MEMPELAJARI PENGARUH KONSENTRASI DAN FREKUENSI PENYEMPROTAN LARUTAN KAPUR SIRIH TERHADAP MUTU FILLET IKAN TUNA \textit{(Thunnus sp)} PADA SUHU \textit{CHILLING}

Oleh:

MASIRAH
C03499021

SKRIPSI

DEPARTEMEN TEKNOLOGI HASIL PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2004
MEMPELAJARI PENGARUH KONSENTRASI DAN FREKUensi PENYEMPROMTAN LARUTAN KAPUR SIRIH TERHADAP MUTU FILLET IKAN TUNA (Thunnus sp) PADA SUHU CHILLING

Oleh:
MASIRAH
C03499021

SKIRPSI
Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan dan IImu Kelautan, Institut Pertanian Bogor

DEPARTEMEN TEKNOLOGI HASIL PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2004
SKRIPSI

Judul : Mempelajari Pengaruh Konsentrasi dan Frekuensi Penyemprotan Larutan Kapur Sirih terhadap Mutu Fillet Ikan Tuna (Thunnus sp) pada Suhu Chilling

Nama Mahasiswa : Masirah
Nomor Pokok : C03499021
Program Studi : Teknologi Hasil Perikanan
Departemen : Teknologi Hasil Perikanan

Menyetujui,
I. Komisi Pembimbing

Dr. Ir. Sukarno, M.Sc
Ketua

Sugeng Heri Suseno, S.Pi. M.Si
Anggota

II. Fakultas Perikanan dan Ilmu Kelautan,

Ir. Ruddy Suwandi, MS. MPhil
Ketua Program Studi

Oman Sudrajat, M.Sc
Wakil Dekan

Tanggal ujian : 27 Februari 2004
RINGKASAN

MASIRAH. C03499021. Mempelajari Pengaruh Konsentrasi dan Frekuensi Penyemprotan Larutan Kapur Sirih terhadap Mutu Fillet Ikan Tuna (Thunnus sp) pada Suhu Chilling. Di bawah bimbingan SUKARNO dan SUGENG HERI SUSENO.

Tuna (Thunnus sp) merupakan sumberdaya ikan yang potensial untuk dikembangkan, baik sebagai sumber makanan sehat bagi masyarakat maupun sebagai sumber devisa negara dari sektor non-migas. Sebagai bahan pangan hewani, ikan tuna mudah sekali mengalami kerusakan yang menyebabkan mutunya menurun. Untuk memenuhi kebutuhan konsumen akan ikan segar, penanganan yang baik perlu dilakukan. Salah satu penanganan ikan tuna dalam bentuk segar adalah membuatnya menjadi fillet. Pemanfaatan fillet mempunyai peluang yang baik karena kecenderungan konsumen yang menginginkan segi kepraktisan.

Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi dan frekuensi penyemprotan larutan kapur sirih terhadap mutu fillet ikan tuna (Thunnus sp) dengan penyimpanan pada suhu chilling serta untuk mendapatkan fillet ikan tuna dengan perlakuan terbaik.

Tahap penelitian meliputi penelitian pendahuluan dan penelitian utama. Penelitian pendahuluan bertujuan untuk melihat pengaruh konsentrasi dan frekuensi penyemprotan larutan kapur sirih terhadap fillet ikan tuna. Bahan utama yang digunakan yaitu fillet ikan tuna (diperoleh dari PT Halimas Sakti Muara Baru Jakarta), dan kapur sirih (diperoleh dari Pasar Gunung Batu Bogor). Konsentrasi larutan kapur sirih yang diujikan yaitu : 5% (b/v), 10% (b/v), dan 15%(b/v), dengan frekuensi penyemprotan 1, 2, dan 3 kali. Penyemprotan larutan kapur sirih dilakukan sebanyak 3 kali, dengan jeda waktu sekira 10 detik setiap kali semprot dan jarak semprot sekitar 5 cm. Uji yang dilakukan pada tahap pendahuluan meliputi uji pH dan organoleptik. Hasil penelitian pendahuluan yang memberikan pengaruh terbaik akan digunakan pada penelitian utama, yaitu konsentrasi 15% (b/v) dengan frekuensi penyemprotan 3 kali.
Pada tahap utama, dilakukan pengujian terhadap fillet dengan perlakuan konsentrasi (0%), (15%), dan (30%) dengan frekuensi penyemprotan 3 kali dan disimpan pada suhu chilling selama 3 hari. Uji yang dilakukan meliputi Total Plate Count (TPC), penetapan Total Volatile Base (TVB) dan uji pH. Rancangan percobaan yang digunakan adalah rancangan acak lengkap pola faktorial dengan 2 kali ulangan, hasil yang berbeda nyata dilanjutkan dengan uji lanjut Tukey. Sedangkan hasil uji organoleptik dianalisis dengan uji Kruskal-Wallis dan hasil yang berbeda nyata dilanjutkan dengan uji Multiple comparison (Steel dan Torrie, 1991).

Dari analisis pH pada penelitian pendahuluan diperoleh bahwa nilai rata-rata pH fillet ikan tuna yang telah mengalami penyemprotan dengan larutan kapur sirih cenderung mengalami kenaikan yaitu berkisar antara 5.88-6.81. Rata-rata nilai pH sampel yang telah diberi perlakuan penyemprotan larutan kapur sirih lebih tinggi dibandingkan dengan pH kontrol. Pengaruh yang sangat nyata terlihat pada perlakuan konsentrasi 15% dengan penyemprotan sebanyak 3 kali. Interaksi antara konsentrasi larutan kapur sirih dan frekuensi penyemprotan tidak memberikan pengaruh yang nyata terhadap nilai pH.

Hasil analisis TVB pada penelitian utama berkisar antara 13.84-28.79 mgN/100 g daging. Pada setiap perlakuan, nilai TVB semakin meningkat sampai penyimpanan hari ke-3. Pada hari ke-1, 2, dan 3, peningkatan nilai TVB perlakuan B (konsentrasi 15%) dan C (konsentrasi 30%) lebih rendah dibandingkan dengan perlakuan A (konsentrasi 0%). Hasil analisis ragam menunjukkan bahwa perlakuan konsentrasi dan lama penyimpanan berpengaruh nyata terhadap nilai TVB fillet ikan tuna. Uji lanjut Tukey menunjukkan bahwa pada penyimpanan hari ke-1, 2, dan 3, semua konsentrasi yang diberikan (0%, 15%, dan 30%) memberikan pengaruh yang sangat berbeda nyata terhadap nilai TVB fillet ikan tuna.

Dari analisis pH pada penelitian utama dapat diketahui bahwa nilai pH berkisar antara 5.16-6.89. Secara umum pH fillet ikan tuna cenderung meningkat seiring dengan meningkatnya konsentrasi larutan kapur sirih dan bertambahnya waktu penyimpanan. Hasil analisis ragam menunjukkan bahwa perlakuan konsentrasi dan lama penyimpanan berpengaruh nyata terhadap nilai pH fillet ikan tuna. Uji lanjut Tukey menunjukkan bahwa semua perlakuan (A, B, dan C) memberikan pengaruh yang berbeda nyata, dimana perlakuan B peningkatan nilai pH-nya lebih nyata dibandingkan dengan perlakuan A dan perlakuan C peningkatan
nilai pH-nya lebih nyata dibandingkan dengan perlakuan B. Hal ini berarti bahwa cukup dengan perlakuan B (konsentrasi 15%) sudah mampu memberikan pengaruh yang efektif terhadap daya simpan fillet.

Hasil analisis mikrobiologi menunjukkan bahwa nilai rata-rata jumlah bakteri berkisar antara 1.1×10^5 - 7.9×10^6 unit koloni/g. Pada perlakuan dengan penambahan larutan kapur sirih, jumlah bakterinya lebih sedikit dibandingkan dengan perlakuan tanpa larutan kapur sirih. Semakin lama penyimpanan, jumlah bakteri pada fillet semakin banyak, terutama pada fillet yang tidak diberi perlakuan kapur sirih. Jumlah bakteri dihambat dengan penutupan pori-pori bahan (fillet) dengan endapan air kapur sirih (Buckle et al., 1987). Daya hambat yang efektif ditunjukkan oleh perlakuan C (konsentrasi 30%).

Berdasarkan hasil penelitian ini dapat disarankan perlunya dilakukan penelitian lebih lanjut untuk menguji kadar histamin pada fillet ikan tuna yang telah mengalami penyimpanan dan kandungan gizi fillet ikan tuna yang telah mengalami proses pengolahan menjadi produk pangan, serta perlu diperpanjangnya lama penyimpanan fillet ikan tuna.
KATA PENGANTAR

Alhamdulillah, segala puji hanyalah milik Allah SWT. Berkat kasih sayang-Nya penulis bisa menyelesaikan skripsi yang berjudul “Mempelajari Pengaruh Konsentrasi dan Frekuensi Penyemprotan Larutan Kapur Sirih terhadap Mutu Fillet Ikan Tuna (Thunnus sp) pada Suhu Chilling“.

Pada kesempatan ini penulis mengucapkan terima kasih kepada:

1. Dr. Ir. Sukarno, M.Sc. dan Sugeng Heri Suseno, S.Pi. M.Si.”selaku komisi pembimbing yang telah memberikan bimbingan dan arahan hingga skripsi ini terselesaikan.
2. Ir. Winarti Zahiruddin, M.S. selaku dosen penguji tamu atas masukan dan saran untuk perbaikan skripsi ini.
4. Teman-teman THP 36, dan adik-adik THP semuanya.
5. Saudara-saudaraku satu kost-an (Ash-Shobirin crew).
6. Segenap pihak yang telah membantu.

Tulisan ini masih jauh dari sempurna, oleh karenanya sumbang saran dan kritik yang membangun sangat penulis harapkan. Semoga skripsi ini bermanfaat bagi yang membutuhkan.

Bogor, Maret 2004
Penulis
DAFTAR ISI

KATA PENGANTAR ... i

DAFTAR ISI ... ii

DAFTAR TABEL ... iv

DAFTAR GAMBAR .. v

DAFTAR LAMPIRAN ... vi

1. PENDAHULUAN
 1.1 Latar Belakang ... 1
 1.2 Tujuan ... 2
 1.3 Waktu dan Tempat Penelitian ... 3

2. TINJAUAN PUSTAKA
 2.1 Deskripsi dan Klasifikasi Ikan Tuna .. 4
 2.2 Komposisi Kimiawi Daging Ikan Tuna ... 5
 2.3 Kemunduran Mutu Ikan .. 6
 2.4 Perubahan Fisik Daging Ikan Tuna .. 8
 2.5 Aspek Biokimia Pada Ikan ... 9
 2.6 Kapur Sirih ... 10
 2.7 Bahan Pengawet Ikan .. 12

3. METODOLOGI
 3.1 Bahan dan Alat ... 14
 3.2 Metode Penelitian .. 14
 3.2.1 Penelitian Pendahuluan ... 14
 3.2.2 Penelitian Utama .. 15
 3.2.3 Prosedur Analisis .. 15
 3.2.3.1 Penelitian Pendahuluan ... 15
 (1) Pengukuran Derajat Keasaman (pH) .. 15
 (2) Uji Organoleptik ... 16
 3.2.3.2 Penelitian Utama .. 16
 (1) Penetapan Total Volatile Base (TVB) ... 16
 (2) Pengukuran Derajat Keasaman (p-l) ... 17
 (2) Penghitungan Total Plate Count (TPC) 17
 3.2.4 Rancangan Percobaan .. 17

4. HASIL DAN PEMBAHASAN
 4.1 Penelitian Pendahuluan ... 19
<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Komposisi Nilai Gizi Bluefin Tuna dan Yellowfin Tuna per 100 g Daging</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Nilai Rata-rata pH Fillet Ikan Tuna (Thunnus sp) selama Penyimpanan 6 jam pada Suhu Chilling</td>
<td>19</td>
</tr>
<tr>
<td>3.</td>
<td>Nilai Rata-rata Organoleptik Fillet Ikan Tuna (Thunnus sp) selama Penyimpanan 6 jam pada Suhu Chilling</td>
<td>21</td>
</tr>
<tr>
<td>4.</td>
<td>Standar Kesegaran Ikan Berdasarkan Nilai TVB (Farber, 1965)</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>Nilai Rata-rata Log Total Bakteri Fillet Ikan Tuna (Thunnus sp) selama Penyimpanan 6 jam pada Suhu Chilling</td>
<td>28</td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Jenis-jenis Ikan Tuna</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Kapur Sirih</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Skema Penelitian Pendahuluan</td>
<td>15</td>
</tr>
<tr>
<td>4.</td>
<td>Skema Penelitian Utama</td>
<td>15</td>
</tr>
<tr>
<td>5.</td>
<td>Grafik Hubungan antara Nilai TVB (mgN/100 g Daging)</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>dengan Lama Penyimpanan Fillet Ikan Tuna (Thunnus sp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pada Suhu Chilling</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Grafik Hubungan antara Nilai pH (mgN/100 g Daging)</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>dengan Lama Penyimpanan Fillet Ikan Tuna (Thunnus sp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pada Suhu Chilling</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Grafik Hubungan antara Nilai Rata-rata Log Total Bakteri</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>dengan Lama Penyimpanan Fillet Ikan Tuna (Thunnus sp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pada Suhu Chilling</td>
<td></td>
</tr>
<tr>
<td>Nomor</td>
<td>Judul</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>2.</td>
<td>Score Sheet Organoleptik Filet</td>
<td>36</td>
</tr>
<tr>
<td>3.</td>
<td>Score Sheet Organoleptik Rasa</td>
<td>38</td>
</tr>
<tr>
<td>4.</td>
<td>Nilai Organoleptik Lendir Filet Ikan Tuna (Thunnus sp)</td>
<td>39</td>
</tr>
<tr>
<td>5.</td>
<td>Nilai Organoleptik Daging Filet Ikan Tuna (Thunnus sp)</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Nilai Organoleptik Tekstur Filet Ikan Tuna (Thunnus sp)</td>
<td>41</td>
</tr>
<tr>
<td>7.</td>
<td>Nilai Organoleptik Bau Filet Ikan Tuna (Thunnus sp)</td>
<td>42</td>
</tr>
<tr>
<td>8.</td>
<td>Nilai Organoleptik Rasa Filet Ikan Tuna (Thunnus sp)</td>
<td>43</td>
</tr>
<tr>
<td>9.</td>
<td>Uji terhadap Nilai pH pada Penelitian Pendahuluan</td>
<td>44</td>
</tr>
<tr>
<td>10.</td>
<td>Uji terhadap Nilai Organoleptik</td>
<td>46</td>
</tr>
<tr>
<td>11.</td>
<td>Uji terhadap Nilai TVB</td>
<td>50</td>
</tr>
<tr>
<td>12.</td>
<td>Uji terhadap Nilai pH pada Penelitian utama</td>
<td>53</td>
</tr>
<tr>
<td>13.</td>
<td>Nilai Rata-rata TVB (mg N/100 g Daging) Filet Ikan Tuna (Thunnus sp) selama Penyimpanan pada Suhu Chilling</td>
<td>55</td>
</tr>
<tr>
<td>14.</td>
<td>Nilai Rata-rata pH Filet Ikan Tuna (Thunnus sp) selama Penyimpanan pada Suhu Chilling</td>
<td>54</td>
</tr>
</tbody>
</table>
1. PENDAHULUAN

1.1 Latar Belakang

Berbeda dengan anggota kelompok ikan bertulang lainnya, ikan tuna merupakan jenis ikan berdarah panas yang kurang peka terhadap perubahan temperatur yang kecil. Selain itu, karena ukurannya yang besar dan temperaturnya tinggi, terdapat kesulitan mendinginkannya terutama pada bagian dalam, sehingga pada ikan tuna mudah sekali mengalami kerusakan yang menyebabkan nilai mutunya rendah (Murniayati dan Sunarman, 2000). Kerusakan ikan tuna antara lain disebabkan oleh aktivitas enzim dan mikroba.

Untuk memenuhi kebutuhan konsumen dengan mutu yang segar, penanganan ikan perlu dilakukan supaya terjaga kesegaran ikan sampai ke tangan konsumen atau pabrik pengolahan dalam keadaan segar. Salah satu penanganan ikan dalam bentuk segar adalah dengan membuatnya menjadi *fillet*. *Fillet* adalah daging ikan tanpa duri dan tulang, kadang-kadang juga tanpa kulit. Pemanfaatan
fillet ikan mempunyai peluang yang sangat baik karena kecenderungan konsumen yang menginginkan segi kepraktisan (Mulyono, 2003).

Dibandingkan dengan ikan utuh, fillet ikan lebih rentan terhadap kontaminasi dan penurunan mutu, sehingga dalam penanganan dan pengolahannya membutuhkan perhatian yang lebih dibandingkan dengan komoditas olahan yang lain (Suparno, 1992). Cara yang sering ditempuh adalah dengan penambahan bahan pengawet kimia antara lain seperti garam (NaCl), nitrat dan nitrit. Penggunaan bahan pengawet kimia memiliki kendala yaitu: jika dosisnya tidak tepat dapat menyebabkan penyakit degeneratif bagi yang mengkonsumsinya, seperti nitrit yang dapat menimbulkan komponen toksik (nitrosamin) yang berbahaya bagi kesehatan. Berdasarkan hal ini penelitian-penelitian yang mengenai penggunaan bahan alami sebagai bahan pengawet, peningkatan mutu, dan lain-lain mulai dikembangkan karena dianggap lebih aman (Jenie dan Reni, 1995).

Air kapur (kalsium hidroksida) adalah bahan yang umum digunakan dalam proses pengawetan, dimana pori-pori bahan akan tertutup oleh endapan kapur sirih (Buckle, 1987). Penggunaan kapur sirih sebagai bahan untuk meningkatkan mutu fillet ikan telah dibuktikan dalam suatu penelitian terhadap ikan lele (Kiorotami, 1991). Dalam hal ini metode yang dilakukan adalah dengan perendaman selama 6 jam (konsentrasi larutan kapur sirih 2%) dan selama 12 jam (konsentrasi larutan kapur sirih 1%). Metode yang lain perlu diuapkan untuk melihat keefektifan pengaruhnya terhadap fillet, antara lain dengan melakukan penyempuran. Penggunaan kapur sirih dinilai menguntungkan karena cara memperolehnya mudah dan harganya murah.

1.2 Tujuan

Tujuan dari penelitian ini adalah:

a. Mengetahui pengaruh interaksi konsentrasi larutan kapur sirih dan frekuensi penyemporan larutan kapur sirih yang terbaik terhadap mutu fillet ikan tuna yang disimpan pada suhu chilling.

b. Mendapatkan fillet ikan tuna dengan perlakuan terbaik.
1.3 Waktu dan Tempat Penelitian

2. TINJAUAN PUSTAKA

2.1 Deskripsi dan Klasifikasi Ikan Tuna

Klasifikasi ikan tuna adalah sebagai berikut (Saanin, 1983):

Phylum : Chordata
Subphylum : Vertebrata
Class : Teleostei
Subclass : Actinopterygii
Ordo : Perciformes
Subordo : Scombridei
Family : Scombridae
Genus : Thunnus
Species: *Thunnus obesus* (bigeye tuna, tuna mata besar)
- *T. alalunga* (albacore, tuna alcar)
- *T. tonggol* (longtail tuna)
- *T. albacares* (yellowfin tuna, madidihang)

Gambar 1. Jenis-jenis Ikan Tuna

Tabel 1. Komposisi Nilai Gizi Bluefin Tuna dan Yellowfin Tuna per 100 g Daging

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Bluefin</th>
<th>Yellowfin</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalori</td>
<td>121.0</td>
<td>105.0</td>
<td>Cal</td>
</tr>
<tr>
<td>Kadar Air</td>
<td>73.5</td>
<td>74.5</td>
<td>g</td>
</tr>
<tr>
<td>Protein</td>
<td>22.6</td>
<td>24.1</td>
<td>g</td>
</tr>
<tr>
<td>Nitrogen dalam Protein</td>
<td>3.61</td>
<td>3.85</td>
<td>g</td>
</tr>
<tr>
<td>Lemak</td>
<td>2.7</td>
<td>0.2</td>
<td>g</td>
</tr>
<tr>
<td>Abu</td>
<td>1.2</td>
<td>1.2</td>
<td>g</td>
</tr>
</tbody>
</table>

2.3 Kemunduran Mutu Ikan

Ikan tuna merupakan bahan pangan yang mudah sekali mengalami kerusakan terutama dalam keadaan segar akan cepat sekali mengalami kerusakan sehingga mutunya rendah. Kerusakan ini dapat terjadi secara biokimiawi maupun secara mikrobiologi. Kerusakan biokimiawi disebabkan oleh adanya enzim-enzim dan reaksi tersebut masih berlangsung pada tubuh ikan segar. Kesegaran ikan merupakan toluk ukur untuk membedakan ikan yang jelek dan ikan yang baik kualitasnya. Ikan dikatakan masih segar apabila perubahan-perubahan biokimiawi, mikrobiologi dan fisikawi yang terjadi belum menyebabkan kerusakan berat pada ikan. Berdasarkan kesegarannya ikan digolongkan menjadi empat kelas mutu yaitu ikan yang kesegarannya masih baik sekali (prima) atau di industri sering dinamakan mutu AA, ikan yang kesegarannya masih baik (advanced) atau di industri sering dinamakan mutu A, ikan yang kesegarannya sudah mulai mundur (sedang) atau di industri sering dinamakan mutu B, dan ikan yang sudah tidak segar (mutu rendah) atau di industri sering dinamakan mutu reject.

Tuna terbagi dalam beberapa jenis seperti: yellowfin tuna, bigeye tuna, albacore, longtail tuna, blackfin tuna dan southern bluefin tuna. Sedangkan di Indonesia jenis-jenis yang tertangkap adalah yellowfin tuna atau madidihang, bigeye tuna atau biasa disebut tuna mata besar, albacore, dan southern bluefin tuna (Simorangkir, 1993).

2.2 Komposisi Kimiawi Daging Ikan Tuna

Ikan merupakan sumber pangan hewani yang bergizi tinggi. Pada daging ikan dapat dijumpai senyawa-senyawa yang sangat berguna bagi manusia, yaitu protein, lemak, sedikit karbohidrat, vitamin dan garam-garam mineral. Ikan tuna secara umum memiliki komposisi kimia antara lain air (68,1%), protein (20,9%), lemak (9,4%) dan abu (5,0%) (Hadiwiyoto, 1993).

Secara umum bagian ikan yang dapat dimakan (edible portion) berkisar antara 45-50% (Suzuki, 1981). Untuk kelompok ikan tuna bagian yang dapat dimakan sekitar 55-70% (Stansby dan Olcott, 1963).
Pembusukan ikan segar menurut Moeljanto (1992) disebabkan:

a. Pengaruh kegiatan enzim (autolisis)
Enzim merupakan salah satu penyebab kebusukan ikan secara alami dan terdapat di dalam badan ikan, di antaranya enzim yang berasal dari daging ikan yaitu katepsin, enzim pencernaan yaitu tripsin, kimo tripsin, dan pepsin serta enzim-enzim dari mikroorganisme. Pada ikan hidup, enzim di dalam sistem pencernaan dan daging diatur oleh badan ikan, tetapi setelah ikan itu mati enzim masih tetap aktif dan enzim proteolitis masuk dalam perut dan menguraikan jaringan sehingga terjadi autolisis yaitu proses penguraian jaringan yang berjalan dengan sendirinya setelah ikan itu mati.

b. Pengaruh kegiatan bakteri
Jenis-jenis bakteri yang biasa terdapat pada ikan yaitu golongan Achromobacter dan Flavobacterium serta Pseudomonas dan Clostridium. Usaha untuk mengurangi bakteri dibagian luar badan ikan, misalnya dengan pencucian yang baik, pembuangan sisa, pencucian dengan air klor, penggunaan es yang mengandung zat antibakteri dan bermacam-macam pemakaian zat kimia.

c. Ketengikan
Ketengikan bisa dijumpai pada ikan-ikan yang diolah dengan penggaraman dan pengeritingan, serta pada ikan yang diberi perlakuan dengan es atau dibekukan. Bau tengik timbul karena oksidasi lemak oleh oksigen dari udara.

Salah satu penyebab kerusakan daging ikan adalah tingginya pH akhir daging ikan. Biasanya ikan segar memiliki pH antara 6,4 hingga 6,6 karena rendahnya cadangan glikogen dalam daging ikan. Ikan sukar ditangkap dalam jumlah besar tanpa pergulatan yang mengakibatkan turunnya cadangan glikogen. Pendinginan segera sesudah penangkapan akan memperlambat berlangsungnya proses rigor (Buckle et al., 1987).

Setelah terjadi kerusakan biokimiawi pada daging ikan yang akan menyebabkan pH ikan meningkat akan dilanjutkan oleh kerusakan mikrobiologi, dimana keadaan daging ikan tersebut cocok sebagai substrat akan berpengaruh besar pada pertumbuhan bakteri. Hanya terdapat sebagian bakteri pada keadaan asam (pH rendah) dan sebagian besar tumbuh subur pada substrat yang bersifat basa (pH tinggi).

2.4 Perubahan Fisik Daging Ikan Tuna

Ikan tuna yang baru ditangkap memiliki daging berwarna kemerahan yang disebabkan oleh pigmen myoglobin yang berada sebagai oxymyoglobin dan metmyoglobin. Pada ikan yang sangat segar, kadar bagian metmyoglobin masih rendah. Pada saat otot daging bekerja, oxymyoglobin menyediakan oksigen bagi jaringan daging yang kemudian akan berubah menjadi myoglobin. Deoksidadsi dari oxymyoglobin mengakibatkan warna daging berubah dari kemerahan menjadi ungu. Perubahan ini juga dipengaruhi oleh faktor lingkungan seperti suhu, pH dan lain-lain yang mengakibatkan myoglobin diubah menjadi metmyoglobin yang menyebabkan warna daging kemerahan berubah menjadi kecoklatan. Pada ikan tuna bermutu tinggi, bagian metmyoglobin tidak boleh lebih besar daripada 30% dari kadar myoglobin total. Pada tuna segar yang baru ditangkap, bagian metmyoglobin

Biasanya proses autolisis akan selalu diikuti dengan meningkatnya jumlah bakteri, sebab semua hasil penguraian enzim selama proses autolisis merupakan media yang sangat cocok untuk pertumbuhan bakteri dan mikroba lainnya (Genisa, 2000).

2.6 Kapur Sirih

![Gambar 2. Kapur Sirih](image)

Kapur seperti disajikan dalam Gambar 2, diperoleh dengan membakar batu kapur (kalsium karbonat \(\text{CaCO}_3 \)), sehingga pada suhu tertentu akan mengeluarkan gas yang disebut karbon dioksida (\(\text{CO}_2 \)) dan kalsium oksida (\(\text{CaO} \)). Kalsium oksida merupakan bahan yang bersifat reaktif dengan air (\(\text{H}_2\text{O} \)) dan akan membentuk \(\text{Ca(OH)}_2 \) berupa bubuk yang mudah larut dalam air. Reaksi \(\text{CaO} \) dengan air
kadarnya jauh lebih rendah dari 30% tetapi akan semakin meningkat dengan berlanjutnya proses penurunan mutu.

Gejala perubahan warna daging tergantung pula pada pH. Jika pH daging ikan tuna berada di atas 6,0 dan suhunya sekitar 0°C maka oxymyoglobin tidak akan mengalami deoksidasi selama jangka waktu yang lama. Sedangkan myoglobin akan diubah menjadi oxymyoglobin kalau menerima oksigen. Hasilnya, warna daging tuna itu kemerahan dan dapat bertahan dalam waktu yang cukup lama. Selain warna daging, biasa dilihat juga bau dan serat daging, untuk ikan yang masih segar serat daging berwarna merah cerah dan bau daging masih segar. Apabila bagian daging ditekan oleh jari akan dapat balik lagi jika ikan tersebut masih dalam kondisi segar (Iljas, 1993).

Cara-cara yang biasa dilakukan untuk menguji tingkat kesegaran ikan tuna secara fisik adalah dengan melihat warna daging, apabila daging ikan berwarna merah segar maka mutu daging tersebut masih baik. Selain melihat warna daging juga dapat dilakukan dengan melihat konsistensi daging ikan tuna segar, memeriksa bau dan melihat blok daging (Hadiwiyoto, 1993).

2.5 Aspek Biokimia Pada Ikan

merupakan reaksi eksoterm yang akan melepaskan energi panas (Chang dan Tikkanen, 1988), dengan reaksi sebagai berikut:

\[
\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \quad \Delta H = -64.8 \text{ kJ}
\]

Kapur sirih dengan rumus kimia \(\text{CaO} \), mempunyai sifat-sifat berwarna putih, larut dalam asam, dan sangat larut dalam air membentuk kalsium hidroksida. Kapur sirih dibuat dengan memanaskan \(\text{CaCO}_3 \) yang kemudian didinginkan dengan penambahan air sehingga menghasilkan kapur sirih dan \(\text{CO}_2 \). Kalsium oksida digunakan untuk membuat kapur tohor, dalam industri kulit, pabrik bahan kimia, bahan bangunan, bahan logam dan tambang, sintesis bahan organik, dan industri karet (Turner dalam Kiorotami 1991). Pemakaian kalsium hidroksida sampai sejauh ini dianggap aman dalam jumlah tertentu (Taylor dalam Ambarita 1999).

Kapur sirih dijual di pasar tradisional dalam kemasan dibungkus daun. Yang dipakai untuk masakan adalah air kapur sirih, biasanya dipakai untuk merendam bahan makanan seperti kentang atau pepaya agar tidak mudah hancur sewaktu diolah lebih lanjut. Dalam pengolahan tradisional, kapur sirih diantaranya sering digunakan dalam pembuatan acar dan manisan buah, dan pengeras bahan baku untuk kripik (misalnya kripik singkong, pisang, kentang, dan sebagainya). Dalam pengolahan produk buah-buahan, kapur sirih digunakan sebagai pengeras jaringan, dimana ion \(\text{Ca}^{2+} \) dalam kapur sirih akan bergabung dengan bahan pectic menjadi kalsium-pektat yang tidak larut dalam air dan merupakan kalsium-kompleks yang stabil (Sukarni, 1988). Air capur (kalsium hidroksida) adalah bahan yang umum digunakan dalam proses pengawetan, dimana pori-pori bahan akan tertutup oleh endapan kapur sirih (Buckle et al., 1987).

Hasil penelitian Kiorotami (1991) yang merendam \textit{fillet} lele dumbo dalam larutan kapur sirih 1% selama 12 jam dan 2% selama 6 jam, antara lain : perendaman tersebut dapat mengeraskan tekstur \textit{fillet} yang diuji secara kualitatif dengan instron, selain itu juga tidak merubah warna dan aroma \textit{fillet}. Secara organoleptik, penggunaan larutan kapur sirih dapat menghasilkan tekstur, rasa, dan aroma yang disukai panelis terhadap \textit{fillet} lele dumbo yang digoreng. Hanya saja untuk penggunaan kapur sirih lebih dari 2% menyebabkan rasa pahit pada \textit{fillet} lele dumbo yang digoreng.
Berdasarkan penelitian ini pula diperoleh bahwa penambahan kapur sirih dapat meningkatkan kadar kalsium dalam fillet lele dumbo dua kali lipat dari kadar kalsium normal lele, yaitu dari 191,4 mg menjadi 378 mg kalsium. Selain itu juga terjadi penurunan kadar protein dan juga penurunan kadar lemak (Kiorotami, 1991).

2.7 Bahan Pengawet Ikan

Menurut Fardiaz (1989), prinsip dalam pengawetan makanan adalah memberi perlakuan terhadap makanan sedemikian rupa untuk mencapai salah satu dari beberapa tujuan pengawetan makanan. Tujuan tersebut adalah sebagai berikut : (1) mengurangi jumlah awal sel mikroba di dalam makanan; (2) memperpanjang fase adaptasi semaksimal mungkin sehingga pertumbuhan mikroba dihambat; (3) memperlambat fase pertumbuhan logaritmik dan (4) mempercepat fase kematian mikroba.

Cara yang sering ditempuh dalam pengawetan ikan adalah dengan penambahan bahan pengawet antara lain seperti garam (NaCl), nitrat dan nitrit. Penggunaan bahan pengawet kimia memiliki kendala yaitu jika dosisnya tidak tepat dapat menyebabkan penyakit degeneratif bagi yang mengkonsumsinya, seperti nitrit yang dapat menimbulkan komponen toksik (nitrosamin) yang berbahaya bagi kesehatan. Oleh karena itu penelitian-penelitian mengenai penggunaan bahan alami sebagai bahan pengawet, peningkatan kualitas mutu, dan lain-lain mulai dikembangkan karena dianggap lebih aman (Jenie dan Reni, 1995).
3. METODOLOGI

3.1 Bahan dan Alat

Bahan yang digunakan dalam penelitian ini adalah fillet daging ikan tuna (diperoleh dari PT. Halimas Sakti, Muara Baru, Jakarta), kapur sirih (diperoleh dari pasar Gunung Batu, Bogor), aquades, dan air biasa. Bahan kimia yang digunakan antara lain: larutan garam 0.85%, larutan trichlor acid (TCA) 7%, larutan asam borat, kalium karbonat (K₂CO₃), vaselin, larutan trichlor acid (TCA) 5%, larutan asam klorida (HCl) 0.1 N, dan larutan asam klorida (HCl) 0.2 N.

Peralatan yang digunakan adalah: pH-meter, timbangan, lemari pendingin, wadah plastik, cawan poroselin, cawan petri, inkubator, gelas ukur, sendok, nampang, pisau, sprayer, dan peralatan lainnya.

3.2 Metode Penelitian

3.2.1 Penelitian Pendahuluan

Tahap ini dilakukan untuk melihat pengaruh konsentrasi dan frekuensi penyemprotan larutan kapur sirih terhadap fillet ikan tuna. Mula-mula fillet ikan tuna yang masih beku disimpan pada suhu chilling selama 6 jam, kemudian fillet ikan tuna dibagi menjadi 4 kelompok perlakuan sebagai berikut: (1) fillet kontrol tanpa disemprot larutan kapur sirih, (2) fillet disemprot dengan larutan kapur sirih dengan konsentrasi 5%, (3) fillet disemprot dengan larutan kapur sirih dengan konsentrasi 10%, (4) fillet disemprot dengan larutan kapur sirih dengan konsentrasi 15%, dengan frekuensi penyemprotan 1 kali, 2 kali, dan 3 kali. Masing-masing perlakuan dilakukan dengan 2 kali ulangan. Kemudian dilakukan beberapa pengujian terhadap fillet ikan tuna (ujic kunal organoleptik dan pH).

Adapun cara pembuatan larutan kapur sirih adalah sebagai berikut: misalnya akan dibuat larutan kapur sirih 5%, maka sebanyak 5g kapur sirih ditimbang, kemudian dilarutkan dalam aquades sampai volume larutan menjadi 100 ml. Cara yang sama digunakan untuk membuat larutan kapur sirih 10% dan 15%. Penyemprotan larutan kapur sirih dilakukan sebanyak 3 kali, dengan jeda waktu sekitar 10 detik setiap kali semprot dan jarak semprot sekitar 5 cm. Prosedur dalam penelitian pendahuluan secara umum dapat dilihat pada Gambar 3.
(2) Uji Organoleptik (Soekarto, 1982)

Pengujiannya organoleptik merupakan cara pengujian yang bersifat subjektif dengan menggunakan indera manusia sebagai alat utama untuk daya penerimaan terhadap makanan. Uji organoleptik mutu hedonik yang dilakukan pada penelitian ini meliputi uji lendir di permukaan fillet, daging, tekstur dan bau fillet serta rasa fillet ikan tuna yang digoreng. Jumlah panelis yang diikutsertakan pada setiap periode penguji adalah 15-25 orang panelis agak terlatih, dimana setiap panelis menguji semua contoh yang diujikan. Metode yang digunakan adalah metode skoring, yakni fillet ikan tuna dikatakan bermutu baik bila nilai organoleptiknya 7-10, bermutu sedang bila nilai organoleptiknya 5-6, dan bermutu kurang bila nilai organoleptiknya 1-4.

3.2.3.2 Penelitian Utama

(1) Penetapan Total Volatile Base (TVB) (AOAC, 1984)

Penetapan TVB ini bertujuan untuk menentukan jumlah kandungan senyawa-senyawa basa volatil yang terbentuk akibat degradasi protein. Prinsip dari analisis TVB adalah menguapkan senyawa-senyawa basa volatil (amini, mono-, di-, dan trimetil amin) pada suhu kamar selama 24 jam. Senyawa tersebut diikat oleh asam borat dan kemudian dititrasi dengan larutan 0.1N HCl.

Sampel sebanyak 15 g ditambahkan 45 ml larutan TCA 7% kemudian diblender selama 1 menit kemudian disaring dengan kertas saring sehingga filtrat yang diperoleh jernih. Larutan asam borat dipipet sebanyak 1 ml pada bagian tengah (inner chamber) cawan conway, sedangkan 1 ml sampel dipipet di samping kiri dan 1 ml K₂CO₃ dipipet di samping kanan bagian cawan conway yang sama. Kemudian cawan ditutup yang sebelumnya telah diolesi vaselin dan disimpan pada suhu kamar selama 24 jam. Pada cawan blanko filtrat sampel diganti dengan TCA 5% dan dikerjakan dengan prosedur di atas. Untuk setiap sampel dan blanko dikerjakan secara duplo. Larutan asam borat dalam inner chamber dititrasi dengan larutan HCl 0.2 N dengan menggunakan magnetic stirrer sehingga larutan asam borat berubah menjadi merah muda.

Perhitungannya adalah sebagai berikut:

\[\text{Kadar TVB} = (a-b) \times n \times 100/15 \times 45/1 \times 14 \text{ mg N/100 g} \]
3.2.2 Penelitian Utama

Tahap ini merupakan lanjutan dari penelitian pendahuluan, dimana pada tahap ini dilakukan beberapa pengujian pada fillet dengan perlakuan yang terbaik berdasarkan penelitian pendahuluan yang mengalami penyimpanan pada suhu chilling selama 3 hari. Adapun prosedur penelitian utama secara umum dapat dilihat pada Gambar 4.

3.2.3 Prosedur Analisis:

3.2.3.1 Penelitian Pendahuluan

(1) Pengukuran Derajat Keasaman (pH) (Sudarmadji et al., 1984)

Sampel sebanyak 2 g ditimbang dan didispersikan ke dalam 20 ml akuades. Sampel kemudian dihomogenkan dengan homogenizer. Nilai pH sampel diukur dengan menggunakan pH meter.
Keterangan: a = ml titrasi contoh
b = ml titrasi blanko
n = normalitas HCl (0.01428) ~ 0.02 N

(2) Pengukuran Derajat Keasaman (pH) (Sudarmadji et al., 1984)
Sampel sebanyak 2 g ditimbang dan didispersikan ke dalam 20 ml akuades. Sampel kemudian dihomogenkan dengan homogenizer. Nilai pH sampel diukur dengan menggunakan pH meter.

(3) Penghitungan Total Plate Count (Fardiaz, 1987)
Perhitungan jumlah total bakteri dilakukan dengan metode hitung cawan. Cara kerja uji ini adalah persiapan larutan contoh dengan cara menimbang 10 g contoh dan dimasukkan ke dalam botol yang berisi 90 ml larutan garam 0.85% steril, kemudian diblender sampai homogen. Dari campuran tersebut diambil 1 ml dan dimasukkan ke dalam botol berisi 9 ml larutan garam 0.85% (steril) sehingga diperoleh contoh dengan pengenceran 10⁻². Pengenceran terus dilakukan sampai diperoleh contoh dengan pengenceran 10⁻⁵. Larutan kemudian diibiarkan selama 10 menit, dari masing-masing pengenceran dipipet sebanyak 1 ml dan dituang ke dalam cawan steril kemudian ke dalam cawan petri ditambahkan 10-15 ml media agar dan digoyang-goyangkan di atas meja sampai merata. Setelah membeku, cawan petri disimpan dengan posisi terbalik di dalam inkubator bersuhu 35°C selama 24-48 jam. Jumlah koloni bakteri yang dapat dihitung berkisar antara 30-300 koloni. Beberapa koloni yang bergabung menjadi satu merupakan kumpulan koloni besar dimana jumlah koloninya diragukan, dapat dihitung menjadi 1 koloni, dan juga satu deretan rantai koloni yang terlihat sebagai satu garis tebal dihitung satu koloni.

3.2.4 Rancangan Percobaan
Rancangan percobaan yang dilakukan adalah jenis rancangan acak lengkap pola faktorial dengan dua kali ulangan. Perlakuan pada penelitian ini terdiri dari dua faktor percobaan, yaitu:
(1) Faktor A yaitu konsentrasii larutan kapur sirih
(2) Faktor B yaitu waktu penyimpanan
Menurut Sudjana (1991), model umum rancangan yang digunakan adalah:
Yijk = μ + Ai + Bj + (AB)ij + eijk

Keterangan:
Yijk = Respon pengaruh perlakuan faktor A (konsentrasi larutan kapur sirih) pada taraf ke-i dan perlakuan faktor B (waktu penyimpanan) pada ke-j pada ulangan ke-k.
μ = Pengaruh rata-rata umum
Ai = Pengaruh perlakuan faktor A (konsentrasi larutan kapur sirih) taraf ke-i
Bj = Pengaruh perlakuan faktor B (waktu penyimpanan) taraf ke-j
(AB)ij = Pengaruh interaksi perlakuan faktor A (konsentrasi larutan kapur sirih) taraf ke-i dengan perlakuan faktor B (waktu penyimpanan) taraf ke-j.
Eijk = Pengaruh acak (galat percobaan) akibat perlakuan faktor A (konsentrasi larutan kapur sirih) taraf ke-i dengan perlakuan faktor B (waktu penyimpanan) taraf ke-j pada ulangan ke-k

Data dianalisis dengan analisis ragam (ANOVA). Jika dari hasil analisis ragam berbeda nyata maka dilakukan uji lanjut dengan menggunakan uji Tukey. Sedangkan untuk uji organoleptik, data dianalisis dengan metode uji Kruskal Wallis, jika berbeda nyata maka dilanjutkan dengan uji Multiple Comparison (Steel dan Torrie, 1991).
4. HASIL DAN PEMBAHASAN

4.1 Penelitian Pendahuluan

Tahap ini dilakukan untuk melihat pengaruh konsentrasi dan frekuensi penyemprotan larutan kapur sirih terhadap fillet ikan tuna. Parameter yang diamati antara lain pH dan uji organoleptik (pada bagian lendir di permukaan daging, daging, tekstur dan bau serta rasa fillet yang telah digoreng).

4.1.1 Pengukuran Derajat Keasaman (pH)

Tabel 2. Nilai Rata-rata pH Fillet Ikan Tuna (Thunnus sp) selama Penyimpanan 6 jam pada Suhu Chilling

<table>
<thead>
<tr>
<th>Frekuensi Penyemprotan (kali)</th>
<th>Konsentrasi Larutan Kapur Sirih</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>5.88</td>
</tr>
<tr>
<td>2</td>
<td>6.04</td>
</tr>
<tr>
<td>3</td>
<td>6.18</td>
</tr>
</tbody>
</table>

Nilai pH Kontrol Fillet Ikan Tuna = 5.85

Dari Tabel 2 terlihat adanya kecenderungan naiknya nilai pH fillet ikan tuna seiring dengan bertambahnya konsentrasi larutan kapur sirih. Rata-rata nilai pH perlakuan lebih tinggi dibandingkan dengan pH kontrol. Hal ini karena adanya larutan kapur sirih yang memacu terbentuknya kalsium hidroksida (Ca(OH)₂) yang bersifat basa dan dapat menurunkan nilai keasaman.

Dari analisis ragam (Lampiran 9) terlihat bahwa faktor konsentrasi larutan kapur sirih dan frekuensi penyemprotan berpengaruh sangat nyata terhadap nilai pH
fillet ikan tuna. Sedangkan interaksi keduanya tidak memberikan pengaruh yang nyata terhadap nilai pH.

Berdasarkan hasil uji lanjut Tukey (Lampiran 9) pengaruh konsentrasi larutan kapur sirih dengan ketiga konsentrasi yang diuji (5%, 10%, dan 15%) masing-masing memberikan pengaruh yang sangat nyata terhadap nilai pH. Nilai pH cenderung meningkat dengan bertambahnya konsentrasi larutan kapur sirih. Demikian juga ketiga perlakuan frekuensi penyemprotan (1, 2, dan 3 kali), memberikan pengaruh sangat nyata terhadap pH fillet ikan tuna. Pada penyemprotan 3 kali lebih nyata pengaruhnya dibandingkan dengan penyemprotan 2 dan 1 kali. Hal ini diduga karena penetrasi larutan kapur sirih ke dalam fillet ikan tuna dengan penyemprotan 3 kali, peluangnya lebih besar untuk diserap dibandingkan dengan penyemprotan 2 dan 1 kali.

Sedangkan interaksi antara konsentrasi larutan kapur sirih dan frekuensi penyemprotan tidak memberikan pengaruh yang nyata terhadap nilai pH. Hal ini diduga akibat penyimpanan yang terlalu singkat selama 6 jam, dimana kondisi fillet masih terlihat segar baik kondisi fillet kontrol (tanpa perlakuan) maupun kondisi fillet setelah diberi perlakuan. Penyimpanan pada suhu rendah (chilling) selama 6 jam juga berperan menghambat aktivitas mikroba tersebut. Hal ini sesuai dengan pendapat Ilyas (1983) yang menyatakan bahwa tujuan penyimpanan pada suhu chilling (-1º C sampai dengan 5º C) adalah untuk menghambat kegiatan mikroba dan proses-proses kimia serta fisika lainnya yang dapat menurunkan mutu.

4.1.2 Uji Organoleptik

Uji organoleptik yang dilakukan meliputi pengamatan terhadap adanya lendir di permukaan fillet, warna daging fillet, tekstur fillet dan bau fillet serta diuji rasa fillet ikan tuna yang digoreng. Nilai rata-rata uji organoleptik fillet ikan tuna selama penyimpanan 6 jam ditunjukkan pada Tabel 3.

Berdasarkan hasil pengamatan diperoleh bahwa nilai organoleptik pada parameter (lendir, warna daging, tekstur dan bau) yang diamati dari semua perlakuan yang ada menunjukkan nilai yang lebih rendah dibandingkan dengan kontrol. Sedangkan untuk parameter rasa yang diamati pada semua perlakuan memberikan nilai yang lebih tinggi dibandingkan dengan kontrol, dimana fillet ikan
tuna yang telah diberi perlakuan dan setelah digoreng, rasanya lebih disukai dibandingkan dengan tanpa perlakuan.

Tabel 3. Nilai Rata-rata Organoleptik Fillet Ikan Tuna (Thunnus sp) selama Penyimpanan 6 jam pada Suhu Chilling

<table>
<thead>
<tr>
<th>Uji Organoleptik</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lendir</td>
<td>7.45</td>
</tr>
<tr>
<td>Daging</td>
<td>7</td>
</tr>
<tr>
<td>Tekstur</td>
<td>6.1</td>
</tr>
<tr>
<td>Bau</td>
<td>6.45</td>
</tr>
<tr>
<td>Rasa</td>
<td>4</td>
</tr>
</tbody>
</table>

Keterangan:
AeB0 : Kontrol
A1B1 : Konsentrasi 5%; penyemprotan 1X
A1B2 : Konsentrasi 5%; penyemprotan 2X
A1B3 : Konsentrasi 5%; penyemprotan 3X
A2B1 : Konsentrasi 15%; penyemprotan 1X
A2B2 : Konsentrasi 15%; penyemprotan 2X
A2B3 : Konsentrasi 15%; penyemprotan 3X
A3B1 : Konsentrasi 10%; penyemprotan 1X
A3B2 : Konsentrasi 10%; penyemprotan 2X
A3B3 : Konsentrasi 10%; penyemprotan 3X
A4B1 : Konsentrasi 15%; penyemprotan 1X
A4B2 : Konsentrasi 15%; penyemprotan 2X
A4B3 : Konsentrasi 15%; penyemprotan 3X

Uji Kruskall Wallis (Lampiran 10) menunjukkan bahwa pengaruh konsentrasi dan frekuensi penyemprotan larutan kapur sirih untuk parameter daging dan tekstur memberikan pengaruh yang berbeda nyata dibandingkan dengan kontrol. Hal ini diduga karena adanya pengaruh larutan kapur sirih yang dapat mengeraskan tekstur jaringan pada bahan (Bucke et al., 1987) dan mempengaruhi warna daging yaitu timbulnya warna keputihan pada daging (fillet). Konsentrasi larutan kapur sirih yang semakin tinggi membuat lapisan kapur sirih yang menutupi fillet semakin tebal sehingga tekstur daging (fillet) lebih keras dan warnanya lebih putih. Parameter lendir dan bau tidak dipengaruhi secara nyata oleh adanya perlakuan penyemprotan dengan larutan kapur sirih. Hal ini diduga karena penetrasi kapur sirih ke dalam fillet sedikit yang terserap akibat penyemprotan yang relatif singkat (1, 2, dan 3 kali) dengan konsentrasi (0%, 10%, dan 15%). Hal ini mengakibatkan bau dan adanya lendir pada fillet yang diberi perlakuan tidak jauh berbeda dengan fillet kontrol. Hal ini berbeda pada parameter rasa yang diamati, yakni menunjukkan pengaruh yang nyata. Semakin tinggi konsentrasi larutan kapur sirih dan bertambahnya frekuensi penyemprotan yang dilakukan, fillet ikan tuna yang digoreng cenderung lebih disukai. Penerimaan panelis terhadap rasa masih bisa ditoleransi sampai
konsentrasi 15% dengan frekuensi penyemprotan 3 kali. Penyimpanan yang singkat (selama 6 jam) kurang memberikan pengaruh yang berarti terhadap fillet ikan tuna yang diuji, kecuali pada konsentrasi tertinggi (15%) dengan frekuensi penyemprotan 3 kali. Hal ini dibuktikan melalui uji lanjut Multiple Comparison (Lampiran 10). Berdasarkan hal ini, selanjutnya konsentrasi 15% dan penyemprotan 3 kali digunakan untuk penelitian utama.

4.2 Penelitian Utama

Tahap ini dilakukan untuk melihat pengaruh konsentrasi larutan kapur sirih dan lama penyimpanan pada suhu chilling. Pengamatan yang dilakukan pada tahap ini meliputi : Total Volatile Base (TVB), derajat keasaman (pH) dan Total Plate Count (TPC). Tahap ini dilakukan dengan menggunakan tiga perlakuan konsentrasi, yaitu : konsentrasi 0% (kontrol), konsentrasi 15%, dan konsentrasi 30% dengan frekuensi penyemprotan 3 kali dilanjutkan perlakuan penyimpanan selama 3 hari pada suhu chilling.

4.2.1 Penetapan Total Volatile Base (TVB)

Penetapan kesegaran ikan secara kimiai dapat dilakukan dengan menggunakan prinsip penetapan TVB (Total Volatile Base). Prinsip penetapan TVB adalah menguapkan senyawa-senyawa volatil yang terbentuk karena penguraian asam-asam amino yang terdapat pada daging ikan (Hadiwiyoto, 1993).

Autolisis dari protein dengan bantuan enzim akan menghasilkan asam amino. Asam amino bebas akan dirombak oleh mikroba menjadi senyawa-senyawa
mudah menguap seperti amoniak, metil amin, dimetil amin, dan trimetil amin (Zaitsev, et al., 1989).

Biasanya proses autolisis akan selalu diikuti dengan meningkatnya jumlah bakteri, sebab semua hasil penguraian enzim selama proses autolisis merupakan media yang sangat cocok untuk pertumbuhan bakteri dan mikroba lainnya (Genisa, 2000).

Tabel 4. Standar Kesegaran Ikan Berdasarkan Nilai TVB (Farber, 1965)

<table>
<thead>
<tr>
<th>Mutu ikan</th>
<th>Nilai TVB (mg N per 100 g daging ikan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat segar</td>
<td><10</td>
</tr>
<tr>
<td>Segar</td>
<td>10-20</td>
</tr>
<tr>
<td>Batas dapat dimakan</td>
<td>20-30</td>
</tr>
<tr>
<td>Busuk</td>
<td>>30</td>
</tr>
</tbody>
</table>

![Graph showing TVB values over storage time]

Keterangan: Perlakuan A (Tanpa larutan kapur sirih)
Perlakuan B (Konsentrasi 15%)
Perlakuan C (Konsentrasi 30%)

Gambar 5. Grafik Hubungan antara Nilai TVB (mgN/100 g Daging) dengan Lama Penyimpanan Fillet ikan Tuna (Thunnus sp) pada Suhu Chilling

Pada hari ke-1, 2, dan 3, fillet ikan tuna dengan perlakuan B (konsentrasi 15%) dan C (konsentrasi 30%) mempunyai nilai TVB yang lebih rendah dibandingkan dengan perlakuan A (konsentrasi 0%). Hal ini menunjukkan bahwa penggunaan larutan kapur sirih dapat memperpanjang daya simpan produk dengan cara menghambat aktivitas mikroba, yaitu dengan cara menutup pori-pori bahan dengan endapan kapur sirih (Buckle et al., 1987).

Hasil analisis ragam (Lampiran 11) terhadap perlakuan konsentrasi, lama penyimpanan dan interaksi antara 2 faktor perlakuan, menunjukkan perbedaan yang sangat nyata terhadap nilai TVB pada taraf uji 5%. Hal ini berarti bahwa perlakuan konsentrasi dan lama penyimpanan mempengaruhi nilai TVB fillet ikan tuna (Thunnus sp).

Uji lanjut (Lampiran 11) dengan menggunakan uji Tukey pada taraf nyata 5% menunjukkan bahwa pada penyimpanan hari ke-1, 2, dan 3, semua konsentrasi yang diberikan (0%, 15%, dan 30%), memberikan pengaruh yang sangat berbeda nyata. Artinya, pada hari ke-1, 2, dan 3, efektivitas larutan kapur sirih telah mempengaruhi nilai TVB dan juga menunjukkan bahwa perlakuan konsentrasi B (15%) sudah cukup untuk menghambat aktivitas bakteri pembusuk.
Perubahan nilai TVB berdasarkan uji regresi yang dilakukan mengikuti bentuk linier dengan persamaan sebagai berikut: \(Y = 8.48 + 6.15X \) (perlakuan A); \(Y = 6.98 + 5.86X \) (perlakuan B); \(Y = 9.67 + 3.30X \) (perlakuan C), dimana \(X \) adalah lama penyimpanan dan \(Y \) adalah nilai TVB. Jika nilai ambang batas penerimaan yaitu 30 mgN/100 gr daging sebagai nilai dari \(Y \) dimasukkan ke dalam persamaan maka diperoleh nilai \(X \) berturut-turut 3.49; 3.93 dan 6.16. Berdasarkan uji regresi terhadap nilai TVB tersebut masa simpan fillet ikan tuna dengan perlakuan penyimpanan larutan kapur sirkh diduga dapat mencapai 3 hari (untuk perlakuan dengan konsentrasi 0%), 4 hari (untuk perlakuan dengan konsentrasi 15%), dan 6 hari (untuk perlakuan dengan konsentrasi 30%).

4.2.2 Pengukuran Derajat Keasaman (pH)

Peningkatan pH mungkin disebabkan oleh berkembangnya bakteri, terbentuknya basa-basa yang mudah menguap makin banyak, lamanya pendinginan dan rendahnya suhu. Nilai pH daging ikan akan menurun secara lambat dengan semakin rendahnya suhu penyimpanan, sebaliknya suhu yang tinggi menyebabkan perubahan pH yang cepat (Hadiwiyoto, 1993).

Pada umumnya ikan yang sudah tidak segar memiliki daging dengan pH lebih basa (tinggi) apabila dibandingkan dengan ikan yang masih segar atau tingkat kesegarannya tinggi. Tingginya pH ikan yang sudah tidak segar, disebabkan oleh timbulnya senyawa-senyawa yang bersifat basa seperti misalnya ammonia, trimetilamin, dan senyawa-senyawa volatil lainnya (Hadiwiyoto, 1993). Hal ini terlihat dengan semakin tingginya nilai pH fillet ikan tuna.
Gambar 6. Grafik Hubungan antara Nilai pH dengan Lama Penyimpanan Fillet ikan Tuna (Thunnus sp) pada Suhu Chilling

Hasil penelitian menunjukkan bahwa secara umum pH fillet ikan tuna cenderung meningkat seiring dengan meningkatnya konsentrasinya larutan kapur sirih dan bertambahnya waktu penyimpanan. Pada hari ke-1, nilai pH ikan (tanpa penyemprotan larutan kapur sirih) bersifat asam (5.16) dan cenderung meningkat sampai hari ke 3. Daging ikan memiliki pH mendekati 7, setelah ikan mati beberapa saat, glikogen akan mengalami glikolisis anaerob menghasilkan asam laktat yang menyebabkan pH menurun (Purnomo dan Adiorno, 1987). Berdasarkan hal ini, nilai pH yang turun diduga disebabkan adanya proses glikolisis yang menghasilkan asam laktat. Sedangkan pada fillet ikan tuna yang telah mengalami perlakuan penyemprotan larutan kapur sirih (konsentrasinya 15% dan 30%), nilai pH cenderung naik akibat pengaruh kapur sirih yang bersifat basa (pH=12). Penambahan kapur sirih memacu terjadinya ion Ca^{2+} secara bebas dalam larutan, di mana ion Ca^{2+} akan mengikat ion OH^− dari H₂O fillet menjadi Ca(OH)₂ yang bersifat basa. Kapur sirih merupakan bahan kimia yang sering digunakan untuk menurunkan tingkat keasaman (Brady dan Humiston, 1938).

Pada hari ke-2 sampai hari ke-3 nilai pH terus mengalami peningkatan, dimana pada hari ke-2 nilai pH berkisar antara 5.38-6.41 dan pada hari ke-3 nilai pH
berkisar antara 6.69-6.89. Peningkatan tertinggi terjadi pada hari ke-3 dengan konsentrasi larutan kapur sirih 30%. Peningkatan nilai pH diduga akibat adanya proses autolisis yang menyebabkan penguraian protein menjadi senyawa yang lebih sederhana yaitu menjadi peptida, asam amino dan amonia yang dapat menaikkan pH jaringan ikan (Amlacher, 1961).

Hasil analisis ragam (Lampiran 12) menunjukkan bahwa faktor konsentrasi, lama penyimpanan dan interaksi antara kedua faktor perlakuan berpengaruh sangat nyata pada taraf uji 5%. Uji lanjut Tukey terhadap pH fillet ikan tuna pada perlakuan A, B, dan C menunjukkan bahwa semua perlakuan menunjukkan pengaruh yang nyata. Hal ini berarti bahwa perlakuan B dengan konsentrasi 15% mampu memberikan pengaruh yang efektif terhadap daya simpan fillet. Tetapi, pengaruh yang sangat nyata ditunjukkan pada perlakuan C dengan konsentrasi larutan kapur sirih 30%. Uji lanjut Tukey (Lampiran 12) terhadap lama penyimpanan menunjukkan bahwa pada hari ke-3, ke-2, dan ke-1, memberikan pengaruh yang berbeda nyata terhadap nilai pH fillet ikan tuna.

4.2.3 Penghitungan Total Plate Count (TPC)

Salah satu uji yang dilakukan untuk menentukan kesejajaran ikan secara mikrobiologi yaitu dengan menghitung jumlah bakteri yang ada pada daging ikan. Metode yang digunakan yaitu metode hitungan cawan yang didasarkan pada anggapan bahwa setiap sel yang dapat hidup akan berkembang menjadi satu koloni. Jumlah koloni yang muncul pada cawan merupakan suatu indeks bagi sejumlah organisme yang dapat hidup yang terkandung dalam sampel (Hadioetomo, 1993). Hasil analisis jumlah total bakteri fillet ikan tuna disajikan pada Tabel 5 dan Gambar 7.

Berdasarkan hasil penelitian terlihat bahwa jumlah bakteri yang terdapat pada fillet ikan tuna berkisar antara 1.1 x 10⁵ unit koloni/g sampai 7.9 x 10⁶ unit koloni/g. Pada perlakuan penambahan larutan kapur sirih, jumlah bakteri pada fillet ikan tuna lebih sedikit dibandingkan dengan perlakuan tanpa larutan kapur sirih. Perlakuan C memberikan pengaruh yang lebih baik dibandingkan dengan perlakuan B, hal ini karena penambahan larutan kapur sirih dengan konsentrasi yang lebih tinggi lebih efektif menghambat pertumbuhan mikroba pada fillet ikan tuna yang disimpan pada suhu chilling.
<table>
<thead>
<tr>
<th>Lama penyimpanan (hari)</th>
<th>Perlakuan</th>
<th>Rata-rata TPC (unit koloni/g)</th>
<th>Rata-rata log TPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7.9x10^5</td>
<td>6.89</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>4.1x10^5</td>
<td>5.61</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.2x10^5</td>
<td>5.31</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>1.8x10^5</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.1x10^6</td>
<td>6.33</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.1x10^6</td>
<td>5.04</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>2.2x10^8</td>
<td>5.34</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.0x10^8</td>
<td>6.30</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.3x10^5</td>
<td>5.11</td>
</tr>
</tbody>
</table>

Gambar 7. Grafik Hubungan antara Nilai Rata-rata Log Total Bakteri dengan Lama Penyimpanan Fillet Ikan Tuna (Thunnus sp) pada Suhu Chilling

Semakin lama penyimpanan, jumlah total bakteri pada fillet semakin banyak, terutama pada fillet yang tidak diberi perlakuan. Sedangkan untuk fillet ikan tuna dengan perlakuan penyemprotan larutan kapur sirih, jumlah bakteri dihambat yaitu dengan penutupan pori-pori bahan (fillet) dengan air kapur sirih (Buckle et al., 1987).
Daya hambat yang efektif ditunjukkan oleh perlakuan C dengan konsentrasi larutan kapur sirih 30%.

Berdasarkan Standar Nasional Indonesia (1992), batas maksimum bakteri untuk ikan segar adalah \(5 \times 10^5\) unit koloni/g. Secara umum fillet ikan tuna dengan perlakuan penyemproman larutan kapur sirih masih berada dalam batas aman untuk dikonsumsi. Keadaan tersebut juga didukung oleh penyimpanan pada suhu chilling \((\pm 5^\circ C)\), dimana tujuan penyimpanan pada suhu chilling \((-1^\circ C\ \text{sampai dengan } 5^\circ C)\) adalah untuk menghambat kegiatan mikroorganisme dan proses-proses kimia serta fisika lainnya yang dapat menurunkan mutu (Ilyas, 1983).

Dalam sistem klasifikasi, ikan tuna termasuk dalam famili Scombroidea. Salah satu ciri dari ikan anggota famili ini adalah kandungan asam amino bebas histidin yang tinggi. Setelah penangkapan, jika tidak ditangani dengan tepat, maka histidin dalam daging tuna akan diubah bakteri menjadi senyawa toksik yang disebut histamin. Dalam jumlah tertentu, senyawa histamin akan mengakibatkan keracunan scombroid pada manusia yang menyebabkan alergi. Tanda-tanda alergi antara lain: pusing-pusing, mual, muntah-muntah, dan bibir bengkak. Untuk mencegahnya, proses pendinginan harus segera dilakukan sejak ikan tuna ada di atas kapal, sehingga produksi histamin akan dihambat pada suhu di bawah \(7^\circ C\) (Junianto, 2003).

Dalam penelitian ini meskipun tidak dilakukan uji terhadap kadar histamin, tetapi dapat dilakukan pendugaan kandungan histamin dari jumlah bakteri yang terdapat pada fillet ikan tuna. Hal ini terjadi karena produksi histamin memerlukan peran mikroba pembentuknya. Dengan perlakuan suhu rendah, aktivitas mikroba tersebut dapat dihambat. Dalam penelitian ini, fillet ikan tuna mengalami penyimpanan pada suhu chilling sehingga diduga dapat menghambat terbentuknya histamin, dan hal ini masih perlu dibuktikan.
5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Penggunaan larutan kapur sirih dapat berperan dalam memperpanjang daya simpan fillet ikan tuna. Semakin tinggi konsentrasi larutan kapur sirih, dengan perlakuan penyemprotan sebanyak 3 kali, akan menghasilkan pengaruh yang lebih baik dibandingkan dengan tanpa pelakuan penambahan larutan kapur sirih. Hal ini ditunjukkan oleh perlakuan C (konsentrasi 30%), yang pengaruhnya lebih baik dibandingkan dengan perlakuan B (konsentrasi 15%) dan perlakuan A (konsentrasi 0%).

Pada uji TVB, pH dan TPC selama 3 hari, mutu fillet ikan tuna terbaik dihasilkan oleh perlakuan C (konsentrasi 30%), dengan nilai pH berkisar antara 6.23-6.89; nilai TVB berkisar antara 13.84-20.43 mgN/100 g daging ikan dan jumlah bakteri berkisar antara 1.3×10^5-2.0 $\times 10^6$ unit koloni/g.

5.2 Saran

(1) Perlu dilakukan penelitian lebih lanjut untuk menguji kadar histamin pada fillet ikan tuna yang telah mengalami penyimpanan.

(2) Lama penyimpanan perlu diperpanjang sehingga dapat diketahui batas penyimpanan yang pasti sampai sejauh mana ikan tuna tidak bisa dikonsumsi lagi.

(3) Perlu dilakukan penelitian lebih lanjut terhadap kandungan gizi fillet ikan tuna yang telah mengalami proses pengolahan menjadi produk pangan.
DAFTAR PUSTAKA

United State Departement of Health, Education and Welfare. 1972. Food Composition Table for Use In East Asia. USA Publisher.

LAMPIRAN

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Udang</td>
<td>94.551</td>
<td>100.230</td>
<td>93.043</td>
<td>142.689</td>
<td>109.660</td>
<td>7.26</td>
</tr>
<tr>
<td>2. Tuna, Cakalang, Tongkol</td>
<td>86.470</td>
<td>82.047</td>
<td>82.688</td>
<td>104.330</td>
<td>90.581</td>
<td>2.15</td>
</tr>
<tr>
<td>- Segar/dingin</td>
<td>25.099</td>
<td>21.589</td>
<td>15.817</td>
<td>16.592</td>
<td>25.775</td>
<td>4.89</td>
</tr>
<tr>
<td>- Beku</td>
<td>32.090</td>
<td>29.384</td>
<td>43.130</td>
<td>47.796</td>
<td>28.542</td>
<td>2.22</td>
</tr>
<tr>
<td>- Dalam kaleng</td>
<td>29.281</td>
<td>31.074</td>
<td>23.921</td>
<td>39.940</td>
<td>36.264</td>
<td>10.22</td>
</tr>
<tr>
<td>3. Ikan lainnya (termasuk darat)</td>
<td>268.214</td>
<td>320.092</td>
<td>332.010</td>
<td>330.288</td>
<td>354.501</td>
<td>5.02</td>
</tr>
<tr>
<td>5. Ubur-ubur kering/asin</td>
<td>4.816</td>
<td>4.270</td>
<td>2.932</td>
<td>2.044</td>
<td>3.968</td>
<td>5.29</td>
</tr>
</tbody>
</table>

Sumber: Ditjen Perikanan, 2001
Lampiran 2. *Score Sheet Organoleptik Fillet*

Nama panelis :
Waktu pengujian :
Tempt pengujian :

Berilah nilai pada kolom yang telah disediakan sesuai dengan penilaian saudara

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Kode Produk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lendir di permukaan</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Daging</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tekstur</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bau</td>
<td></td>
</tr>
<tr>
<td>Deskripsi</td>
<td>Nilai</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>A. Lendir di permukaan kulit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ Lapisan lendir tipis homogen, jernih transparan, mengkilap cerah, tidak ada perubahan warna.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>➢ Lendir permukaan kulit mulai mengendap keruh, agak putih susu, kecerahan suram</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>➢ Lendir tebal tidak merata, terjadi pengumpulan, mulai timbul berbagai penyimpangan warna.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>➢ Lendir berwarna kekuningan sampai coklat dan tebal tidak merata, kecerahan hilang, pemutihan nyata, terjadi pengeringan lender karena udara</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B. Daging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ Sayatan daging cemerlang dan berwarna asli, dagingnya pulih</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>➢ Sayatan daging masih cemerlang, mulai timbul diskolorasi</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>➢ Sayatan daging mulai kehilangan kecemerlangannya, jadi lunak</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>➢ Daging jadi pudar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C. Tekstur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ Padat, kenyang, kadang-kadang agak lunak sesuai dengan jenisnya</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>➢ Daging agak lunak, belum ada bekas jari bila ditekan</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>➢ Lunak, bekas jari lama hilangnya</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>➢ Sangat lunak, bekas jari tidak mau hilang, sisik banyak yang hilang</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D. Bau (Odor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>➢ Segar, bau laut, spesifik menurut jenis (bau larutan kapur sirih kuat)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>➢ Bau segar/bau laut mulai hilang (bau larutan kapur sirih mulai hilang)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>➢ Tidak berbau/netral</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>➢ Bau susu, belum ada bau asam, ada bau-bau ikan asin atau bau cold storage</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>➢ Bau susu asam, bau susu kental</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>➢ Bau kentang rebus atau logam</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>➢ Bau asam asetat, bau rumput atau bau sabun</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>➢ Bau amonia mulai tercium</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>➢ Bau amonia kuat, ada bau H2S</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>➢ Bau busuk, bau indol</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 3. Score Sheet Organoleptik Rasa

Nama panelis:
Tanggal pengujian:

Instruksi: Nyatakan penilaian anda dan berikan nilai pada setiap sampel sesuai dengan kesukaan anda.

<table>
<thead>
<tr>
<th>Kode produk</th>
<th>Rasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B1</td>
<td></td>
</tr>
<tr>
<td>A1B2</td>
<td></td>
</tr>
<tr>
<td>A1B3</td>
<td></td>
</tr>
<tr>
<td>A2B1</td>
<td></td>
</tr>
<tr>
<td>A2B2</td>
<td></td>
</tr>
<tr>
<td>A2B3</td>
<td></td>
</tr>
<tr>
<td>A3B1</td>
<td></td>
</tr>
<tr>
<td>A3B2</td>
<td></td>
</tr>
<tr>
<td>A3B3</td>
<td></td>
</tr>
<tr>
<td>A0B0</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- Sangat tidak suka = 1
- Tidak suka = 2
- Agak tidak suka = 3
- Agak suka = 4
- Suka = 5
- Sangat suka = 6
- Amat sangat suka = 7
Lampiran 4. Nilai Organoleptik Lendir Fillet Ikan Tuna (*Thunnus* sp)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

| Rata-rata | 7.45 | 7.3 | 7.15 | 7.6 | 6.55 | 6.1 | 6.85 | 6.55 | 6.2 | 7.9 |
Lampiran 5. Nilai Organoleptik Daging Fillet Ikan Tuna (Thunnus sp)

<table>
<thead>
<tr>
<th>Panelis</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
</tr>
</tbody>
</table>

Rata-rata: 7 | 6.55 | 6.25 | 6.85 | 6.2 | 4.85 | 5.8 | 4.45 | 5.05 | 7.45 |
Lampiran 6. Nilai Organoleptik Tekstur Fillet Ikan Tuna (*Thunnus* sp)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>6.1</td>
<td>5.2</td>
<td>5.05</td>
<td>4</td>
<td>6.1</td>
<td>4.3</td>
<td>5.05</td>
<td>4.45</td>
<td>3.85</td>
</tr>
</tbody>
</table>
Lampiran 7. Nilai Organoleptik Bau Fillet Ikan Tuna (*Thunnus* sp)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Rata-rata: 6.45 7.05 7.2 7.15 6.7 6.25 7.1 6.7 5.65 7.7
Lampiran 8. Nilai Organoleptik Rasa *Fillet* Ikan Tuna (*Thunnus* sp)

<table>
<thead>
<tr>
<th>Panelis</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
</tbody>
</table>

Rata-rata: 4 4.55 4.5 4.35 4.35 4.15 4.1 4.05 4.8 3.35
Lampiran 9. Uji terhadap Nilai pH pada Penelitian Pendahuluan

<table>
<thead>
<tr>
<th>OBS</th>
<th>F1</th>
<th>F2</th>
<th>F1F2</th>
<th>R</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>1</td>
<td>5.80</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>2</td>
<td>5.90</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>1</td>
<td>5.83</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>2</td>
<td>5.93</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
<td>6.06</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>2</td>
<td>6.02</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>1/3</td>
<td>1</td>
<td>6.12</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1/3</td>
<td>2</td>
<td>6.24</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>2/1</td>
<td>1</td>
<td>6.08</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>2/1</td>
<td>1</td>
<td>6.28</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2/2</td>
<td>1</td>
<td>6.39</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>2/2</td>
<td>2</td>
<td>6.39</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>1</td>
<td>6.58</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>2</td>
<td>6.54</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1</td>
<td>3/1</td>
<td>1</td>
<td>6.21</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>3/1</td>
<td>2</td>
<td>6.38</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
<td>1</td>
<td>6.60</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
<td>2</td>
<td>6.41</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
<td>3/3</td>
<td>1</td>
<td>6.61</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>3</td>
<td>3/3</td>
<td>2</td>
<td>7.01</td>
</tr>
</tbody>
</table>

General Linear Models Procedure

Dependent Variable: Y1

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9</td>
<td>1.68708000</td>
<td>0.18745333</td>
<td>12.39</td>
<td>0.0003</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>0.15130000</td>
<td>0.01513000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrtd Tot</td>
<td>19</td>
<td>1.83838000</td>
<td>0.12300400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Square</td>
<td></td>
<td>0.917699</td>
<td>0.12300400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td></td>
<td>1.962100</td>
<td></td>
<td></td>
<td>6.26900000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>3</td>
<td>1.18378000</td>
<td>0.39459333</td>
<td>26.08</td>
<td>0.0001</td>
</tr>
<tr>
<td>F2</td>
<td>2</td>
<td>0.47614444</td>
<td>0.23807222</td>
<td>15.74</td>
<td>0.0008</td>
</tr>
<tr>
<td>F1F2</td>
<td>4</td>
<td>0.02715556</td>
<td>0.00678889</td>
<td>0.45</td>
<td>0.7714</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0</td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>0</td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1F2</td>
<td>4</td>
<td>0.02715556</td>
<td>0.00678889</td>
<td>0.45</td>
<td>0.7714</td>
</tr>
</tbody>
</table>

44
Alpha = 0.05 Confidence = 0.95 df = 10 MSE = 0.01513
Critical Value of Studentized Range = 4.327
Comparisons significant at the 0.05 level are indicated by ‘***’.

<table>
<thead>
<tr>
<th>Simultaneous Lower Confidence Limit</th>
<th>Simultaneous Upper Confidence Limit</th>
<th>Simultaneous Lower Difference Between Means</th>
<th>Simultaneous Upper Difference Between Means</th>
<th>F1 Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 2 -0.05726 0.160000 0.37726</td>
<td>3 - 0 0.37941 0.68667 0.99392</td>
<td>2 - 3 -0.37726 -0.16000 0.05726</td>
<td>2 - 1 0.12607 0.34333 0.56060</td>
<td>2 - 0 0.21941 0.52667 0.83392</td>
</tr>
</tbody>
</table>

Alpha = 0.05 Confidence = 0.95 df = 10 MSE = 0.01334
Critical Value of Studentized Range = 4.327
Comparisons significant at the 0.05 level are indicated by ‘***’.

<table>
<thead>
<tr>
<th>Simultaneous Lower Confidence Limit</th>
<th>Simultaneous Upper Confidence Limit</th>
<th>Simultaneous Lower Difference Between Means</th>
<th>Simultaneous Upper Difference Between Means</th>
<th>F2 Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 0 0.35941 0.66667 0.97392</td>
<td>3 - 2 -0.01226 0.20500 0.42226</td>
<td>3 - 1 0.18107 0.39833 0.61560</td>
<td>0 - 3 -0.97392 -0.66667 -0.35941</td>
<td>0 - 2 -0.76892 -0.46167 -0.15441</td>
</tr>
</tbody>
</table>

Alpha = 0.05 df = 10 MSE = 0.01334
Critical Value of Studentized Range = 5.598
Minimum Significant Difference = 0.4572
Means with the same letter are not significantly different.
Tukey Grouping

<table>
<thead>
<tr>
<th>Mean</th>
<th>N</th>
<th>F1/F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.8100</td>
<td>2 3/3</td>
</tr>
<tr>
<td>B</td>
<td>6.5600</td>
<td>2 2/3</td>
</tr>
<tr>
<td>C</td>
<td>6.5050</td>
<td>2 3/2</td>
</tr>
<tr>
<td>D</td>
<td>6.3900</td>
<td>2 2/2</td>
</tr>
<tr>
<td>E</td>
<td>6.2950</td>
<td>2 3/1</td>
</tr>
<tr>
<td>F</td>
<td>6.1800</td>
<td>2 2/1</td>
</tr>
<tr>
<td>G</td>
<td>6.1800</td>
<td>2 1/3</td>
</tr>
<tr>
<td>H</td>
<td>6.0400</td>
<td>2 1/2</td>
</tr>
<tr>
<td>I</td>
<td>5.8800</td>
<td>2 1/1</td>
</tr>
<tr>
<td>J</td>
<td>5.8500</td>
<td>2 0/0</td>
</tr>
</tbody>
</table>
Lampiran 10. Uji terhadap Nilai Organoleptik

Lendir

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>N</th>
<th>Median</th>
<th>Ave Rank</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>7.000</td>
<td>109.8</td>
<td>0.76</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>7.000</td>
<td>107.1</td>
<td>0.54</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>7.000</td>
<td>102.7</td>
<td>0.18</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>7.000</td>
<td>114.2</td>
<td>1.12</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>7.000</td>
<td>88.4</td>
<td>-0.98</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>7.000</td>
<td>85.8</td>
<td>-1.19</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>7.000</td>
<td>98.7</td>
<td>-0.15</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>7.000</td>
<td>91.5</td>
<td>-0.73</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>7.000</td>
<td>85.4</td>
<td>-1.23</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>7.000</td>
<td>121.3</td>
<td>1.70</td>
</tr>
<tr>
<td>Overall</td>
<td>200</td>
<td></td>
<td>100.5</td>
<td></td>
</tr>
</tbody>
</table>

H = 8.53 DF = 9 P = 0.482
H = 9.83 DF = 9 P = 0.364 (adjusted for ties)
P > 0.05 tidak berbeda nyata

Daging

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>N</th>
<th>Median</th>
<th>Ave Rank</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>7.000</td>
<td>121.1</td>
<td>1.68</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>7.000</td>
<td>110.1</td>
<td>0.78</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>7.000</td>
<td>103.8</td>
<td>0.27</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>7.000</td>
<td>117.2</td>
<td>1.36</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>7.000</td>
<td>103.7</td>
<td>0.26</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>4.000</td>
<td>74.6</td>
<td>-2.11</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>7.000</td>
<td>95.4</td>
<td>-0.42</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>4.000</td>
<td>68.4</td>
<td>-2.61</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>4.000</td>
<td>78.7</td>
<td>-1.78</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>7.000</td>
<td>132.1</td>
<td>2.57</td>
</tr>
<tr>
<td>Overall</td>
<td>200</td>
<td></td>
<td>100.5</td>
<td></td>
</tr>
</tbody>
</table>

H = 23.98 DF = 9 P = 0.004
H = 28.29 DF = 9 P = 0.001 (adjusted for ties)
P < 0.05 berbeda nyata

Uji Lanjut Multiple Comparison Test on Teeth Cutting Test

\[P = k(k-1)/2 = 10(10-1)/2 = 45 \]
\[n = k \times N = 10 \times 20 = 200 \]

\[Z_{\alpha/2} = Z_{0.025} = 1.96 \]
\[Z_{\alpha/2} = Z_{0.005} = 2.58 \]

\[[R_i - R_j] < Z_{\alpha/2} \sqrt{\frac{\pi n}{6}} \]
\[[R_i - R_j] > Z_{\alpha/2} \sqrt{\frac{\pi n}{6}} \]

\[[R_i - R_j] < Z_{0.0001} \sqrt{(200 + 1)(10/6)} \]

\[[R_i - R_j] < 60.2168 \]
<table>
<thead>
<tr>
<th>R_i, R_j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17.3</td>
<td>6.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.9</td>
<td>7.1</td>
<td>13.4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17.4</td>
<td>2.6</td>
<td>0.1</td>
<td>13.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>46.5</td>
<td>26.5</td>
<td>29.2</td>
<td>42.6</td>
<td>29.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25.7</td>
<td>5.7</td>
<td>8.4</td>
<td>21.8</td>
<td>8.3</td>
<td>20.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>52.7</td>
<td>32.7</td>
<td>35.4</td>
<td>48.8</td>
<td>35.3</td>
<td>6.2</td>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>42.4</td>
<td>22.4</td>
<td>25.1</td>
<td>38.5</td>
<td>25</td>
<td>4.1</td>
<td>16.7</td>
<td>10.3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>31</td>
<td>28.3</td>
<td>14.9</td>
<td>28.4</td>
<td>57.5</td>
<td>36.7</td>
<td>63.7*</td>
<td>53.4</td>
<td>0</td>
</tr>
</tbody>
</table>

* = berbeda nyata

Tekstur

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>N</th>
<th>Median</th>
<th>Ave Rank</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>7.000</td>
<td>122.7</td>
<td>1.81</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>4.000</td>
<td>106.8</td>
<td>0.51</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>4.000</td>
<td>97.8</td>
<td>-0.22</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>4.000</td>
<td>77.5</td>
<td>-1.88</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>7.000</td>
<td>121.3</td>
<td>1.70</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>4.000</td>
<td>82.3</td>
<td>-1.48</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>4.000</td>
<td>99.2</td>
<td>-0.10</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>4.000</td>
<td>88.5</td>
<td>-0.98</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>4.000</td>
<td>74.9</td>
<td>-2.09</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>7.000</td>
<td>133.9</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Overall 200 100.5

$H = 22.39$ $DF = 9$ $P = 0.008$

$H = 27.07$ $DF = 9$ $P = 0.001$ (adjusted for ties)

$P < 0.05$ berbeda nyata

Uji lanjut *Multiple Comparison Test on Teeth Cutting Test*

$P = k(k-1)/2 = 10(10-1)/2 = 45$

$k = 10$ (perlakuan)

$n = k \times N = 10 \times 20 = 200$

$N = 20$ (panellis)

$Z_{2p}^{0.05/2} = Z_{0.0056} = 3.29$

$[R_i - R_j] < Z_{2p}^{0.05/2} \sqrt{(n+1)k/6}$

$[R_i - R_j] < Z_{0.0056} \sqrt{(200+1)10/6}$

$[R_i - R_j] < 60.2168$
<table>
<thead>
<tr>
<th>R, R</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24.9</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45.2</td>
<td>29.3</td>
<td>20.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>14.5</td>
<td>23.5</td>
<td>43.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>40.4</td>
<td>24.5</td>
<td>15.5</td>
<td>4.8</td>
<td>39</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23.5</td>
<td>7.6</td>
<td>1.4</td>
<td>21.7</td>
<td>22.1</td>
<td>16.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>34.2</td>
<td>18.3</td>
<td>9.3</td>
<td>11</td>
<td>32.8</td>
<td>6.2</td>
<td>3.7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>47.8</td>
<td>31.9</td>
<td>22.9</td>
<td>2.6</td>
<td>46.4</td>
<td>7.4</td>
<td>17.3</td>
<td>13.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11.2</td>
<td>27.1</td>
<td>36.1</td>
<td>36.4</td>
<td>12.6</td>
<td>51.6</td>
<td>41.7</td>
<td>45.4</td>
<td>59</td>
<td>0</td>
</tr>
</tbody>
</table>

* = berbeda nyata

Bau

| Perlakuan N Median Ave Rank Z |
|-----------------------------|------------------|
| 1 20 7.000 93.3 -0.59 |
| 2 20 7.000 107.9 0.60 |
| 3 20 7.000 108.7 0.67 |
| 4 20 7.000 108.7 0.67 |
| 5 20 7.000 96.2 -0.35 |
| 6 20 7.000 91.9 -0.70 |
| 7 20 7.000 106.1 0.46 |
| 8 20 7.000 94.4 -0.50 |
| 9 20 6.500 70.4 -2.45 |
| 10 20 8.000 127.5 2.20 |
| Overall 200 100.5 |

H = 12.17 DF = 9 P = 0.204
H = 12.72 DF = 9 P = 0.175 (adjusted for ties)
P > 0.05 tidak berbeda nyata

Rasa

| Perlakuan N Median Ave Rank Z |
|-----------------------------|------------------|
| 1 20 4.000 87.9 -0.41 |
| 2 20 5.000 116.8 1.25 |
| 3 20 5.000 115.9 1.04 |
| 4 20 4.500 106.4 1.13 |
| 5 20 4.500 106.4 0.11 |
| 6 20 4.000 95.5 -0.10 |
| 7 20 4.000 91.1 -0.54 |
| 8 20 4.000 90.6 -0.67 |
| 9 20 5.000 128.2 -0.67 |
| 10 20 4.000 66.2 -1.13 |
| Overall 200 100.5 |

H = 17.24 DF = 9 P = 0.045
H = 18.41 DF = 9 P = 0.031 (adjusted for ties)
P < 0.05 berbeda nyata
Uji Lanjut Multiple Comparison Test on Teeth Cutting Test

\[P = k(k-1)/2 = 10(10-1)/2 = 45 \quad k = 10 \text{ (perlakuan)} \]
\[n = k \times N = 10 \times 20 = 200 \quad N = 20 \text{ (panelis)} \]

\[Z_{a/2p} = Z_{0.05/10} = Z_{0.00056} = 3.29 \]

\[[R_i - R_j] < Z_{a/2p} \sqrt{(n+1)k/6} \quad [R_i - R_j] > Z_{0.00056} \sqrt{(200+1)10/6} \]

\[[R_i - R_j] < 60.2168 \]

<table>
<thead>
<tr>
<th>(R_i - R_j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>0.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18.5</td>
<td>10.4</td>
<td>9.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18.5</td>
<td>10.4</td>
<td>9.5</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.6</td>
<td>21.3</td>
<td>20.4</td>
<td>10.9</td>
<td>10.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.2</td>
<td>25.7</td>
<td>24.8</td>
<td>15.3</td>
<td>15.3</td>
<td>4.4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.7</td>
<td>26.2</td>
<td>25.3</td>
<td>15.8</td>
<td>15.8</td>
<td>4.9</td>
<td>0.5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>40.3</td>
<td>11.4</td>
<td>12.3</td>
<td>21.8</td>
<td>21.8</td>
<td>32.7</td>
<td>37.1</td>
<td>37.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>21.7</td>
<td>50.6</td>
<td>49.7</td>
<td>40.2</td>
<td>40.2</td>
<td>29.3</td>
<td>24.9</td>
<td>24.4</td>
<td>62*</td>
<td>0</td>
</tr>
</tbody>
</table>

* = berbeda nyata
Lampiran 11. Uji terhadap Nilai TVB

<table>
<thead>
<tr>
<th>OBS</th>
<th>F1</th>
<th>F2</th>
<th>F1F2</th>
<th>R</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>1</td>
<td>8.40</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>2</td>
<td>9.22</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>1</td>
<td>16.80</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>2</td>
<td>16.15</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
<td>18.36</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>2</td>
<td>17.63</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>1/3</td>
<td>1</td>
<td>28.88</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1/3</td>
<td>2</td>
<td>28.70</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>2/1</td>
<td>1</td>
<td>14.36</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>2/1</td>
<td>2</td>
<td>14.22</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2/2</td>
<td>1</td>
<td>16.20</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>2/2</td>
<td>2</td>
<td>15.39</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>1</td>
<td>26.80</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>2</td>
<td>25.22</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1</td>
<td>3/1</td>
<td>1</td>
<td>13.80</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>3/1</td>
<td>2</td>
<td>13.88</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
<td>1</td>
<td>14.32</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
<td>2</td>
<td>14.70</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
<td>3/3</td>
<td>1</td>
<td>20.73</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>3</td>
<td>3/3</td>
<td>2</td>
<td>20.12</td>
</tr>
</tbody>
</table>

Data TVB

General Linear Models Procedure

Dependent Variable: Y1

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9</td>
<td>640.84408000</td>
<td>71.20489778</td>
<td>265.93</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>2.67760000</td>
<td>0.26776000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CortTot</td>
<td>19</td>
<td>643.52168000</td>
<td>C.V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Square</td>
<td>0.995839</td>
<td>2.924468</td>
<td>Root MSE</td>
<td>0.5174553</td>
<td>17.69400000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>3</td>
<td>245.33098000</td>
<td>81.77699333</td>
<td>305.41</td>
<td>0.0001</td>
</tr>
<tr>
<td>F2</td>
<td>2</td>
<td>372.48734444</td>
<td>186.24367222</td>
<td>695.56</td>
<td>0.0001</td>
</tr>
<tr>
<td>F1F2</td>
<td>4</td>
<td>23.02575556</td>
<td>5.75643889</td>
<td>21.50</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0</td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>0</td>
<td>0.00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1F2</td>
<td>4</td>
<td>23.02575556</td>
<td>5.75643889</td>
<td>21.50</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
General Linear Models Procedure

Tukey’s Studentized Range (HSD) Test for variable: Y1

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 confidence= 0.95 df= 10 MSE= 0.26776

Critical Value of Studentized Range= 4.327

Comparisons significant at the 0.05 level are indicated by ‘***’.

<table>
<thead>
<tr>
<th>F1 Comparison</th>
<th>Lower Simultaneous Confidence Limit</th>
<th>Difference Between Means</th>
<th>Upper Simultaneous Confidence Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>1.4743</td>
<td>2.3883</td>
<td>3.3023 ***</td>
</tr>
<tr>
<td>1 - 3</td>
<td>3.9143</td>
<td>4.8283</td>
<td>5.7423 ***</td>
</tr>
<tr>
<td>1 - 0</td>
<td>10.9841</td>
<td>12.2767</td>
<td>13.5692 ***</td>
</tr>
<tr>
<td>2 - 3</td>
<td>-3.3023</td>
<td>-2.3883</td>
<td>-1.4743 ***</td>
</tr>
<tr>
<td>2 - 0</td>
<td>1.5260</td>
<td>2.4400</td>
<td>3.3540 ***</td>
</tr>
<tr>
<td>3 - 1</td>
<td>8.5958</td>
<td>9.8883</td>
<td>11.1809 ***</td>
</tr>
<tr>
<td>3 - 2</td>
<td>-5.7423</td>
<td>-4.8283</td>
<td>-3.9143 ***</td>
</tr>
<tr>
<td>3 - 0</td>
<td>-3.3540</td>
<td>-4.4000</td>
<td>-1.5260 ***</td>
</tr>
<tr>
<td>2 - 1</td>
<td>6.1558</td>
<td>7.4483</td>
<td>8.7409 ***</td>
</tr>
<tr>
<td>1 - 0</td>
<td>-13.5692</td>
<td>-12.2767</td>
<td>-10.9841 ***</td>
</tr>
<tr>
<td>0 - 7</td>
<td>-11.1809</td>
<td>-9.8883</td>
<td>-8.5958 ***</td>
</tr>
<tr>
<td>0 - 3</td>
<td>-8.7409</td>
<td>-7.4483</td>
<td>-6.1558 ***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F2 Comparison</th>
<th>Lower Simultaneous Confidence Limit</th>
<th>Difference Between Means</th>
<th>Upper Simultaneous Confidence Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 2</td>
<td>8.0610</td>
<td>8.9750</td>
<td>9.8890 ***</td>
</tr>
<tr>
<td>3 - 1</td>
<td>9.2927</td>
<td>10.2067</td>
<td>11.1207 ***</td>
</tr>
<tr>
<td>3 - 0</td>
<td>14.9724</td>
<td>16.2650</td>
<td>17.5576 ***</td>
</tr>
<tr>
<td>2 - 3</td>
<td>-9.8890</td>
<td>-8.9750</td>
<td>-8.0610 ***</td>
</tr>
<tr>
<td>2 - 1</td>
<td>0.3177</td>
<td>1.2317</td>
<td>2.1457 ***</td>
</tr>
<tr>
<td>2 - 0</td>
<td>5.9974</td>
<td>7.2900</td>
<td>8.5826 ***</td>
</tr>
<tr>
<td>1 - 3</td>
<td>-11.1207</td>
<td>-10.2067</td>
<td>-9.2927 ***</td>
</tr>
<tr>
<td>1 - 2</td>
<td>-2.1457</td>
<td>-1.2317</td>
<td>-0.3177 ***</td>
</tr>
<tr>
<td>1 - 0</td>
<td>4.7658</td>
<td>6.0583</td>
<td>7.3509 ***</td>
</tr>
<tr>
<td>0 - 7</td>
<td>-17.5576</td>
<td>-16.2650</td>
<td>-14.9724 ***</td>
</tr>
<tr>
<td>0 - 3</td>
<td>-8.5826</td>
<td>-7.2900</td>
<td>-5.9974 ***</td>
</tr>
<tr>
<td>0 - 1</td>
<td>-7.3509</td>
<td>-6.0583</td>
<td>-4.7658 ***</td>
</tr>
</tbody>
</table>
data TVB

General Linear Models Procedure

Tukey's Studentized Range (HSD) Test for variable: Y1

NOTE: This test controls the type I experimentwise error rate, but generally has a higher type II error rate than REGWQ.

Alpha= 0.05 df= 10 MSE= 0.26776

Critical Value of Studentized Range= 5.598

Minimum Significant Difference= 2.0484

Means with the same letter are not significantly different.

<table>
<thead>
<tr>
<th>Tukey Grouping</th>
<th>Mean</th>
<th>N</th>
<th>F1F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28.7900</td>
<td>2</td>
<td>1/3</td>
</tr>
<tr>
<td>B</td>
<td>26.0100</td>
<td>2</td>
<td>2/3</td>
</tr>
<tr>
<td>C</td>
<td>20.4250</td>
<td>2</td>
<td>3/3</td>
</tr>
<tr>
<td>D</td>
<td>17.9950</td>
<td>2</td>
<td>1/2</td>
</tr>
<tr>
<td>E</td>
<td>16.4750</td>
<td>2</td>
<td>1/1</td>
</tr>
<tr>
<td>E</td>
<td>15.7950</td>
<td>2</td>
<td>2/2</td>
</tr>
<tr>
<td>E</td>
<td>14.5100</td>
<td>2</td>
<td>3/2</td>
</tr>
<tr>
<td>F</td>
<td>14.2900</td>
<td>2</td>
<td>2/1</td>
</tr>
<tr>
<td>F</td>
<td>13.8400</td>
<td>2</td>
<td>3/1</td>
</tr>
<tr>
<td>G</td>
<td>8.8100</td>
<td>2</td>
<td>0/0</td>
</tr>
</tbody>
</table>
Lampiran 12. Uji terhadap Nilai pH pada Penelitian Utama

<table>
<thead>
<tr>
<th>OBS</th>
<th>F1</th>
<th>F2</th>
<th>FL F2</th>
<th>R</th>
<th>Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>1</td>
<td>5.87</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>2</td>
<td>5.82</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>1</td>
<td>5.32</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1/1</td>
<td>2</td>
<td>5.00</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
<td>5.27</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>2</td>
<td>5.49</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>1/3</td>
<td>1</td>
<td>6.61</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1/3</td>
<td>2</td>
<td>6.58</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>2/1</td>
<td>1</td>
<td>5.34</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>2/1</td>
<td>2</td>
<td>5.40</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2/2</td>
<td>1</td>
<td>5.73</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>2/2</td>
<td>2</td>
<td>5.72</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>1</td>
<td>6.80</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>2</td>
<td>6.80</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1</td>
<td>3/1</td>
<td>1</td>
<td>6.07</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>3/1</td>
<td>2</td>
<td>6.39</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
<td>1</td>
<td>6.45</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
<td>2</td>
<td>6.37</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
<td>3/3</td>
<td>1</td>
<td>6.89</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>3</td>
<td>3/3</td>
<td>2</td>
<td>6.88</td>
</tr>
</tbody>
</table>

data pH (Tukey) Utama

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9</td>
<td>7.137600000</td>
<td>0.79306667</td>
<td>59.45</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>0.133400000</td>
<td>0.01334000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrtd Tot 19</td>
<td>7.27100000</td>
<td>C.V.</td>
<td>1.912234</td>
<td>0.1154989</td>
<td>6.04000000</td>
</tr>
</tbody>
</table>

R-Square 0.981653

Source DF Type I SS Mean Square F Value Pr > F
F1 3 2.0726333333 0.69087778 51.79 0.0001
F2 2 4.5790333333 2.28951667 171.63 0.0001
FL F2 4 0.4859333333 0.12148333 9.11 0.0023

Source DF Type III SS Mean Square F Value Pr > F
F1 0 0.0000000000 0.12148333 9.11 0.0023
F2 0 0.0000000000 0.12148333 9.11 0.0023
FL F2 4 0.4859333333 0.12148333 9.11 0.0023

General Linear Models Procedure
Dependent Variable: Y1

53
Alpha= 0.05 Confidence= 0.95 df= 10 MSE= 0.01334
Critical value of Studentized Range= 4.327
Comparisons significant at the 0.05 level are indicated by "***".

Simultaneous Comparisons

<table>
<thead>
<tr>
<th>F1 Comparison</th>
<th>Lower Limit</th>
<th>Means Difference</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 2</td>
<td>0.33933</td>
<td>0.54333</td>
<td>0.74734</td>
</tr>
<tr>
<td>3 - 0</td>
<td>0.37482</td>
<td>0.66333</td>
<td>0.95184</td>
</tr>
<tr>
<td>3 - 1</td>
<td>0.59266</td>
<td>0.79667</td>
<td>1.00067</td>
</tr>
<tr>
<td>2 - 3</td>
<td>-0.74734</td>
<td>-0.54333</td>
<td>-0.33933</td>
</tr>
<tr>
<td>2 - 0</td>
<td>-0.16851</td>
<td>0.12000</td>
<td>0.40851</td>
</tr>
<tr>
<td>2 - 1</td>
<td>0.04933</td>
<td>0.25333</td>
<td>0.45734</td>
</tr>
<tr>
<td>0 - 3</td>
<td>-0.95184</td>
<td>-0.66333</td>
<td>-0.37482</td>
</tr>
<tr>
<td>0 - 2</td>
<td>-0.40851</td>
<td>-0.12000</td>
<td>0.16851</td>
</tr>
<tr>
<td>0 - 1</td>
<td>-0.15518</td>
<td>0.13333</td>
<td>0.42184</td>
</tr>
<tr>
<td>1 - 3</td>
<td>-1.00067</td>
<td>-0.79667</td>
<td>-0.59266</td>
</tr>
<tr>
<td>1 - 2</td>
<td>-0.45734</td>
<td>-0.25333</td>
<td>-0.04933</td>
</tr>
<tr>
<td>1 - 0</td>
<td>-0.42184</td>
<td>-0.13333</td>
<td>0.15518</td>
</tr>
</tbody>
</table>

Simultaneous Comparisons

<table>
<thead>
<tr>
<th>F2 Comparison</th>
<th>Lower Limit</th>
<th>Means Difference</th>
<th>Upper Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - 0</td>
<td>0.62649</td>
<td>0.91500</td>
<td>1.20351</td>
</tr>
<tr>
<td>3 - 2</td>
<td>0.71766</td>
<td>0.92167</td>
<td>1.12567</td>
</tr>
<tr>
<td>3 - 1</td>
<td>0.96933</td>
<td>1.17333</td>
<td>1.37734</td>
</tr>
<tr>
<td>0 - 3</td>
<td>-1.20351</td>
<td>-0.91500</td>
<td>-0.62469</td>
</tr>
<tr>
<td>0 - 2</td>
<td>-0.28184</td>
<td>0.00667</td>
<td>0.29518</td>
</tr>
<tr>
<td>0 - 1</td>
<td>-0.03018</td>
<td>0.25333</td>
<td>0.54684</td>
</tr>
<tr>
<td>2 - 3</td>
<td>-1.12567</td>
<td>-0.92167</td>
<td>-0.71766</td>
</tr>
<tr>
<td>2 - 0</td>
<td>-0.29518</td>
<td>-0.00667</td>
<td>0.28184</td>
</tr>
<tr>
<td>2 - 1</td>
<td>0.04766</td>
<td>0.25333</td>
<td>0.45567</td>
</tr>
<tr>
<td>1 - 3</td>
<td>-1.37734</td>
<td>-1.17333</td>
<td>-0.96933</td>
</tr>
<tr>
<td>1 - 0</td>
<td>-0.54684</td>
<td>-0.25833</td>
<td>0.03018</td>
</tr>
<tr>
<td>1 - 2</td>
<td>-0.45567</td>
<td>-0.25167</td>
<td>-0.04766</td>
</tr>
</tbody>
</table>

Alpha= 0.05 df= 10 MSE= 0.01334
Critical Value of Studentized Range= 5.598
Minimum Significant Difference= 0.4572
Means with the same letter are not significantly different.

<table>
<thead>
<tr>
<th>Tukey Grouping</th>
<th>Mean</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6.8850</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>6.8000</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>6.5950</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>6.4100</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>6.2300</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>5.7250</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>5.3800</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>5.3700</td>
<td>2</td>
</tr>
<tr>
<td>I</td>
<td>5.1600</td>
<td>2</td>
</tr>
</tbody>
</table>
Lampiran 13. Nilai Rata-rata TVB (mg N/100 g Daging) Fillet ikan Tuna (Thunnus sp) selama Penyimpanan pada Suhu Chilling

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Penyimpanan hari ke-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>16.48</td>
</tr>
<tr>
<td>B</td>
<td>14.29</td>
</tr>
<tr>
<td>C</td>
<td>13.84</td>
</tr>
<tr>
<td>Nilai TVB Fillet Ikan Tuna Beku = 8.81</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Perlakuan A (Tanpa larutan kapur sirih)
Perlakuan B (Konsentrasi 15%)
Perlakuan C (Konsentrasi 30%)

Lampiran 14. Nilai Rata-rata pH Fillet ikan Tuna (Thunnus sp) selama Penyimpanan pada Suhu Chilling

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Penyimpanan hari ke-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>5.16</td>
</tr>
<tr>
<td>B</td>
<td>5.37</td>
</tr>
<tr>
<td>C</td>
<td>6.23</td>
</tr>
<tr>
<td>Nilai pH Fillet Ikan Tuna Beku = 5.85</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Perlakuan A (Tanpa larutan kapur sirih)
Perlakuan B (Konsentrasi 15%)
Perlakuan C (Konsentrasi 30%)
RIWAYAT HIDUP

Untuk menyelesaikan studi akhir di Fakultas Perikanan dan Ilmu Kelautan, penulis melakukan penelitian dengan judul "Mempelajari Pengaruh Konsentrasi dan Frekuensi Penyemprotan Larutan Kapur Sirih terhadap Mutu Fillet Ikan Tuna (Thunnus sp) pada Suhu Chilling".
Ucapan Terima Kasih

Alhamdulillah akhirnya.........
Puji syukur pada-Mu, ALLAHU RABBII, Raja Manusia dan Alam Raya, atas rahmat, karunia, dan segala kemudahan hingga skripsi ini terselesaikan.

Bapak Dr. Ir. Sukarno, M.Sc. (pembimbing I) dan Bapak Sugeng Heri Suseno, S.Pi. M.Si. (pembimbing II), yang telah memberikan bimbingan dan arahan hingga skripsi ini terselesaikan; Ir. Winarti Zahiruddin, M.S. selaku dosen penguj tamu atas masukan dan saran untuk perbaikan skripsi ini; para pendidikku dari MI, SMP, SMA sampai Perguruan Tinggi (semoga Allah membalas jasa kalian)

Keluarga tercinta :
Bapak dan Ibu (atas untaian doa di penghujung malammu, akhirnya anakmu lulus juga..... doakan anakmu selalu ya...), Mas-Masku (Mas Nur, Mas Mif, Mas Hasan da Mas Amin (kashiy sayang dan perhatian kalian sangat besar.....terima kasih), Mbakkku semata wayang (Mbak Musti...jadihilah perhiasan yang paling indah... mudah-mudahan kau bahagia), Para Isteri- Masku (Mbak Rini, Mbak Euis, dan Mbak Niajadilah istri yang solehah...contohlah para shahabiyah), Adek-adekku : Aya (jaga kesehatan...mari berjuang bersama), Vidya, Wati (jadilah penerus kami), Kiki dan Zen (kakak ingin kalian menjadi penjaga-penjaga Islam) dan Keponakanku yang lucu-lucu (Adzkyah, Izmah, Dzaki dan Faozani ...atas warna-warna ceria yang kalian berikan buat 'Lilik')
Ya... Allah satukan keluarga kami di surga-Mu yang indah....

Mbak Fritri dan segenap karyawan PT. Halimas Sakti termasuk Bapak Satpamnya....terima kasih atas bantuanmu
Lisna...teman satu penelitian (sedihnya...'gak bisa lulus bareng)

Kakak-kakak 'GURU' yang telah mengenalkan indahnya Islam (M' Santi, M' Runi, T' Neng, M' Liza, M' Ida, M' Susi, T' Herly, M' Nana, M' Linda, M' Ira, Uni II, T' Siti, M' Yunifasari, M' Delis, Al Fatih, dan Husniyah) ...syukron....

Teman-teman THP 36:
Darma, Sukma, Wati, Lisna, Marini, Zuli, Yuli, Tiyu, Metty, Sita, Rima, Ria, Mulia, Dian, Wita, Ray, Dung-dung, Anna, Evi, Erika, Kiki, Wiwi, Reny, Honesty, Iman, Anton 2x, Aris, Eko 2x, Hafi, Aliandri, Santo, Firdis, Alink, B-Qit, Deny 2x, dan lainnyamaaf yang 'gak kesebut....(trimakasih atas kenangan selama kita satu kelas....)
Sahabatku
Darma SW (teman yang selalu menemani... kamu baik sekali), Sukma (calon ibu, semoga bahagia), Ilk (Sahabat dan GuruKu...maaf selalu ngerepotin),
Ririn (cepetan !!!), Salma/SitSof (jangan ditunda-tunda), Rambe (Ayo Semangat !!!), Ade (Oleh-oleh Aceh?), Wanty, PSDM crew (Ratna, Alfi, Aris, Endah, Rahma, dkk), BSP_25 (Yuyun, Meti, Lia, D’ Endah dan D’ Ewi), Umi,
Deli, all 36 semua ya...afwan kalo nggak kesebut...

Adek-adek seperjuangan ;
Generasi 1: Maya, Rika, Al, dan Fiqa, dan Generasi 2: Nindha, Ratih, Risti, Fenl,
Susan, (bangkitnya Islam adalah keniscayaanayo kita terjun untuk ambil bagian
...jadi dakwahnya yang rajin ya...), Dwi (nu Ageung tea...jangan malaz), Lely,
Meyki, Laili, Vana, De’Ni dan Ka’Ni, (ubahlah merah menjadi hijau dengan
cahaya_Nya)

Saudara saudariku seperjuangan di BKIM & MT AL MARJAN ...
cerahkan dunia dengan cahaya ISLAM

Keluarga di Ash-Shobirin :
Kepsek, Ibu RT, M, Lulu, Ade: Yuni, Mayang, Cut, Bia, She-She
(sekarang dimana?), (Dewi), M’ Achie, dan lainnya.... (‘gak usah disebut
lagi yah capek netiknya....)
jadikan Rumah Kita Surga Kita......
Keluarga ex- Azka (M’ Nanik, M’ Feby, Ummi Ziddane, M’ Vivi, M’
Okti, M’ Ambar, D’ Ita, D’ Ella, Beta) ...kebersaman yang indah....

Segenap pihak yang tidak bisa disebutkan semuanya, yang
telah membantu penulis

Semoga Allah SWT memberi balasan yang terbaik, Amin