersedia menjadi moderator dalam seminar skripsi.

5. Seluruh keluarga atas bantuan, dorongan dan doanya, bapak, ibu, dik Santi dan dik Anung.

6. Mas Fauzi atas kesabaran, bantuan, perhatian dan doanya.

7. Teman senasib sejak proposal, penelitian dan penulisan skripsi, Imas Sri Mulyati untuk bantuan dan doanya.

8. Teman-teman di Gunung Gede atas perhatian dan doanya.

Akhirnya kepada semua pihak yang telah membantu, penulis menyampaikan terima kasih yang tak terhingga.

Bogor, Januari 2000
DAFTAR ISI

<table>
<thead>
<tr>
<th>Daftar Isi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR ISI</td>
<td>I</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>II</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>III</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan</td>
<td>2</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td></td>
</tr>
<tr>
<td>Penyakit Bercak Ungu</td>
<td>3</td>
</tr>
<tr>
<td>Peranan Mikroorganisme Filoplan sebagai Agen Hayati</td>
<td>4</td>
</tr>
<tr>
<td>Peranan Senyawa Biopolimer dalam Pengendalian Hayati</td>
<td>5</td>
</tr>
<tr>
<td>BAHAN DAN METODE</td>
<td></td>
</tr>
<tr>
<td>Waktu dan Tempat</td>
<td>7</td>
</tr>
<tr>
<td>Alat dan Bahan</td>
<td>7</td>
</tr>
<tr>
<td>Metode Penelitian</td>
<td>7</td>
</tr>
<tr>
<td>HASIL DAN PEMBAHASAN</td>
<td></td>
</tr>
<tr>
<td>Uji Perkecambahan Konidia</td>
<td>12</td>
</tr>
<tr>
<td>Percobaan Rumah Kaca</td>
<td>14</td>
</tr>
<tr>
<td>KESIMPULAN DAN SARAN</td>
<td>21</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>22</td>
</tr>
<tr>
<td>Nomor</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1. Persentase perkecambahan konidia Alternaria porri pada lima macam suspensi perlakuan</td>
<td>13</td>
</tr>
<tr>
<td>2. Populasi mikroorganisme filoplan sebelum diberi perlakuan</td>
<td>14</td>
</tr>
<tr>
<td>3. Populasi mikroorganisme filoplan dengan berbagai perlakuan</td>
<td>15</td>
</tr>
<tr>
<td>4. Keragaman bakteri filoplan pada tanaman bawang merah dengan berbagai macam perlakuan</td>
<td>16</td>
</tr>
<tr>
<td>5. Kepadatan bakteri kelompok fluorescens pada tanaman bawang merah dengan berbagai macam perlakuan</td>
<td>17</td>
</tr>
<tr>
<td>6. Intensitas penyakit bercak ungu dari tanaman bawang merah yang diberi lima macam perlakuan</td>
<td>20</td>
</tr>
<tr>
<td>Nomor</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>1. Konidia A. porri yang belum berkecambah (kiri) dan konidia A. porri yang berkecambah (kanan)</td>
<td>12</td>
</tr>
<tr>
<td>2. Gejala penyakit bercak ungu yang disebabkan oleh A. porri</td>
<td>19</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Pengendalian yang banyak dilakukan sampai saat ini adalah pengendalian kimia dengan menggunakan pestisida. Penggunaan pestisida yang kurang bijaksana dapat menimbulkan berbagai dampak negatif, seperti terjadinya resistensi dan resistensi, matinya organisme bukan sasaran, pencemaran lingkungan dan bahaya residu pada hasil panen. Pengendalian hayati merupakan salah satu alternatif pengendalian yang dapat mengurangi dampak negatif pestisida di samping cara budidaya yang baik.

Beberapa peneliti menganjurkan untuk memodifikasi nutrisi pada filoplan sebagai usaha pengendalian penyakit. Dalam penelitian ini akan diteliti pengaruh nutrisi berupa senyawa biopolimer diantaranya yaitu khitin, pati, selulosa terhadap konidia A. porri, mikroorganisme filoplan dan intensitas serangan penyakit bercak ungu.

Tujuan

Penelitian ini bertujuan untuk mengetahui keefektifan senyawa biopolimer dalam meningkatkan aktivitas mikroorganisme filoplan untuk pengendalian A. porri.
TINJAUAN PUSTAKA

Penyakit Bercak Unga

Cendawan *A. porri* dapat bertahan dari musim ke musim pada sisa-sisa tanaman dan sebagai konidium. *A. porri* pada sisa daun bawang yang dibenamkan selama 8 minggu pada musim kemarau masih mampu menghasilkan konidia. Hal ini menunjukkan bahwa *A. porri* tersebut tetap berpotensi sebagai sumber inokulum walaupun sudah dibenamkan dalam tanah selama 8 minggu (Wiyono et al., 1998). Di
lapang, cendawan membentuk konidium pada malam hari. Konidium disebarkan oleh angin. Infeksi terjadi melalui mulut kulit dan melalui luka (Semangun, 1994).

Peranan Mikroorganisme Filoplan Sebagai Agen Hayati

Sebagian besar antagonis adalah saprofit. Agen antagonis ini meliputi cendawan, bakteri, aktinomycetes, virus dan mikrofauna predator (Baker dan Cook, 1974).

Umumnya, mikroorganisme antagonis mempengaruhi populasi patogen dengan cara parasitisme dan memburuh patogen secara langsung; berkompetisi dengan patogen dalam hal makanan; toksin yang langsung mempengaruhi patogen dengan zat antibiotik yang dilepaskan oleh antagonis; serta toksin yang tidak langsung mempengaruhi patogen melalui zat yang mudah menguap yang dilepaskan oleh aktifitas metabolik antagonis (Agrios, 1996).

Beberapa jenis cendawan telah ditemukan bersifat antagonis dan menghambat sejumlah patogen yang menyerang bagian tumbuhan di atas tanah, antara lain *Tubercuina maxima* memarasit jamur karat melepuh cemara putih *Cronartium ribicolae*, *Daldinia siliqua* dan *Verticillium lecanii* memarasit beberapa jamur karat dan *Nectria inventa* serta *Gomatochoryx simplex* memarasit dua spesies jamur patogenik.

Peranan Senyawa Biopolimer dalam Pengendalian Hayati

Fokkema (1991) menyatakan bahwa nutrisi yang dapat mendukung perkembangan patogen dan agen antagonis diaplikasikan sebelum tanaman terserang patogen atau diberikan pada awal pertumbuhan tanaman. Agar agen antagonis dapat memberikan keuntungan dalam mengendalikan patogen, kita perlu mengurangi penggunaan pestisida.

Nutrisi yang diaplikasikan pada tanaman dapat berupa senyawa biopolimer. Senyawa biopolimer merupakan senyawa yang berasal dari mahluk hidup dan terdiri dari rangkaian monomer yang berikatan dengan ikatan tertentu. Selulosa, pati,

Proper et al. (1992) mengemukakan bahwa penyemprotan selulosa, khitin, clandosan, caragenan serta campuran khitin dan scleroglucan mengurangi serangan Zygophiala jamaicensis penyebab penyakit flyspeck dan Gloeodes pomigena penyebab penyakit sooty blotch pada daun dan buah apel. Selain itu, senyawa biopolimer tersebut dapat meningkatkan populasi bakteri epifit dan bakteri khitinolitik. Khitin yang diaplikasikan ke dalam tanah dapat menghambat aktifitas Rhizoctonia solani dan meningkatkan populasi mikroba tanah, khususnya bakteri, aktinomycetes dan phicomycetes (Sneh dan Henis, 1971).
BAHAN DAN METODE

Tempat dan Waktu

Alat dan Bahan

Alat yang digunakan untuk penelitian ini adalah vortex, mortar, tabung reaksi, gelas obyek cekung, kain kassa, hemasitometer, cawan petri, mikroskop dengan perlengkapanya, autoklav, pipet, jarum isolasi, laminair, lampu spiritus dan oven.

Bahan yang diperlukan adalah daun bawang daun yang sakit bercak ungu (A. porri) yang diperoleh dari daerah Cibodas Kabupaten Bogor, cangkang kepiting, beras, kristal selulosa Avicel®, tanah steril, fungisida Dithane M 45, air steril, medium Potato Dextrose Agar (PDA), medium Martin Agar (MA), medium Nutrient Agar (NA), medium Water Yeast Extract Agar (WYEA) dan lactophenol cotton blue.

Metode

Pembuatan Suspensi A. porri

Daun bawang daun yang sakit karena A. porri dipotong tepat pada bagian yang terinfeksi. Potongan-potongan daun ini dimasukkan ke dalam tabung reaksi yang berisi air steril dan dikocok dengan vortex agar konidia A. porri terlepas dari jaringan tanaman.
Pembuatan Suspensi Khitin 1%

Cangkang kepiting laut dikerlingkan dalam oven kemudian ditumbuk dengan mortar. Larutan detergen 1% dibuat dengan cara melarutkan 10 g detergen dalam 1 l air. Cangkang kepiting halus sebanyak 10 g tersebut kemudian dicampurkan dengan 1 l larutan detergen lalu diaduk sehingga terbentuk suspensi khitin 1%.

Pembuatan Suspensi Selulosa 1%

Kristal selulosa seberat 10 g dilarutkan dalam 1 l air, diaduk sampai terlarut semua, sehingga terbentuk suspensi selulosa 1%.

Pembuatan Suspensi Pati

Suspensi pati didapat dari air sebanyak 1 l dicampur dengan 500 g beras, kemudian dicuci, kemudian didapat hasil cucian beras tersebut yang disebut suspensi pati.

Pembuatan Suspensi Fungisida

Suspensi fungisida Dithane M 45 dibuat sesuai dengan dosis anjuran, yaitu 2 g/l.

Uji Perkecambahan Konidia

Uji perkecambahan konidia dilakukan dengan tujuan untuk mengetahui pengaruh langsung dari suspensi perlakuan terhadap perkecambahan konidia A. porri. Uji perkecambahan konidia ini menggunakan lima macam perlakuan yaitu:

- KP0 = larutan kontrol
- KP1 = suspensi khitin 1%
- KP2 = suspensi selulosa 1%
- KP3 = suspensi pati
- KP4 = suspensi fungisida Dithane M 45
Susensi konidia *A. porri* dihitung kepadatan konidinya dengan hemasitometer sebanyak 12000 konidia/ml. Masing-masing suspensi perlakuan dengan 3 ulangan diteteskan pada gelas obyek cekung sebanyak 0,1 ml, kemudian 0,1 ml suspensi konidia *A. porri* diteteskan pada gelas obyek tersebut. Campuran suspensi tersebut ditetesi dengan lactophenol cotton blue setelah diinkubasikan selama 3 jam pada suhu ruang, kemudian diamati di bawah mikroskop untuk mengetahui jumlah konidia yang berkecambah. Jumlah konidia yang berkecambah dihitung dengan rumus:

\[
\text{Persentase perkecambahan} = \frac{\sum \text{konidia yang berkecambah}}{\sum \text{konidia yang diamati}} \times 100\%
\]

Selanjutnya akan dianalisis secara statistik dengan Rancangan Acak Lengkap (RAL) sebagai berikut:

\[
Y_{ij} = \mu + \delta_i + \epsilon_{ij}
\]

Keterangan:

- \(i=1,2,3,4,5\) dan \(j=1,2,3\)
- \(Y_{ij}\) = nilai pengamatan
- \(\mu\) = nilai tengah pengamatan
- \(\delta_i\) = pengaruh aditif perlakuan ke-\(i\)
- \(\epsilon_{ij}\) = pengaruh galat percobaan dari perlakuan ke-\(i\) pada kelompok ke-\(j\)

Percobaan Rumah Kaca

Penelitian ini ada lima macam perlakuan, yaitu:

- KR0 = larutan kontrol (air)
- KR1 = suspensi khitin 1%
- KR2 = suspensi selulosa 1%
- KR3 = suspensi pati
- KR4 = suspensi fungisida Dithane M 45
Masing-masing perlakuan dilakukan lima ulangan. Rancangan percobaan yang
digunakan adalah Rancangan Acak Kelompok (RAK), dengan model linear
persamaan RAK sebagai berikut:
\[Y_{ij} = \mu + \delta_i + \beta_j + \epsilon_{ij} \]
Keterangan: \(i = 1,2,3,4,5 \) dan \(j = 1,2,3,4,5 \)
\[Y_{ij} \] = nilai pengamatan
\[\mu \] = nilai tengah pengamatan
\[\delta_i \] = pengaruh aditif perlakuan ke-\(i \)
\[\beta_j \] = pengaruh aditif perlakuan ke-\(j \)
\[\epsilon_{ij} \] = pengaruh galat percobaan dari perlakuan ke-\(i \) pada kelompok ke-\(j \)
Percobaan rumah kaca ini bertujuan untuk mengetahui pengaruh tidak
langsung dari masing-masing suspensi perlakuan tersebut terhadap A. porri melalui
pengaktifan mikroorganisme filoplan.

Umbar bawang merah ditanam pada polybag berukuran 20x20 cm yang telah
berisi tanah steril sebanyak 2 kg. Setelah berumur 4 MST, diamati intensitas
penyakit, pengamatan jenis dan jumlah mikroba pada daun. Pengamatan terhadap
jenis dan jumlah mikroba dilakukan dengan metode pengenceran berseri dan
pembuatan pada media seperti:

a. Medium Martin Agar digunakan untuk mengisolasi cendawan
b. Medium Nutrient Agar digunakan untuk mengisolasi bakteri

c. Medium Water Yeast Extract Agar digunakan untuk mengisolasi
aktinomycetes

Pada saat tanaman berumur 4 MST dilakukan penyemprotan setiap suspensi
perlakuan. Setelah satu minggu, tanaman diinokulasi dengan suspensi A. porri
dengan kepadatan konidia yang digunakan adalah 1000 konidia/ml. Tanaman
disungkup dengan plastik selama 16 jam untuk menjaga kelembaban.
Satu minggu setelah inokulasi dilakukan pengamatan jenis dan jumlah mikroba dengan metode pengenceran berseri sama dengan sebelumnya, selanjutnya pengamatan intensitas penyakit dilakukan sebanyak empat kali dengan selang waktu tiga hari sekali.

Intensitas penyakit dihitung dengan rumus :

\[
IP = \frac{\sum_{i=1}^{n} P_i}{N} \times 100\%
\]

Keterangan :

- \(P \) = persen luas daun terinfeksi
- \(N \) = jumlah daun contoh
- \(i \) = daun ke-1,2,3....n
HASIL DAN PEMBAHASAN

Uji Perkecambahan Konidia

Uji perkecambahan konidia ini dilakukan dengan tujuan untuk mengetahui pengaruh langsung dari suspensi perlakuan terhadap perkecambahan konidia *A. porri*. Konidia *A. porri* yang belum berkecambah dan sudah berkecambah dapat dilihat dalam Gambar 1.

Gambar 1. Konidia *A. porri* yang belum berkecambah (kiri) dan konidia *A. porri* yang berkecambah (kanan)

Hasil pengujian menunjukkan bahwa suspensi khitin 1% dan suspensi selulosa 1% lebih efektif menghambat perkecambahan konidia *A. porri* daripada suspensi pati. Pengamatan perkecambahan konidia *A. porri* disajikan dalam Tabel 1.
Tabel 1. Persentase perkecambahan konidia *A. porri* pada lima macam suspensi perlakuan (ditransformasi ke arcsin)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Persentase perkecambahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>66,62 a(^1)</td>
</tr>
<tr>
<td>Pati</td>
<td>40,42 ab</td>
</tr>
<tr>
<td>Selulosa</td>
<td>33,80 bc</td>
</tr>
<tr>
<td>Khitin</td>
<td>24,22 bc</td>
</tr>
<tr>
<td>Dithane M 45</td>
<td>11,89 c</td>
</tr>
</tbody>
</table>

\(^1\)Huruf yang sama di belakang angka menyatakan tidak berbeda nyata pada taraf (P=0,05) (berdasarkan uji Tukey)

Persentase perkecambahan konidia yang diberi perlakuan suspensi khitin 1%, suspensi selulosa 1% dan suspensi pati berturut-turut sebesar 24,22%, 33,80%, dan 40,42%. Berdasarkan analisis statistik, suspensi khitin 1% dan selulosa 1% memiliki keefektifan yang sama dalam menghambat perkecambahan konidia *A. porri*. Kefektifan kedua suspensi tersebut hampir mendekati keefektifan suspensi fungisida Dithane M 45. Suspensi pati kurang efektif menekan perkecambahan konidia.

Pengaruh Senyawa Biopolimer Terhadap Spora *A. porri*

Dalam Tabel 1, dapat diketahui bahwa khitin dan selulosa mampu menghambat perkecambahan spora *A. porri*. Diduga hal ini disebabkan khitin dan selulosa sebagai nutrisi tidak mendukung perkecambahan konidia *A.porri* bahkan cenderung menghambat perkecambahan konidia *A. porri*.

Finholt et al. (1952) dalam Bilgrami et al. (1978) menyatakan bahwa senyawa alifatik amina menghambat pertumbuhan dari cendawan *Lentinus lepidus* ketika cendawan tersebut dibakukan pada medium yang mengandung selulosa sebagai sumber karbon. *L. lepidus* dapat tumbuh dengan normal ketika sumber karbon dari mediumnya digantikan oleh glukosa. Diduga, senyawa alifatik amina menyebabkan enzim ekstra seluler dari cendawan tersebut tidak berfungsi.
Menurut Morris et al. (1991), populasi *Pseudomonas syringae* penyebab penyakit *bacterial brown spot* (BBS) dan seluruh jenis bakteri pada daun buncis menurun ketika glutamin sebagai sumber karbon diaplikasikan pada daun buncis. Apabila daun tersebut diberi alanin sebagai sumber karbon, populasi seluruh bakteri termasuk *P. syringae* relatif tidak menurun. Diduga, glutamin sebagai nutrisi dapat bersifat toksik bagi bakteri pada daun buncis, atau glutamin mempengaruhi tanaman buncis sehingga menjadi tempat hidup yang kurang sesuai bagi bakteri.

Diduga, proses penghambatan khitin terhadap perkecambahan konidia *A. porri* serupa dengan pernyataan Morris et al. (1991), yaitu khitin tidak mendukung perkecambahan konidia *A. porri* bahkan dapat bersifat toksik bagi *A. porri*.

Percobaan Rumah Kaca

Percobaan rumah kaca ini bertujuan untuk mengetahui pengaruh tidak langsung dari masing-masing suspensi terhadap *A. porri* melalui pengaktifan mikroorganisme filopan. Pengamatan terhadap populasi mikroorganisme filopan sebelum diberi perlakuan dapat dilihat dalam Tabel 2.

<table>
<thead>
<tr>
<th>Mikroorganisme</th>
<th>Populasi (log cfu/g daun)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cendawan</td>
<td>4,87</td>
</tr>
<tr>
<td>Bakteri</td>
<td>10,30</td>
</tr>
<tr>
<td>Aktinomycetes</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Pengamatan terhadap mikroorganisme filopan sebelum diberi perlakuan menunjukkan bahwa populasi bakteri (10,30 log cfu/g daun) lebih tinggi
dibandingkan dengan populasi cendawan (4,87 log cfu/g daun) dan aktinomycetes (0,00 log cfu/g daun) (Tabel 2).

Pengaruh Senyawa Biopolimer Terhadap Mikroorganisme Filoplan

Tabel 3 menunjukkan populasi mikroorganisme filoplan setelah diberi perlakuan (suspensi khitin, pati, selulosa, Dithane M 45 dan air steril) pada saat tanaman berumur 6 minggu.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Cendawan</th>
<th>Bakteri</th>
<th>Aktinomycetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0,00 a</td>
<td>9,42 ab</td>
<td>0,00 a</td>
</tr>
<tr>
<td>Khitin</td>
<td>0,00 a</td>
<td>9,40 ab</td>
<td>0,00 a</td>
</tr>
<tr>
<td>Selulosa</td>
<td>0,00 a</td>
<td>10,18 a</td>
<td>0,00 a</td>
</tr>
<tr>
<td>Pati</td>
<td>5,86 b</td>
<td>10,20 a</td>
<td>0,00 a</td>
</tr>
<tr>
<td>Dithane</td>
<td>0,00 a</td>
<td>9,15 b</td>
<td>2,23 b</td>
</tr>
</tbody>
</table>

Huruf yang sama di belakang angka menyatakan tidak berbeda nyata pada taraf (P=0,05) (berdasarkan uji Tukey)

Dalam Tabel 3, pengamatan terhadap populasi mikroorganisme filoplan setelah penyemprotan suspensi khitin 1%, suspensi selulosa 1%, suspensi pati, suspensi fungsida Dithane M 45 dan air steril menunjukkan bahwa populasi bakteri filoplan dari daun yang disemprot dengan suspensi selulosa (10,18 log cfu/g daun) dan pati (10,20 log cfu/g daun) relatif lebih tinggi daripada bakteri filoplan pada daun yang disemprot dengan air steril (9,42 log cfu/g daun). Hal ini menunjukkan bahwa suspensi selulosa dan pati sebagai nutrisi mampu meningkatkan pertumbuhan dan perkembangan bakteri filoplan.
Bakteri filoplan pada suspensi perlakuan khitin, pati, selulosa, Dithane M 45 dan air steril diperoleh tujuh jenis bakteri yang masing-masing perlakuan mempunyai perbedaan jenis bakteri, dapat dilihat dalam Tabel 4. Bakteri yang dapat diidentifikasi adalah bakteri jenis F yang diidentifikasi sebagai bakteri dari kelompok fluorescens.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Jenis bakteri (kode)</th>
<th>Ciri-ciri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>A</td>
<td>Bundar, licin, cembung, kuning</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Konsentrasi, licin, cembung, krem</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Bundar, siliat, datar, kebiruan</td>
</tr>
<tr>
<td>Khitin</td>
<td>A</td>
<td>Bundar dengan tepian kerang, siliat, datar, putih</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Keriput, licin, timbul, krem</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Menyebar tak beraturan, datar, siliat, putih</td>
</tr>
<tr>
<td>Pati</td>
<td>A</td>
<td>Bundar, siliat, datar, fluorescens</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Selulosa</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Dithane M 45</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

Bakteri kelompok fluorescens yang berpotensi sebagai agen antagonis ditemukan pada daun dengan perlakuan selulosa dan pati (Tabel 5). Suspensi fungisida yang disempotkan pada daun menyebabkan populasi bakteri filoplan menurun (Tabel 5).
Tabel 5. Kepadatan bakteri kelompok fluorescens pada tanaman bawang merah dengan berbagai macam perlakuan (log cfu/g daun)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Bakteri fluorescens<sup>1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0,00 a</td>
</tr>
<tr>
<td>Khitin</td>
<td>0,00 a</td>
</tr>
<tr>
<td>Pati</td>
<td>9,82 b</td>
</tr>
<tr>
<td>Selulosa</td>
<td>6,29 c</td>
</tr>
<tr>
<td>Dithane</td>
<td>0,00 a</td>
</tr>
</tbody>
</table>

¹⁾Huruf yang sama di belakang angka menyatakan tidak berbeda nyata pada taraf (P=0,05) (berdasarkan uji Tukey)

Blakeman (1991) melaporkan bahwa keragaman populasi mikroorganisme filoplan menurun seiring dengan pemakaian pestisida. Pertumbuhan cendawan

Pengaruh Tidak Langsung Senyawa Biopolimer Terhadap Penyakit Bercak Ungu

Penyemprotan suspensi *A. porri* terhadap tanaman bawang merah menunjukkan gejala berupa bercak ungu seperti dalam Gambar 2.

![Gambar 2. Gejala penyakit bercak ungu yang disebabkan oleh *A. porri*](image)

Tabel 6 menunjukkan tidak ada perbedaan nyata dari lima macam perlakuan terhadap perkembangan penyakit bercak ungu. Intensitas penyakit dari tanaman dengan lima macam perlakuan sangat rendah.
Tabel 6. Intensitas penyakit bercak ungu dari tanaman bawang merah yang diberi lima macam perlakuan (diterapkan dengan ke akar kuadrat)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Intensitas penyakit (%) pada pengamatan ke<sup>7</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Air</td>
<td>0,71 a</td>
</tr>
<tr>
<td>Pati</td>
<td>0,71 a</td>
</tr>
<tr>
<td>Selulosa</td>
<td>0,71 a</td>
</tr>
<tr>
<td>Khitin</td>
<td>0,71 a</td>
</tr>
<tr>
<td>Dithane</td>
<td>0,71 a</td>
</tr>
</tbody>
</table>

⁷Huruf yang sama di belakang angka menyatakan tidak berbeda nyata pada taraf (P=0.05) (berdasarkan uji Tukey).

Menurut Jurusan Agrometeorologi & Geofisika IPB Bogor, kisaran suhu dan kelembaban nisbi (RH) saat perkembangan penyakit bercak ungu (selama bulan Agustus 1999) adalah 24,7°-26,7°C dan 60%-81%. Berdasarkan hasil percobaan Khare dan Nema (1984), rendahnya intensitas penyakit dari tanaman bawang merah diduga disebabkan oleh kondisi lingkungan yang kurang mendukung penyakit bercak ungu, diantaranya adalah kelembaban nisbi (RH) kurang dari 90%.
Hasil analisis statistik terhadap intensitas penyakit bercak ungu menunjukkan hasil tidak berbeda nyata, maka dari hasil tersebut tidak dapat dilihat pengaruh tidak langsung dari masing-masing suspensi perlakuan terhadap A. p acci.
KESIMPULAN DAN SARAN

Kesimpulan

Suspensi khitin 1% dan suspensi selulosa 1% efektif dalam menghambat perkecambahan konidia *Alternaria porri*. Suspensi pati kurang efektif dalam menekan perkecambahan konidia *A. porri*. Keefektifan suspensi khitin dan selulosa hampir sama dengan keefektifan suspensi fungisida Dithane M 45 dalam menekan perkecambahan konidia *A. porri*.

Penambahan senyawa biopolimer (khitin, pati, selulosa) pada permukaan daun bawang merah dapat meningkatkan keragaman jenis mikroorganisme filoplan. Populasi mikroorganisme filoplan menurun seiring dengan penamaan pestisida.

Saran

Penelitian ini perlu dikembangkan lebih lanjut dengan memperhatikan kondisi iklim saat penelitian berlangsung. Diusahakan kondisi iklim mendukung perkembangan penyakit bercak ungu sehingga dapat diketahui mekanisme pengendalian yang terjadi di lapang dan keefektifan senyawa biopolimer dalam meningkatkan aktivitas mikroorganisme filoplan untuk pengendalian penyakit bercak ungu.
DAFTAR PUSTAKA

Angell, H. R. 1929. Purple blotch of onion (Macrosporium porri Ell.). Journal of Agricultural Research 38 : 467-487

