PENGEMBANGAN WEB CHAT DAN APLIKASINYA DALAM PENGAMBILAN KEPUTUSAN KELOMPOK SECARA LABEL LINGUISTIK

RISNAWATI KUMALA DEWI

JURUSAN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2001
RINGKASAN

RISNAWATI KUMALA DEWI. Pengembangan Web Chat dan Aplikasinya dalam Pengambilan Keputusan Kelompok Secara Label Linguistik (Development of Web Chat and It’s Application for Linguistic Labels base on Group Decision Making). Dibimbing oleh MARIMIN dan MEUTHIA RACHMANIAH.

Pembangunan teknologi informasi memberikan berbagai kemudahan termasuk dalam hal berkomunikasi. Komunikasi tidak hanya dapat dilakukan dengan bertatap muka, namun dapat dilakukan melalui komunikasi on line yang saat ini sedang marak, yaitu aplikasi chatting yang dapat dijalankan pada intranet maupun internet. Aplikasi chatting dapat dimanfaatkan dalam proses pengambilan keputusan sebagai media diskusi antar pengambil keputusan.

Mekanisme agregasi preferensi menggunakan metode penilaian individual dan berpasangan. Penilaian individu menggunakan metode Delphi dan penilaian berpasangan menggunakan metode label linguistik. Dalam metode label linguistik, preferensi diberikan dalam bentuk label linguistik dan proses perhitungan dilakukan dengan menggunakan perhitungan Triangular Fuzzy Number.

Web chat yang dirancang dengan suatu mekanisme pengambilan keputusan kelompok dapat mengurangi kelemaan diskusi tatap muka, meningkatkan efektivitas dan tingkat kepuasan terhadap hasil keputusan serta mengurangi beban operator. Namun, web chat perlu dilengkapi dengan history file untuk menyimpan nilai preferensi yang telah diberikan sebelum koneksi salah seorang PK mengalami kegagalan atau putus, mengingat protocol HTTP memiliki sifat connectionless.

Dalam masa mendatang, web chat dapat dikembangkan dan dilengkapi sarana video phone sehingga kemungkinan penyalahgunaan terhadap sistem semakin kecil.
PENGEMBANGAN WEB CHAT DAN APLIKASINYA DALAM PENGAMBILAN KEPUTUSAN KELOMPOK SECARA LABEL LINGUISTIK

RISNAWATI KUMALA DEWI

Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer pada Program Studi Ilmu Komputer

JURUSAN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2001
Judul: Pengembangan Web Chat dan Aplikasinya dalam Pengambilan Keputusan Kelompok Secara Label Linguistik
Nama: Risnawati Kumala Dewi
NRP: G06496031

Menyetujui,

[Signature]
Dr. Ir. Marimin, M.Sc.
Pembimbing I

[Signature]
Ir. Meuthia Rachmaniah, M.Sc.
Pembimbing II

Mengetahui,

[Signature]
Abdurrauf Rambe, M.St.
Ketua Program Studi

Tanggal Lulus: 2 MAY 2001
RIWAYAT HIDUP

Penulis dilahirkan di Yogyakarta pada tanggal 11 April 1978 sebagai anak pertama dari tiga bersaudara, anak dari pasangan Yuliman dan Suryani.

Tahun 1996 penulis lulus dari SMU Negeri 1 Bogor dan pada tahun yang sama diterima di Jurusan Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor melalui jalur Undangan Seleksi Masuk IPB.

Selama mengikuti perkuliahan, penulis pernah menjabat sebagai Sekretaris II Himpunan Mahasiswa Ilmu Komputer.
PRAKATA

Ungkapan terima kasih secara khusus penulis sampaikan kepada Ayah, Ibu, Uwik, Erni dan seluruh keluarga atas doa dan kasih sayangnya dan juga kepada Panji Wasmana atas doa, dukungan, dorongan, bantuan dan kasih sayangnya.

Semoga karya ilmiah ini dapat bermanfaat.

Bogor, Mei 2001

Risnawati Kumala Dewi
Sesungguhnya apa yang dijanjikan
kepadamu pastilah benar (Adz-Dzaariyaat, 5).

Kebenaran itu adalah dari Tuhanmu
maka janganlah kamu termasuk orang-
orang yang ragu / bimbang (Mg-Imran, 60)

Kupersembahkan Karya Ilmiah ini teruntuk
Ayah, Ibu, Uwik, Erni
Terima kasih atas segala doa dan dukungan yang senantiasa diberikan

**

Sometimes we need somebody
We don’t know what to do
You were always there for me
When I needed you

Dan teruntuk yang terkasih Panji Wasmana
Yang selalu memberiku dorongan, semangat dan doa
DAFTAR ISI

| Halaman |
|-------------------------|-------|
| DAFTAR TABEL | vi |
| DAFTAR GAMBAR | vi |
| DAFTAR LAMPIRAN | vi |
| **PENDAHULUAN** | |
| Latar Belakang | 1 |
| Tujuan Penelitian | 1 |
| Ruang Lingkup | 2 |
| Manfaat | 2 |
| **TINJAUAN PUSTAKA** | |
| Keputusan Kelompok | 2 |
| Metode Fuzzy Delphi | 2 |
| Label Linguistik | 3 |
| Internet | 6 |
| Intranet | 6 |
| Web Chat | 6 |
| Client/Server | 6 |
| **PERANCANGAN SISTEM** | |
| Identifikasi Masalah | 6 |
| Analisis Kebutuhan Sistem| 7 |
| Desain Sistem | 7 |
| Desain Proses | 8 |
| Perangkat Lunak yang Digunakan | 8 |
| Perangkat Keras yang Digunakan | 8 |
| Perangkat Lunak yang Diperlukan Untuk Implementasi | 8 |
| Perangkat Keras yang Diperlukan Untuk Implementasi | 8 |
| **HASIL DAN PEMBAHASAN** | |
| Mekanisme Pengambilan Keputusan | 9 |
| Seleksi Awal | 9 |
| Metode Label Linguistik | 10 |
| Verifikasi dan Validasi | 11 |
| Kinerja Sistem | 13 |
| Kompleksitas Sistem | 13 |
| Kelebihan Sistem | 13 |
| Kekurangan Sistem | 14 |
| Strategi Implementasi | 14 |
| **KESIMPULAN DAN SARAN** | |
| Kesimpulan | 14 |
| Saran | 14 |
| **DAFTAR PUSTAKA** | 15 |
| **LAMPIRAN** | 17 |
DAFTAR TABEL

1. Lembar Evaluasi Dalam Metode Fuzzy Delphi ... 3
2. Pemetaan nilai r_j terhadap r_i .. 4
3. Tabel transformasi untuk mengubah label linguistik ke dalam bentuk TFN 4
4. Aturan pemberian preferensi terhadap pasangan alternatif dari masing-masing kriteria 10
5. Nilai preferensi PK ronde ke-1 .. 11
6. Hasil agregasi preferensi ronde ke-1 .. 11
7. Nilai preferensi PK ronde ke-2 .. 12
8. Hasil agregasi preferensi ronde ke-2 .. 12
9. Nilai preferensi PK ronde ke-3 .. 12
10. Hasil agregasi preferensi ronde ke-3 ... 12
11. Hasil akhir proses fuzzy Delphi ... 12

DAFTAR GAMBAR

1. Proses Client/Server .. 6
2. Arsitektur Program ... 9
DAFTAR LAMPIRAN

1. Diagram Proses ... 18
2. Tampilan utama ruang PK .. 19
3. Tampilan input nama (alias) dan password 20
4. Tampilan ruang diskusi ... 21
5. Tampilan untuk memberikan preferensi terhadap pasangan alternatif dan kriteria .. 22
6. Tampilan utama ruang administrator 23
7. Hasil agregasi pada beberapa nilai α untuk kasus pemilihan tipe agroindustri yang memiliki prospek cerah jika dikembangkan .. 24
8. Data dan hasil pengujian menggunakan metode label linguistik untuk kasus pemilihan tipe agroindustri yang memiliki prospek cerah jika dikembangkan .. 25
9. Dokumentasi Sistem ... 26
PENDAHULUAN

Latar Belakang

Aplikasi chatting dapat dimanfaatkan untuk berkomunikasi secara simultan dan dalam area yang luas tanpa kendala letak geografis. Selain itu, dapat pula dimanfaatkan untuk proses pengambilan keputusan kelompok yang dilakukan oleh para pembuat keputusan (decision maker) atau PK yang berada pada lingkungan geografis yang sama atau berbeda, sehingga dapat saling berdiskusi untuk mendapatkan solusi dari permasalahan tertentu secara on line dengan menggunakan komputer yang terhubung ke jaringan.

Pemakaian media chat untuk pengambilan keputusan kelompok (PKK) belum maksimal yang disebabkan tidak adanya mekanisme agregasi yang terintegrasi dengan sistem (Marimin et al., 2000). Proses agregasi dilakukan secara manual oleh administrator dengan cara menampilkan preferensi PK dan melakukan perhitungan dengan metode/perangkat lunak yang ada seperti Expert Choice yang menggunakan proses hierarki analitik.

Cara manual seperti ini memiliki kelemahan, antara lain administrator menjadi sangat sibuk, tidak efektif dan proses tidak transparan sehingga dapat menurunkan tingkat kepercayaan terhadap hasil keputusan. Untuk mengatasi kelemahan ini, dikembangkan sistem chat dan integrasi metode agregasi yaitu metode fuzzy Delphi, metode proses hierarki analitik serta metode non numerik fuzzy berpasangan yang dikembangkan oleh Swiyadi (2000).

Label linguistik merupakan metode agregasi preferensi kelompok, dimana preferensi diberikan dalam bentuk label linguistik dan dalam proses perhitungan digunakan perhitungan Triangular Fuzzy Number (TFN).

Metode label linguistik menggunakan operator agregasi neat Ordered Weighted Average (neat OWA), dimana nilai preferensi tidak harus terurut, lain halnya dengan operator OWA yang digunakan dalam metode non numerik fuzzy berpasangan, yang menghendaki nilai preferensi yang terurut. Metode label linguistik cocok diterapkan pada kasus full consensus dan partial consensus, sedangkan metode non numerik fuzzy berpasangan cocok diterapkan pada kasus full consensus. Full consensus artinya semua PK menyukai suatu alternatif. Partial consensus artinya terdapat satu atau lebih PK yang tidak menyukai suatu alternatif, namun alternatif tersebut disukai oleh sekelompok PK (Marimin et al., 1997).

Tujuan Penelitian

Tujuan dilaksanakannya penelitian ini adalah:
1. merancang web chat dan integrasi metode agregasi preferensi kelompok menggunakan metode fuzzy Delphi dan metode label linguistik.
2. membantu PK untuk mendapatkan solusi permasalahan.
3. menudahkan PK dalam mengambil keputusan kelompok tanpa harus bertatap muka dengan PK lainnya.

Ruang Lingkup

Merancang web chat yang bersifat multiplatform dalam hal perangkat lunak dan browser dependen. End user tidak memiliki ketergantungan terhadap sistem operasi (multiplatform), namun browser yang digunakan oleh client harus dapat menginterpretasikan script HTML yang dibangkitkan oleh server (browser dependent).

Web chat ini diperuntukkan bagi komunitas tertentu, dimana anggota komunitas tersebut jelas dan masing-masing anggota komunitas mengetahui identitas serta keberadaan anggota lainnya. Anggota komunitas ini ialah para PK dan satu orang administrator.

PK, merupakan pengguna yang ingin mengambil keputusan mengenai permasalahan tertentu, sedangkan administrator bertugas untuk memasukkan alternatif dan kriteria dari solusi permasalahan serta permasalahan yang ingin dicapai (tujuan/goal), dan memandu proses pengambilan keputusan. Proses pengambilan keputusan ini dilakukan pada waktu yang sama, artinya para PK akan mengakses web chat ini, dan membicarakan preferensiya terhadap pasangan alternatif dan kriteria pada waktu yang sama.

Sistem memiliki mekanisme pengambilan keputusan kelompok dengan penilaian individu dan penilaian berpasangan. Penilaian individu menggunakan metode fuzzy Delphi sedangkan penilaian berpasangan menggunakan metode label linguistik.

Manfaat

Suatu web chat dengan mekanisme pengambilan keputusan akan menudahkan PK dalam memperoleh solusi permasalahan. Hal ini disebabkan PK dapat melakukan diskusi tanpa dibatasi letak geografis. PK hanya menggunakan browser yang dapat menginterpretasikan script HTML yang dibangkitkan oleh server.

Selain itu, preferensi PK langsung digabar oleh sistem sehingga meningkatkan efektifitas dan tingkat kepercayaan terhadap hasil keputusan serta mengurangi beban administrator.

TINJAUAN PUSTAKA

Keputusan Kelompok

Pengambilan keputusan merupakan proses komunikasi dan partisipasi yang terus menerus dari keseluruh elemen organisasi. Pengambilan keputusan dilakukan dengan mengenali permasalahan yang ada, mengidentifikasi penyebab, mengembangkan alat alternatif solusi serta memilih alat lain.

Para PK akan menemukan semua alat ini dan kriteria yang mungkin melalui proses brainstorming dan dapat juga melalui pengumpulan opini dari para pakar. Hal ini dapat dilakukan melalui kombinasi dari diskusi, pendekripsian masalah dan wawancara terarah (Marimin et al., 1995).

Pengambilan keputusan dapat dilakukan dengan pendekatan individu atau kelompok. Pengambilan keputusan dengan pendekatan individu dilakukan oleh seorang PK untuk mendapatkan solusi. Pengambilan keputusan dengan pendekatan kelompok dilakukan oleh sekelompok PK yang bekerja sama untuk mencari solusi dari permasalahan. Pengambilan keputusan dalam pendekatan kelompok harus dapat memasukkan preferensi individu dan dapat mengakomodasi berbagai kepentingan kelompok.

Metode Fuzzy Delphi

Prosedur fuzzy Delphi mempunyai ciri-ciri yaitu: (1) mengabaikan nama anggota grup, (2) feedback yang terkontrol, (3) respons grup diproses secara statistik (Dalkey, 1969).
Prosedur metode fuzzy Delphi adalah sebagai berikut:

a. Setiap PK mengisi lembar evaluasi seperti yang ditunjukkan pada Tabel 1.

b. Preferensi semua PK diagramasi untuk mendapatkan pendapat kelompok.

c. Lembar evaluasi dikembalikan kepada PK dengan menyertakan nilai yang telah diberikan dan nilai pendapat kelompok.

d. PK mengisi kembali lembar evaluasi, nilai pendapat kelompok dilihat dan lembar evaluasi dikembalikan kepada PK dengan menyertakan preferensi PK, preferensi sebelumnya dan nilai pendapat kelompok.

e. Langkah (d) diulang sampai didapatkan hasil yang konvergen.

Setelah konvergen (rataan ronde evaluasi ke-n = rataan ronde evaluasi ke-n+1) didapatkan alternatif dan kriteria yang nyata untuk ditindaklanjuti.

Tabel 1. Lembar Evaluasi dalam Metode Fuzzy Delphi

<table>
<thead>
<tr>
<th>Kode Pembuat Keputusan</th>
<th>Ronde Evaluasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alternatif 1</td>
</tr>
<tr>
<td></td>
<td>Alternatif 2</td>
</tr>
<tr>
<td></td>
<td>Alternatif 3</td>
</tr>
<tr>
<td></td>
<td>Alternatif n</td>
</tr>
</tbody>
</table>

Dalam metode ini, preferensi PK dierepresentasikan secara linguistik menggunakan tujuh nilai non numerik yaitu: Certainly Not (CN), Very Low (VL), Low (LO), Moderate (MO), High (HI), Very High (VH), dan Certainly Prospective (CP).

Label Linguistik

Jika terdapat himpunan alternatif, katakanlah S yang terdiri dari n alternatif, $S = \{s_1, s_2, \ldots, s_n\}$ dan himpunan PK yang terdiri dari m PK, katakanlah $I = \{1, 2, \ldots, m\}$, maka setiap PK $k \in I$ memberikan preferensi terhadap alternatif S dalam bentuk label linguistik.

Asumsikan bahwa R adalah variabel yang nilainya diambil dari himpunan $L = \{l_1, l_2, \ldots, l_n\}$ dimana l_i adalah label linguistik yang merepresentasikan relasi preferensi. PK memberikan preferensi yang dipilih dari himpunan label linguistik L yang terdiri dari 13 label linguistik, sehingga relasi preferensi fuzzy yang diekspresikan oleh para PK adalah sebagai berikut:

$$R^k(s_i, s_j) = (r^k_{ij})$$

- **DP**: Definitely Preferred, jika s_i lebih disukai dari s_j pada tingkat nyata
- **VHP**: Very High Preferred, jika s_i lebih disukai dari s_j pada tingkat sangat tinggi
- **HP**: High Preferred, jika s_i lebih disukai dari s_j pada tingkat tinggi
- **MP**: Moderate Preferred, jika s_i lebih disukai dari s_j pada tingkat sedang
- **LP**: Low Preferred, jika s_i lebih disukai dari s_j pada tingkat rendah
- **VLP**: Very Low Preferred, jika s_i lebih disukai daripada s_j pada tingkat sangat rendah
- **AS**: About the Same, jika s_i sama (tidak berbeda) terhadap s_j
- **VLD**: Very Low Dispreferred, jika s_j lebih disukai daripada s_i pada tingkat sangat rendah
- **LD**: Low Dispreferred, jika s_j lebih disukai daripada s_i pada tingkat rendah
- **MD**: Moderate Dispreferred, jika s_j lebih disukai daripada s_i pada tingkat sedang
- **HD**: High Dispreferred, jika s_j lebih disukai daripada s_i pada tingkat tinggi
- **VHD**: Very High Dispreferred, jika s_j lebih disukai daripada s_i pada tingkat sangat tinggi
- **DD**: Definitely Dispreferred, jika s_j lebih disukai daripada s_i pada tingkat nyata
Untuk masing-masing PK \(k \), relasi preferensi fuzzy \(R_k \) diberikan oleh label linguistik \(r_k^j \).

Nilai preferensi tersebut saling berkebalikan (reflective-reciprocal) dengan AS sebagai pusat. Pemetaan relasi \(r_j \) terhadap \(r_k \) ditunjukkan pada Tabel 2. Jika alternatif i lebih disukai daripada alternatif j dengan nilai VHP, maka alternatif j tidak lebih disukai (disprefer) daripada alternatif i dengan nilai VHD.

<table>
<thead>
<tr>
<th>(r_j)</th>
<th>(\equiv)</th>
<th>(r_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>DD</td>
<td></td>
</tr>
<tr>
<td>VHP</td>
<td>VHD</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>HD</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>MD</td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>LD</td>
<td></td>
</tr>
<tr>
<td>VLP</td>
<td>VLD</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>AS</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 2. Pemetaan nilai \(r_j \) terhadap \(r_k \)

Setiap label linguistik direpresentasikan dalam bentuk Triangular Fuzzy Number (TFN), katakanlah \(A \), yang didefinisikan sebagai triplets \((a_1, a_2, a_3) \) dimana \(a_1 \leq a_2 \leq a_3 \) dan \(a_1, a_2, a_3 \) berada pada bilangan real positif \((R^+) \). Dalam kasus ini, DD dan DP direpresentasikan masing-masing dalam bentuk khusus, dimana \(a_1 = a_2 = a_3 \). TFN direpresentasikan dalam range \([0,1]\). Tabel transformasi untuk mengubah label linguistik ke dalam bentuk TFN ditunjukkan pada Tabel 3.

<table>
<thead>
<tr>
<th>Label Linguistik</th>
<th>TFN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP</td>
<td>(1.000, 1.000, 1.000)</td>
</tr>
<tr>
<td>VHP</td>
<td>(0.836, 0.918, 1.000)</td>
</tr>
<tr>
<td>HP</td>
<td>(0.752, 0.836, 0.920)</td>
</tr>
<tr>
<td>MP</td>
<td>(0.668, 0.752, 0.836)</td>
</tr>
<tr>
<td>LP</td>
<td>(0.584, 0.668, 0.752)</td>
</tr>
<tr>
<td>VLP</td>
<td>(0.500, 0.584, 0.668)</td>
</tr>
<tr>
<td>AS</td>
<td>(0.416, 0.500, 0.584)</td>
</tr>
<tr>
<td>VLD</td>
<td>(0.332, 0.416, 0.500)</td>
</tr>
<tr>
<td>LD</td>
<td>(0.248, 0.332, 0.416)</td>
</tr>
<tr>
<td>MD</td>
<td>(0.164, 0.248, 0.332)</td>
</tr>
<tr>
<td>HD</td>
<td>(0.080, 0.164, 0.248)</td>
</tr>
<tr>
<td>VHD</td>
<td>(0.000, 0.082, 0.164)</td>
</tr>
<tr>
<td>DD</td>
<td>(0.000, 0.000, 0.000)</td>
</tr>
</tbody>
</table>

Tabel 3. Tabel transformasi untuk mengubah label linguistik ke dalam bentuk TFN*

Jika terdapat dua label linguistik yang direpresentasikan ke dalam bentuk TFN sebagai \((a_1, a_2, a_3)\) dan \((b_1, b_2, b_3)\), maka beberapa operasi perhitungan didefinisikan sebagai berikut:

1. penjumlahan
\[(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3) \]

2. pengurangan
\[(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3) \]

Untuk perkalian dan pembagian, triplets tidak dapat diproses secara langsung. Tetapi perhitungan dapat diperkirakan dengan menggunakan selang kepercayaan pada setiap level \(\beta \in [0,1] \). Dengan menentukan selang kepercayaan pada level \(\beta \), TFN, katakanlah A dan B, dapat didefinisikan sebagai berikut:

\[A_\beta = [(a_1 - \alpha \beta, a_1 - \alpha \beta), (a_2 + \alpha \beta, a_3 + \alpha \beta)] \]

\[B_\beta = [(b_1 - \beta \beta, b_1 - \beta \beta), (b_2 + \beta \beta, b_3 + \beta \beta)] \]

Jika terdapat dua buah selang D dan E yang didefinisikan dalam \(R^+ \) sebagai \([d_1, d_2]\) dan \([e_1, e_2]\) secara berturut-turut dan terdapat konstanta positif \(c \), maka beberapa operasi perhitungan didefinisikan sebagai berikut:

1. perkalian
\[[d_1, d_2] \times [e_1, e_2] = [d_1 \times e_1, d_2 \times e_2] \]

2. pembagian
\[[d_1, d_2] + [e_1, e_2] = \left[\frac{d_1}{e_2}, \frac{d_2}{e_1} \right] ; e_1, e_2 \neq 0 \]

3. perkalian skalar
\[c \times [d_1, d_2] = [c \times d_1, c \times d_2] \]

4. pangkat
\[[d_1, d_2]^c = [d_1^c, d_2^c] \]

*Sumber: Marimin et al (1998)

Relasi preferensi dari masing-masing PK (individu) diagrami menjadi relasi preferensi kelompok menggunakan operator neat Ordered Weighted Average (OWA):

\[F(x_1, x_2, \ldots, x_n) = \frac{\sum_{i=1}^{n} x_i^{\alpha+1}}{\sum_{i=1}^{n} x_i^{\alpha}}, \alpha > 0 \]

dimana \(\alpha \) = parameter fungsi pembobot, yang nilainya berada pada range \([0,1]\).

Tahapan agregasi untuk mendapatkan alternatif pilihan adalah sebagai berikut:
1. Seleksi awal alternatif dan kriteria
Setelah didapatkan alternatif dan kriteria dari hasil diskusi, dilakukan seleksi awal alternatif dan kriteria yang direkomendasikan untuk ditinjau kembali. Seleksi awal menggunakan metode fuzzy Delphi.

2. PK mengevaluasi pasang alternatif pada setiap kriteria menggunakan metode label linguistik.
 Jika terdapat n alternatif dan setiap alternatif mempunyai himpunan kriteria \(A = \{a_1, a_2, ..., a_p\} \) serta setiap kriteria boleh mempunyai level kepentingan yang sama atau berbeda, maka setiap PK k memberikan preferensi pada setiap kriteria \(a \) dalam matriks \(R^k_a \). Matriks \(R^k_a \) yang dihasilkan sebanyak \(p \) dengan dimensi \(n \times n \).

Matriks \(R^k_a \) selanjutnya diproses sebagai berikut:
 a. Pada setiap kriteria, data pada matriks relasi preferensi semua PK diubah menjadi TFN yang sesuai (dengan menggunakan data pada Tabel 3). Kemudian data TFN pada setiap kriteria diproses untuk mengidentifikasi derajat preferensi terhadap suatu alternatif dengan menggunakan pendekatan langsung atau tak langsung.

Pendekatan Langsung
 Tingkat dukungan setiap PK \(k \) terhadap alternatif \(s_i \) adalah:
 \[
 h^k_i = \frac{1}{n-1} \sum_{j=1, j \neq i}^{n} r^k_{ij}
 \]
 Tingkat dukungan semua PK terhadap alternatif \(s_i \) yaitu \(v_i \) didapatkan dari persamaan:
 \[
 v_i = F(h^k_i)
 \]
 dimana \(F(\cdot) \) merupakan agregasi neat OWA dari \(h^k = \{h^k_1, h^k_2, ..., h^k_n\} \).

Fuzzy Q-support terhadap alternatif didefinisikan sebagai himpunan fuzzy:
 \[
 C_Q = \left\{ \frac{v_1}{s_1}, \frac{v_2}{s_2}, ..., \frac{v_n}{s_n} \right\}
 \]
 yang merupakan himpunan fuzzy dari alternatif yang didukung oleh PK.

Pendekatan Tak Langsung
 Pada pendekatan ini, solusi diperoleh dari dua tahap:
 1) Relasi preferensi fuzzy kelompok \(R \) didapatkan dari relasi preferensi fuzzy perseorangan.
 2) Himpunan solusi diperoleh dari \(R \).

Preferensi fuzzy kelompok \(R \) diperoleh dari semua relasi preferensi fuzzy perseorangan \(\{R_1, R_2, ..., R_m\} \) dengan menggunakan operator neat OWA sebagai berikut:
 \[
 r_{ij} = \begin{cases}
 F(r^k_{ij}), & \text{jika } i \neq j \\
 0, & \text{selainnya}
 \end{cases}
 \]
 dimana \(F(\cdot) \) adalah agregasi neat OWA dari \(\{r^1_{ij}, r^2_{ij}, ..., r^m_{ij}\} \).

Nilai rataan preferensi \(g_i \) dimana alternatif \(s_i \) lebih disukai dibandingkan semua alternatif lain didefinisikan dalam persamaan:
 \[
 g_i = \frac{1}{n-1} \sum_{j=1, j \neq i}^{n} r_{ij}
 \]
 dan tingkat preferensi alternatif \(s_i \) lebih disukai dibanding alternatif lain \((z_j) \):
 \[
 z_j = F(r^k_{ij})
 \]
 dimana \(F(\cdot) \) adalah agregasi neat OWA dari \(r_{i1}, r_{i2}, ..., r_{in} \).

Sedangkan fuzzy Q-support winner didefinisikan sebagai himpunan fuzzy dari alternatif yang didukung oleh PK,
 \[
 w_Q = \left\{ \frac{z_1}{w_1}, \frac{z_2}{w_2}, ..., \frac{z_n}{w_n} \right\}
 \]
 yang merupakan himpunan fuzzy dari alternatif yang didukung oleh PK.

b. Misalkan setiap kriteria mempunyai level kepentingan yang sama, himpunan solusi \(\{C_{a_1}, C_{a_2}, ..., C_{a_p}\} \) diagrasisi untuk mendapatkan solusi total \(C_Q \) menggunakan neat OWA operator sebagai berikut:
 \[
 C_Q = F(C_{a_1}, C_{a_2}, ..., C_{a_p})
 \]
 dimana \(F(\cdot) \) adalah agregasi neat OWA dari \(C_{a} \).

c. Pada kasus tertentu, setiap kriteria mempunyai level kepentingan yang berbeda dapat diagrasisi dengan menggunakan metode rataan fuzzy terbobot (fuzzy weighted average) sebagai berikut:
 \[
 C_Q = \frac{\sum_{i=1}^{g} w_i C_{a_i}}{\sum_{i=1}^{g} w_i}
 \]
d. Solusi akhir ini berbentuk TFN, dan kemudian akan diubah ke dalam bentuk label linguistik.

Untuk mentransformasi solusi menjadi label linguistik yang sesuai (pada Tabel 3) digunakan metode similarity. Similarity, \(\gamma(v, l) \) dapat diinterpretasikan sebagai cardinality dari irisan antara \(v \) dan \(l \), dibagi dengan cardinality dari label \(|l| \) sebagai berikut:

\[
\gamma(v, l) = \frac{|v \cap l|}{|l|} \neq 0
\]

Tetapi persamaan ini tidak dapat digunakan untuk label DD dan DP, karena label ini jika diubah ke dalam bentuk TFN menjadi \((0, 0, 0, 0)\) dan \((1.0, 1.0, 1.0)\) yang memiliki cardinality sama dengan nol. Dalam kasus ini, jika \(v \) adalah \((0.0, 0.0, 0.0)\) atau \((1.0, 1.0, 1.0)\), maka label linguistik yang sesuai berturut-turut yaitu DD atau DP.

Internet

Internet dapat terbentuk karena sekumpulan besar jaringan komputer memiliki kesepakatan untuk "berbicara dalam bahasa yang sama"; yaitu protokol TCP/IP (Basalamah et al, 1998). Internet merupakan suatu jaringan global yang menyediakan akses informasi yang terdapat pada banyak komputer di seluruh dunia. Internet dapat mempermudah dan memperluas komunikasi, mengirim dan mengakses informasi.

Intranet

Intranet merupakan jaringan internal (private network) yang dimiliki oleh perusahaan, organisasi atau corporation dan hanya dapat diakses oleh anggota perusahaan atau organisasi, pegawai atau lainnya yang memiliki hak akses ke intranet tersebut.

Web Chat

Web chat yaitu program chat yang dijalankan dalam situs web, contohnya seperti fasilitas chat yang terdapat pada safegaul.com, cetha.co.id, detik.com, dan lain sebagainya (Junaedhie, 2000). Web chat dibangun dengan menggunakan server side scripting language, artinya segala proses dilakukan di server, sehingga web chat memiliki kemudahan dalam hal pemeliharaan, sebab jika perlu melakukan perubahan pada program, maka cukup dilakukan di server.

Client/Server

Web menggunakan model client/server sebagai dasar untuk komunikasi data, dimana client akan mengirimkan request atau permintaan ke server, kemudian server akan memproses request tersebut, selanjutnya server akan mengirimkan respons dari request tersebut ke client (Gambar 1).

![Gambar 1. Proses Client/Server](image)

Namun demikian, layanan web menggunakan protokol HTTP (Hypertext Transfer Protocol) yang bersifat connectionless, sehingga tidak terdapat mekanisme yang mengontrol koneksi antara client dan server.

PERANCANGAN SISTEM

Identifikasi Masalah

Dari identifikasi awal didapatkan permasalahan-permasalahan yang dihadapi yaitu:

1. PK tidak selalu berada pada lingkungan geografis yang sama.
2. Keinginan untuk berdiskusi pada waktu bersamaan tanpa harus bertatap muka, yang dapat disebabkan oleh faktor jarak, untuk menghindari tekanan kelorok tertentu yang dapat mempengaruhi keputusan, atau untuk menghindari suasana ramaigaduh.

Analisis Kebutuhan Sistem

Dengan melihat permasalahan yang ada, diputuskan bahwa salah satu solusi dari permasalahan yang dihadapi yaitu pengembangan web chat dan aplikasinya dalam pengambilan keputusan kelompok secara label linguistik yang mengacu pada sistem chat dan integrasi metode agregasi yaitu metode fuzzy Delphi, metode proses hierarki analitik dan metode non numerik fuzzy berpasangan yang telah dikembangkan oleh Swiyadi (2000).

Pengembangan web chat dengan pengambilan keputusan kelompok dimaksudkan untuk meningkatkan kinerja PK dalam mencari solusi permasalahan.

Desain Sistem

1. Identifikasi Pengguna

Web chat ini diperuntukkan bagi komunitas tertentu, dimana anggota komunitas tersebut jelas dan masing-masing anggota komunitas mengetahui identitas serta keberadaan anggota lainnya. Jenis pengguna yang terlibat dalam web chat ini ada dua yaitu:

- Pembuat Keputusan (PK), yaitu user yang ingin memecahkan suatu permasalahan tertentu. PK harus mengerti permasalahan yang akan dipecahkan, metode yang digunakan, model penilaian dan tata cara berkomunikasi selama pengambilan keputusan dilaksanakan.

- Administrator yang bertugas untuk memasukkan alternatif dan kriteria dari solusi permasalahan, permasalahan yang ingin dicapai (tujuan/goal), serta memandu proses pengambilan keputusan.

2. Desain Input

- Antar muka sistem dengan PK di ruang diskusi PK terdiri dari beberapa bagian yaitu: a) login PK, b) ruang diskusi untuk memilih alternatif dan kriteria (brainstorming) dari permasalahan yang dihadapi, c) ruang untuk melakukan seleksi awal dengan menggunakan metode fuzzy Delphi untuk memilih alternatif dan kriteria yang akan ditindaklanjuti, dan d) ruang di mana PK harus memasukkan nilai preferensinya terhadap alternatif, berdasarkan kriteria tertentu menggunakan metode label linguistik.

- Antar muka sistem dengan administrator di ruang administrator, yaitu login administrator dan menu-menu yang berhubungan dengan tugas administrator sebagai pemandu diskusi.

3. Desain Output

Output berupa sekelompok solusi yang berbentuk label linguistik yang menggambarkan nilai suatu alternatif, misalnya saja output: alternatif I = VHP, yang artinya alternatif I memiliki nilai VHP.

4. Desain Basis Data

Basis data chatting ini memiliki 18 buah tabel, yaitu:

- tblUser, berisi nama-nama user yang boleh bergabung dalam fasilitas web chat.
- tblKriteria, menyimpan kriteria yang akan ditindaklanjuti.
- tblAlternatif, menyimpan alternatif yang akan ditindaklanjuti.
- tblKriteriaTemp, menyimpan kriteria pada waktu seleksi awal/diskusi.
- tblAlternatifTemp, menyimpan alternatif pada waktu seleksi awal/diskusi.
- tblDaftarMasuk, untuk menyimpan data PK mana saja yang telah keluar dari ruang diskusi dan masuk ke ruang label linguistik untuk melakukan penilaian terhadap pasangan alternatif dan kriteria.
- tblPKDiskusi, untuk mengetahui PK yang telah selesai melakukan penilaian terhadap pasangan alternatif dan kriteria.
- tblAggregasi, menyimpan penilaian alternatif-alternatif dari masing-masing PK yang telah diagregasi.
- tblAggregasiKriteria, untuk menyimpan nilai agregasi alternatif dari setiap kriteria.
- tblTujuan, menyimpan data tujuan diskusi.
- tblMasukDelphi, menyimpan data PK yang ikut dalam seleksi awal ponentuan alternatif dan kriteria dengan menggunakan metode Delphi.
- tblProsesDelphi, mengetahui PK yang telah selesai melakukan seleksi awal.
- tblAdaMasuk, dibuat agar dapat mengetahui PK yang telah terlebih dahulu melakukan proses perhitungan.
- tblRonde, menyimpan data ronde dalam melakukan seleksi awal dengan metode Delphi.
- tblHasil, menyimpan hasil akhir.
- tblAggregasiKriteriaTemp, menyimpan hasil agregasi sewaktu melakukan seleksi awal terhadap kriteria.
- tblAggregasiAlternatifTemp, menyimpan hasil agregasi sewaktu melakukan seleksi awal terhadap alternatif.
- tblBingumpul, digunakan untuk setiap flag yang menunjuk lancarnya proses perhitungan.

Selain itu, terdapat tabel yang dibuat pada waktunya PK login, tabel ini diperlukan sewaktu melakukan perhitungan. Jika PK telah log out atau tidak lagi menggunakan fasilitas dalam web chat ini, maka tabel tersebut akan dihapus.

Desain Proses

Perangkat Lunak yang Digunakan
Perangkat lunak yang digunakan untuk mengembangkan sistem adalah Active Server Pages, DBMS yang digunakan adalah Microsoft SQL Server 7.0, dan HTML editor yang digunakan: Microsoft Frontpage 2000, Macromedia Dreamweaver 3.0, dan EditPlus 2 (editor gratis yang dapat di-download melalui internet).

Perangkat Keras yang Digunakan
Perangkat keras yang digunakan dalam pengembangan sistem adalah Prosesor Intel Pentium III 500 MHz, Memori 64 MB, Hardisk 4.3 GB.

Perangkat Lunak yang Diperlukan Untuk Implementasi
- **Server**
 - Sistem Operasi Windows NT 4.0
 - Microsoft SQL Server 7.0
 - Web Server Internet Information Server
- **Client**
 - Sistem Operasi Windows 95/98 atau Windows NT 4.0
 - Browser versi 4.0 ke atas (menyukung script ASP), misalnya Internet Explorer 4.0.

Perangkat Keras yang Diperlukan Untuk Implementasi
- **Intranet based**
 Untuk penggunaan pada intranet, aplikasi diletakkan di server dengan spesifikasi: prosesor minimal Pentium II, memiliki RAM minimal 64 MB, dan ruang hardisk yang tersisa minimal 50 MB untuk instalasi aplikasi web chat.
- **Internet based**
 Untuk penggunaan pada internet, aplikasi diletakkan (sited) pada salah satu Internet Service Provider (ISP) agar dapat diakses di jaringan internet. Spesifikasi perangkat keras yang diperlukan meliputi hardisk minimal 50 MB. Prosesor pada server tergantung pada fasilitas yang ada pada ISP yang bersangkutan.
- **Client**
 PC dianjurkan dengan prosesor minimal Pentium 233 MHz, RAM minimal 16 MB, VGA Card 1 MB.
HASIL DAN PEMBAHASAN

Gambar 2. Arsitektur Program

Aplikasi web chat, memiliki antarmuka grafis (Graphical User Interface) yang memudahkan para pengguna dan administrator untuk berinteraksi dengan aplikasi. Aplikasi terbagi menjadi dua bagian yaitu PK dan Administrator.

1. Ruang PK

Ruang PK merupakan bagian aplikasi yang akan digunakan oleh setiap PK, namun administrator memiliki akses ke ruang ini, agar dapat memantau jalannya diskusi. Tampilan utama ruang PK dapat dilihat pada Lampiran 2.

User yang dapat bergabung di sini, hanya user yang terdaftar dalam basis data. Untuk dapat masuk ke dalam ruang PK, user harus memiliki hak akses sebagai PK atau administrator. Tampilan form input nama (disebut alias) dan password tampak pada Lampiran 3.

Jika nama dan password sesuai, maka PK akan masuk ke ruang diskusi (brainstorming). Di ruang ini, PK dapat berdiskusi dengan topik yang telah disepakati bersama untuk memilih alternatif dan kriteria. Tampilan ruang diskusi pemilihan alternatif dan kriteria dapat dilihat pada Lampiran 4. Para PK dan administrator akan mengemukakan alternatif dan kriteria yang mendukung dalam hal mendapatkan solusi dari suatu permasalahan.

Setelah kriteria dan alternatif yang akan diindentifikasi diperoleh, selanjutnya PK memberikan preferensinya terhadap alternatif dari masing-masing kriteria. Tampilan ruang pemberian preferensi ini ditunjukkan pada Lampiran 5.

Bagian aplikasi ruang PK, mendukung metode pengambilan keputusan. Dalam artian para PK dan Administrator memunculkan ide alternatif dan kriteria untuk didiskusikan dan akhirnya memilih alternatif solusi terbaik yang telah disetujui bersama.

2. Ruang Administrator

Mekanisme Pengambilan Keputusan

Metode pengambilan keputusan yang akan diimplementasikan dalam sistem yaitu:

1. Metode Fuzzy Delphi, untuk seleksi awal pemilihan kriteria dan alternatif (dilakukan hanya jika alternatif lebih dari 15 atau kriteria lebih dari 15, atau alternatif dan kriteria masing-masing lebih dari 15).

2. Metode Label Linguistik, untuk pemilihan alternatif yang direkomendasikan (hanya jika alternatif dan kriteria masing-masing kurang dari atau sama dengan 15).

Setiap sesi PKK berlangsung, administrator dan para PK harus ikut berpartisipasi. Administrator memantau jalannya diskusi dan para PK mencari solusi permasalahan.

Seleksi Awal

Seleksi awal dilakukan setelah didapatkan banyak kriteria dan alternatif. Tujuannya untuk mendapatkan kriteria dan alternatif yang nyata untuk diindentifikasi. Metode yang digunakan yaitu fuzzy Delphi yang dimodifikasi dengan menggunakan operator OWA untuk agregasi. Seleksi awal dapat digunakan dalam pemilihan alternatif atau kriteria. Metode fuzzy Delphi digunakan sebab metode ini memiliki ciri-ciri mengabaikan nama anggota grup, feedback yang
terkontrol dan respons grup diproses secara statistik. Dengan mengabaikan nama anggota grup, pengaruh dominan seorang individu dapat dikurangi. Feedback yang terkontrol memberi artian bahwa rataan dari ronde sebelumnya akan disampaikan ke para PK, sehingga metode fuzzy
delphi ini akan mengurangi noise yang terkadang timbul ketika diskusi. Respons grup diproses secara statistik sehingga akan mengurangi tekanan dari grup tertentu.

Proses penilaian dilangkah sampai konvergen yaitu sampai rataan ke-n sama dengan rataan ke-(n+1).Seleksi akan memilih alternatif yang mempunyai nilai lebih besar atau sama dengan HI (high) sebagai alternatif nyata hasil seleksi awal. Nilai HI diambil atas kesepakatan bersama dari para PK dan administrator, dan nilai ini tidak harus HI dapat juga MO, LO dll, tergantung dari kesepakatan para PK dan administrator.

Metode Label Linguistik

PK memberikan preferensi terhadap pasangan alternatif dari masing-masing kriteria, dalam satu baris, misalnya terdapat dua buah kriteria dan tiga buah alternatif, maka aturan dalam memberikan preferensi hasil perbandingan alternatif dari masing-masing kriteria dapat dilihat pada Tabel 4.

<table>
<thead>
<tr>
<th>Kriteria ke-</th>
<th>Alternatif</th>
<th>Contoh Nilai Preferensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 dibanding 2</td>
<td>LD</td>
</tr>
<tr>
<td></td>
<td>1 dibanding 3</td>
<td>MP</td>
</tr>
<tr>
<td></td>
<td>2 dibanding 3</td>
<td>LP</td>
</tr>
</tbody>
</table>

Aturan penulisan di *web chat* ⇒ LD MP LP

2	1 dibanding 2	LD
	1 dibanding 3	LD
	2 dibanding 3	HD

Aturan penulisan di *web chat* ⇒ LD LD HD

Nilai preferensi hasil perbandingan dari pasangan alternatif dipisahkan dengan tanda spasi.

Nilai preferensi ini akan disimpan dalam tabel masing-masing PK, dan dipisahkan berdasarkan kriterianya. Selanjutnya nilai preferensi akan dikonversi ke dalam bentuk TFN. Hasil konversi dalam bentuk TFN ini yang akan diproses dengan pendekatan langsung, dengan mengasumsikan semua kriteria memiliki level kepentingan yang sama. Pemrosesan ini dikelompokkan berdasarkan alternatif dan kriteria.

Setelah nilai preferensi terbagi per kelompok berdasarkan alternatif, dilakukan agregasi dengan operator *near OWA* (lihat Lampiran 1). Proses agregasi ini dilakukan pada beberapa nilai α, dimana nilai α terletak di 0.0 ≤ α < 1.0. Pertimbangan nilai α akan dihentikan jika tidak terdapat alternatif yang tidak disukai (dispreferred) atau solusi berada pada kondisi stabil (Marimin et al., 1998). Proses agregasi dilakukan setelah semua PK selesai memberikan preferensinya terhadap alternatif pada setiap kriteria dan dilakukan oleh satu orang PK yaitu PK terakhir yang memasukkan nilai preferensi, sedangkan PK lainnya hanya menunggu hasilnya.

Hasil perhitungan di atas merupakan nilai dukungan semua PK terhadap alternatif tertentu pada setiap kriteria. Agregasi dilakukan lagi dengan mengelompokkan preferensi per alternatif. Contoh potongan program agregasi menggunakan operator *near OWA* ialah sebagai berikut:

```java
sub nearOWA()
  taksikan pembagian
  OWA1A = kolom1selangkolom2/kolom3selangkolom2
  OWA2A = kolom1selangkolom1/kolom3selangkolom2
  OWA1B = kolom1selangkolom2/kolom3selangkolom2
  OWA2B = kolom1selangkolom2/kolom3selangkolom1

  'ubah hasil pembagian menjadi bilangan TFN
  kolom1 = OWA1A
  kolom2 = OWA1B
  kolom3 = OWA2A
end sub
```

Hasil dari proses agregasi dengan mengelompokkan preferensi per alternatif ini berupa nilai preferensi untuk setiap alternatif, namun masih berbentuk TFN. Untuk memperoleh hasil akhir, nilai dalam bentuk TFN ini harus diubah menjadi label kembali dengan menggunakan metode *similarity*, sehingga akan memberikan hasil akhir misalnya VLP MD VHD
yang berarti alternatif pertama bernilai VLP, alternatif kedua bernilai MD dan alternatif ketiga bernilai VHD.

Proses transformasi dari bentuk label menjadi bentuk TFN dan menjadi label kombinasi ini sedikit tidak efisien dalam hal kompleksitas waktu perhitungan dan keakuratan hasil (Minimin et al., 1997).

Verifikasi dan Validasi
Verifikasi dan validasi dilakukan dengan membandingkan keluaran yang dihasilkan sistem dengan keluaran perhitungan yang dilakukan secara manual.

a. Pengujian dan Keluaran Sistem Pada Metode Fuzzy Delphi
Pengujian dilakukan dengan mengangkat topik permasalahan: sebuah perusahaan di Indonesia yang bergerak dalam berbagai bidang tertutup pada sektor agroindustri di Indonesia, oleh karena itu, perusahaan ini ingin meneliti tipe agroindustri yang memiliki prospek cerah jika dikembangkan. Dalam kasus ini, terdapat empat PK yang terdiri dari: manajer pengembangan bisnis, manajer marketing, pakar agroindustri, dan pakar dalam hal business development. Dari proses brainstorming diperoleh 16 alternatif dan tiga kriteria. Keenam belas alternatif dan bobot masing-masing alternatif yang diberikan oleh administrasi berdasarkan kesepakatan para PK pada waktu proses brainstorming, yaitu:

1. industri produk susu : HI
2. industri gula tebu : LO
3. industri pengolahan ikan : VH
4. industri pengolahan beras : VL
5. industri kelapa sawit : HI
6. industri peternakan hewan : MO
7. industri perkebunan karet : CN
8. industri biji mete : LO
9. perkebunan teh : MO
10. industri ikan tuna : LO
11. industri minyak sayur : MO
12. industri udang : MO
13. industri tembakau : LO
14. industri kopi : VL
15. industri coklat : CN
16. industri kayu : HI

Ketiga kriteria dengan bobot masing-masing sama dengan Certainly Prospective atau CP (karena semua kriteria ini memiliki level kepentingan yang sama) yaitu:

1. teknologi dan mesin
2. keuntungan dan produktivitas

3. pemasaran
Dari data di atas terlihat bahwa jumlah alternatif lebih dari 15 sedangkan jumlah kriteria kurang dari 15, maka seleksi awal pertama dilakukan terhadap alternatif, dengan tujuan untuk memiliki alternatif yang akan ditindaklanjuti.

Nilai preferensi yang diberikan masing-masing PK terhadap alternatif, dapat dilihat pada Tabel 5 berikut:

<table>
<thead>
<tr>
<th>Tabel 5. Nilai preferensi PK ronde ke-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmentation</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Catatan: PK 1: Manajer pengembangan bisnis
PK 2: Manajer marketing
PK 3: Pakar agroindustri
PK 4: Pakar dalam hal business development

Sistem web chat memberikan hasil agregasi preferensi dari masing-masing PK (rataan) pada ronde ke-1 seperti pada Tabel 6 berikut:

<table>
<thead>
<tr>
<th>Tabel 6. Hasil agregasi preferensi ronde ke-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmentation</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
Nilai preferensi pada ronde ke-1 belum dapat ditentukan kekonvergenannya, oleh karena itu para PK harus memberikan preferensinya kembali (Tabel 7).

<table>
<thead>
<tr>
<th>Alternatif</th>
<th>PK 1</th>
<th>PK 2</th>
<th>PK 3</th>
<th>PK 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VH</td>
<td>HI</td>
<td>HI</td>
<td>VH</td>
</tr>
<tr>
<td>2</td>
<td>MO</td>
<td>MO</td>
<td>HI</td>
<td>LO</td>
</tr>
<tr>
<td>3</td>
<td>VH</td>
<td>HI</td>
<td>MO</td>
<td>VH</td>
</tr>
<tr>
<td>4</td>
<td>LO</td>
<td>MO</td>
<td>MO</td>
<td>VL</td>
</tr>
<tr>
<td>5</td>
<td>VH</td>
<td>HI</td>
<td>VH</td>
<td>HI</td>
</tr>
<tr>
<td>6</td>
<td>LO</td>
<td>LO</td>
<td>LO</td>
<td>MO</td>
</tr>
<tr>
<td>7</td>
<td>LO</td>
<td>LO</td>
<td>VL</td>
<td>LO</td>
</tr>
<tr>
<td>8</td>
<td>HI</td>
<td>MO</td>
<td>VL</td>
<td>MO</td>
</tr>
<tr>
<td>9</td>
<td>VL</td>
<td>LO</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>10</td>
<td>HI</td>
<td>MO</td>
<td>VH</td>
<td>HI</td>
</tr>
<tr>
<td>11</td>
<td>VL</td>
<td>LO</td>
<td>LO</td>
<td>VL</td>
</tr>
<tr>
<td>12</td>
<td>LO</td>
<td>LO</td>
<td>LO</td>
<td>VL</td>
</tr>
<tr>
<td>13</td>
<td>MO</td>
<td>MO</td>
<td>MO</td>
<td>VL</td>
</tr>
<tr>
<td>14</td>
<td>VL</td>
<td>LO</td>
<td>LO</td>
<td>MO</td>
</tr>
<tr>
<td>15</td>
<td>MO</td>
<td>VL</td>
<td>VL</td>
<td>MO</td>
</tr>
<tr>
<td>16</td>
<td>VH</td>
<td>HI</td>
<td>HI</td>
<td>LO</td>
</tr>
</tbody>
</table>

Hasil agregasi preferensi terhadap setiap alternatif, dari masing-masing PK (rataan) pada ronde ke-2 dapat dilihat pada Tabel 8 berikut:

<table>
<thead>
<tr>
<th>Alternatif</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HI</td>
</tr>
<tr>
<td>2</td>
<td>LO</td>
</tr>
<tr>
<td>3</td>
<td>HI</td>
</tr>
<tr>
<td>4</td>
<td>LO</td>
</tr>
<tr>
<td>5</td>
<td>HI</td>
</tr>
<tr>
<td>6</td>
<td>MO</td>
</tr>
<tr>
<td>7</td>
<td>CN</td>
</tr>
<tr>
<td>8</td>
<td>LO</td>
</tr>
<tr>
<td>9</td>
<td>LO</td>
</tr>
<tr>
<td>10</td>
<td>LO</td>
</tr>
<tr>
<td>11</td>
<td>LO</td>
</tr>
<tr>
<td>12</td>
<td>LO</td>
</tr>
<tr>
<td>13</td>
<td>LO</td>
</tr>
<tr>
<td>14</td>
<td>LO</td>
</tr>
<tr>
<td>15</td>
<td>CN</td>
</tr>
<tr>
<td>16</td>
<td>HI</td>
</tr>
</tbody>
</table>

Dari hasil agregasi pada ronde ke-2 di atas yang dibandingkan dengan hasil agregasi ronde ke-1 (Tabel 6), terlihat bahwa alternatif ke-9 dan alternatif ke-12 belum konvergen (rataan ronde ke-1 ≠ rataan ronde ke-2). Oleh karena itu, pemberian preferensi terhadap alternatif ke-9 dan alternatif ke-12 diulang kembali (Tabel 9).

<table>
<thead>
<tr>
<th>Alternatif</th>
<th>PK 1</th>
<th>PK 2</th>
<th>PK 3</th>
<th>PK 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>VL</td>
<td>LO</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>12</td>
<td>LO</td>
<td>LO</td>
<td>LO</td>
<td>CN</td>
</tr>
</tbody>
</table>

Hasil agregasi preferensi terhadap alternatif-alternatif yang belum konvergen, dari masing-masing PK (rataan) pada ronde ke-3 dapat dilihat pada Tabel 10 berikut:

<table>
<thead>
<tr>
<th>Alternatif</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>LO</td>
</tr>
<tr>
<td>12</td>
<td>LO</td>
</tr>
</tbody>
</table>

Dari hasil agregasi pada ronde ke-3 di atas terlihat bahwa alternatif ke-9 dan alternatif ke-12 telah konvergen (rataan ronde ke-2 = rataan ronde ke-3). Sehingga hasil akhirnya dapat dilihat pada Tabel 11.

<table>
<thead>
<tr>
<th>Alternatif</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HI</td>
</tr>
<tr>
<td>2</td>
<td>LO</td>
</tr>
<tr>
<td>3</td>
<td>VH</td>
</tr>
<tr>
<td>4</td>
<td>VL</td>
</tr>
<tr>
<td>5</td>
<td>HI</td>
</tr>
<tr>
<td>6</td>
<td>MO</td>
</tr>
<tr>
<td>7</td>
<td>CN</td>
</tr>
<tr>
<td>8</td>
<td>LO</td>
</tr>
<tr>
<td>9</td>
<td>LO</td>
</tr>
<tr>
<td>10</td>
<td>LO</td>
</tr>
<tr>
<td>11</td>
<td>LO</td>
</tr>
<tr>
<td>12</td>
<td>LO</td>
</tr>
<tr>
<td>13</td>
<td>LO</td>
</tr>
<tr>
<td>14</td>
<td>VL</td>
</tr>
<tr>
<td>15</td>
<td>CN</td>
</tr>
<tr>
<td>16</td>
<td>HI</td>
</tr>
</tbody>
</table>
Dari hasil akhir tersebut, alternatif yang akan ditindaklanjuti adalah alternatif yang memiliki nilai rataan minimal High (HI), yaitu alternatif 1, 3, 5 dan 16 yang masing-masing berturut-turut adalah:
- industri produk susu
- industri pengolahan ikan
- industri kelapa sawit
- industri kayu

Hasil perhitungan sistem ini memiliki kesamaan dengan hasil perhitungan manual.

b. Pengujian dan Keluaran Sistem Pada Metode Label Linguistik
Setelah alternatif yang akan ditindaklanjuti diperoleh melalui seleksi awal, maka para PK harus memberikan preferensinya kembali untuk menentukan alternatif yang terbaik. Para PK memberikan data matriks relasi pereferensi fuzzy untuk ketiga kriteria dan empat alternatif sebagai berikut:

a. kriteria ke-1:

\[PK_1 = \begin{pmatrix}
- & HP & VLP & VHP \\
HD & - & HP & VHP \\
VLD & HP & - & - \\
VHD & HP & - & - \\
\end{pmatrix} \]

\[PK_2 = \begin{pmatrix}
- & HP & MP & HP \\
HD & - & LP & VLP \\
MD & LD & - & HP \\
HD & VLD & - & - \\
\end{pmatrix} \]

\[PK_3 = \begin{pmatrix}
- & MP & HP & HP \\
MD & - & LD & HP \\
HD & LP & - & MP \\
HD & HD & MD & - \\
\end{pmatrix} \]

\[PK_4 = \begin{pmatrix}
- & VLD & MP & DP \\
VLP & - & VLP & HP \\
MD & VLD & - & LP \\
DD & HD & LD & - \\
\end{pmatrix} \]

c. kriteria ke-2:

\[PK_1 = \begin{pmatrix}
- & HD & MD & HP \\
HP & - & LD & HP \\
MP & LP & - & HP \\
HD & HD & HD & - \\
\end{pmatrix} \]

\[PK_2 = \begin{pmatrix}
- & HD & VHD & AS \\
HP & - & HD & HD \\
VHP & HP & - & HP \\
AS & HP & HD & - \\
\end{pmatrix} \]

\[PK_3 = \begin{pmatrix}
- & VHP & VHD & HP \\
VHD & - & HD & HD \\
VHP & HP & - & VHD \\
HD & HP & VHP & - \\
\end{pmatrix} \]

\[PK_4 = \begin{pmatrix}
- & DP & HP & VLD \\
DD & - & MD & DP \\
HD & MP & - & DP \\
VLP & DD & DD & - \\
\end{pmatrix} \]

c. kriteria ke-3:

\[PK_1 = \begin{pmatrix}
- & AS & HD & HP \\
AS & - & VLD & VHP \\
HP & VLP & - & VHP \\
HD & VHD & VHD & - \\
\end{pmatrix} \]

\[PK_2 = \begin{pmatrix}
- & LD & HP & HD \\
LP & - & MD & MD \\
HP & MP & - & MP \\
HP & MP & MD & - \\
\end{pmatrix} \]

\[PK_3 = \begin{pmatrix}
- & HD & HD & HD \\
HP & - & HP & HP \\
HP & HD & - & HP \\
HP & HD & HD & - \\
\end{pmatrix} \]

\[PK_4 = \begin{pmatrix}
- & DP & DP & DP \\
DD & - & VLP & DP \\
DD & VLD & - & MP \\
DD & DD & MD & - \\
\end{pmatrix} \]

Untuk memudahkan penilaian alternatif/kriteria, para PK cukup mengisi sel
pada segitiga atas/bawah dari matriks di atas. Sedangkan nilai sel segitiga atas/bawah penilaiananya dihitung dengan penentuan nilai seperti pada Tabel 2.

Proses agregasi dilakukan pada beberapa nilai \(\alpha \), dimana nilai \(\alpha \) terletak di \(0.0 \leq \alpha < 1.0 \). Hasil agregasi pada beberapa nilai \(\alpha \) ditunjukkan pada Lampiran 7.

Dari hasil ini terlihat, bahwa PK telah puas pada \(\alpha=0.7 \), sebab solusi telah berada pada kondisi stabil, sehingga dalam kasus peminahan tipe perusahaan agroindustri terbaik untuk dikembangkan memberikan kumpulan solusi \{VMLP/s1, MP/s2, VLP/s3, LD/s4\}, yang artinya alternatif 1 memiliki nilai VLP, alternatif 2 memiliki nilai MP, alternatif 3 memiliki nilai VLP dan alternatif 4 memiliki nilai LD. Dengan demikian, alternatif tipe perusahaan agroindustri terbaik untuk dikembangkan adalah alternatif ke-2 yaitu industri pengolahan ikan yang lebih disukai dibanding alternatif lainnya pada tingkat sedang.

Perhitungan secara manual dengan data yang sama, juga memberikan hasil akhir VLD AS HP VLD. Hasil akhir dari perhitungan manual ini menunjukkan kesamaan dengan hasil perhitungan sistem.

Pengujian juga dilakukan dengan jumlah PK dan alternatif yang berlainan. Data serta hasil ditunjukkan pada Lampiran 8.

Kinerja Sistem

Kinerja sistem secara keseluruhan dipengaruhi oleh jaringan yang digunakan. Kasus koneksi terburuk terjadi ketika beberapa aplikasi dijalankan dan mengakses data dari jaringan pada komputer yang sama. Selain dipengaruhi oleh jaringan, kinerja sistem juga dipengaruhi oleh kemampuan perangkat keras yang dimiliki oleh server.

Kinerja server dalam melakukan perhitungan pada metode agregasi dipengaruhi oleh jumlah PK, jumlah alternatif dan jumlah kriteria.

Komplesksitas Sistem

Sistem yang dibangun mempunyai kompleksitas \(O(n) \), dengan \(n \) adalah banyaknya \(client \) yang on line. Komplesksitas ini dicapai ketika tidak ada proses perhitungan dengan mekanisme pengambilan keputusan.

Komplesksitas sistem ketika dilaksanakan proses pengambilan keputusan sangat tergantung kepada metode yang digunakan. Metode fuzzy Delphi mempunyai kompleksitas \(O(c \times k) \) untuk seleksi awal kriteria dimana \(c \) adalah banyaknya kriteria, \(k \) adalah banyaknya PK, dan memiliki kompleksitas \(O(a \times k) \) untuk seleksi awal alternatif, dimana \(a \) adalah banyaknya alternatif dan \(k \) adalah banyaknya PK. Metode label linguistik mempunyai kompleksitas \(O(p^2) \), dimana \(p = k \times a \times c \) dengan \(k \) adalah banyaknya PK, \(a \) banyaknya alternatif dan \(c \) banyaknya kriteria.

Kelebihan Sistem

1. Memudahkan PK dalam memecahkan suatu permasalahan.
2. Mendukung multiplatform dalam hal perangkat lunak, namun browser dependent, sebab end user tidak memiliki ketergantungan terhadap sistem operasi (multiplatform), dan browser yang digunakan dapat menginterpretasikan script HTML yang dibangkitkan oleh server (browser dependent).

Kekurangan Sistem

1. Jika pada waktu melakukan perhitungan preferensi koneksi seorang PK mengalami kegagalan atau terputus, maka proses perhitungan tidak dapat dilanjutkan, proses harus dimulai dari awal kembali, sebab protocol HTTP memiliki sifat connectionless, sehingga tidak terdapat mekanisme yang mengontrol koneksi client dengan server. Selain itu tidak terdapat history file yang digunakan untuk menyimpan nilai preferensi sebelum seorang PK mengalami kegagalan dalam koneksi atau putus koneksiannya.
2. Pada saat dilaksanakan proses penilaian yang menggunakan metode tertentu, PK hanya boleh mengirimkan pesan yang merupakan penilaian terhadap kriteria/alternatif tertentu.
3. Keamanan (security) masih kurang, sebab tidak ada mekanisme yang mengecek login administrator yang terdaftar dalam database apakah sudah dipakai atau belum, sehingga terdapat kemungkinan ada seorang user yang menggunakan username dan password administrator yang terdaftar dalam database, dimana sebenarnya user tersebut tidak memiliki hak akses sebagai administrator.

Strategi Implementasi

Pemakaian sistem dalam organisasi/perusahaan dilakukan dengan memperhatikan beberapa hal sebagai berikut:
1. Administrator yang memandu proses pengambilan keputusan mengerti alur kerja sistem, fasilitas sistem, serta perintah-perintah yang digunakan dalam sistem.

2. PK telah mengerti permasalahan yang akan dipecahkan, metode yang digunakan, cara penilaian dan tata cara berkomunikasi selama pengambilan keputusan dilaksanakan. Tujuannya agar selama proses penilaian berlangsung PK tidak mengalami kesulitan.

Sistem dapat dipasang dalam intranet organisasi/perusahaan dengan menempatkan sistem (web dan database) dalam server yang menggunakan sistem operasi Windows NT 4.0 dan web server Internet Information Server (IIS), dan Microsoft SQL Server sedangkan client harus memiliki browser versi 4.0 ke atas yang mendukung script Active Server Pages (ASP).

Sistem yang digunakan untuk pemakaian lebih haas dapat ditempatkan pada server yang terhubung ke internet seperti pada Internet Service Provider (ISP), sehingga setiap client yang memiliki koneksi ke internet dapat memanfaatkan sistem ini.

KESIMPULAN DAN SARAN

Kesimpulan
Web chat dirancang dengan suatu mekanisme pengambilan keputusan kelompok. Aplikasi bersifat multiphatform dalam hal perangkat lunak namun bersifat browser dependent, sehingga user tidak memiliki ketergantungan terhadap sistem operasi (multiphatform), dan browser yang digunakan harus dapat menginterpretasikan script HTML yang dibangkitkan oleh server (browser dependent). Pemeliharaan dan update sistem mudah dilakukan.

Aplikasi cukup di-install pada server dari suatu situs web, client yang terhubung ke jaringan dapat memanfaatkan program chat tersebut dengan cara mengunjungi situs web, sehingga tidak perlu dilakukan instalasi program di client.

Sistem memiliki mekanisme pengambilan keputusan kelompok yang menggunakan metode fuzzy Delphi dan metode label linguistik. Metode yang terintegrasi memberikan keuntungan bagi PK, antara lain, PK tidak perlu bertemu muka pada suatu ruangan tertentu jika ingin melakukan proses pengambilan keputusan, selain itu juga dapat mengurangi kelemanah dalam diskusi tatap muka dan proses agregasi yang transparan.

Saran
Proses perhitungan untuk mendapatkan suatu solusi dilakukan jika semua PK telah memberikan preferensi terhadap suatu alternatif, apabila ada PK yang mengalami gangguan koneksi, maka proses perhitungan tidak dapat dilanjutkan, sebab protocol HTTP memiliki sifat connectionless, sehingga tidak terdapat mekanisme yang mengontrol koneksi client dan server. Oleh karena itu diharapkan di masa mendatang hal ini dapat diantisipasi, sehingga proses perhitungan tetap bisa dilakukan.

Perlu ditambahkan mekanisme keamanan yang dapat memeriksa apakah username dan password yang terdaftar dalam database telah digunakan atau belum, hal ini dilakukan untuk menghindari penyalahgunaan terhadap sistem.

Untuk masa mendatang mungkin dapat dikembangkan dan dilengkapi sarana video phone, dimana seorang PK yang sedang melakukan diskusi dapat terlihat oleh PK lainnya yang juga sedang berdiskusi, hal ini juga bermanfaat untuk menghindari muncullah orang-orang yang berniat menyalahgunakan sistem.

DAFTAR PUSTAKA

LAMPIRAN
Lampiran 1. Diagram Proses

Administrator

Login

Password sesuai ?

- menambah user
- menghapus user
- memasukkan, menghapus, mengubah alternatif dan kriteria
- maintenance

PK

Login

Password sesuai ?

ya

Brainstorming memilih kriteria dan alternatif

ya

alternatif lebih dari 15 ?

tidak

Metode FuzzyDelphi

Seleksi awal untuk mendapatkan kriteria dan/atau alternatif untuk ditindaklanjuti

Metode Label Linguistik

Input nilai preferensi

Agregasi nilai dari setiap standar kriteria (near-OWA)

Agregasi hasil menjadi solusi akhir (near-OWA)

Solusi dalam bentuk TFN diubah menjadi label menggunakan metode similarity

Tampilkan hasil ke user
Lampiran 2. Tampilan utama ruang PK

Linguistic - Chat

ICOI
GROUP DECISION MAKING TOOL

Web Chat ini dipenuhkan bagi penunjang kepuasan. Fasilitas yang terdapat di web chat ini adalah sebagai berikut:

1. Mencakup semua aspek yang memungkinkan dalam web chat ini
2. Sediakan row pemanfaatan untuk memberikan alternatif dan kriteria pada waktu yang tepat untuk suatu permasalahan
3. Memecahkan masalah dengan mempertahankan alternatif prosedur masalah

Sebagai referensi kewajiban
Lampiran 4. Tampilan ruang diskusi

Saranvå Disksusi Untuk Memilih Alternatif dan Kriteria

PK memberikan ide alternatif dan kriteria di sini

Active Users
pisaku

Kriteria

Alternatif
Lampiran 3. Tampilan input nama (alias) dan password

Anda dapat memperoleh solusi dari permasalahan yang anda hadapi saat ini melalui program chatting ini.

[Image of a welcome message and input fields for alias and password]
Lampiran 5. Tampilan untuk memberikan preferensi terhadap pasangan alternatif dan kriteria

Form untuk memberikan preferensi
Lampiran 6. Tampilan utama ruang administrator

RUANG ADMINISTRATOR

silahkan Administrator, masukkan nama dan password Anda

username
password

Login
Lampiran 7. Hasil agregasi pada beberapa nilai \(\alpha \) untuk kasus pemilihan tipe agroindustri yang memiliki prospek cerah jika dikembangkan.
Lampiran 8. Data dan hasil pengujian menggunakan metode label linguistik untuk kasus pemilihan tipe agroindustri yang memiliki prospek cerah jika dikembangkan

<table>
<thead>
<tr>
<th>PK</th>
<th>Kriteria ke-1</th>
<th>Kriteria ke-2</th>
<th>Kriteria ke-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data I (3 Alternatif)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>HD,MD HP,VHP MP,VHD</td>
<td>VHD,VHD VHP,MP VHP,MD</td>
<td>DP,DP DD,VLP DD,VLD</td>
</tr>
<tr>
<td>2</td>
<td>DD,VHD DP,MP VHP,MD</td>
<td>VHD,HD VHP,MP HP,MD</td>
<td>DP,DP DD,AS DD,AS</td>
</tr>
<tr>
<td>3</td>
<td>HD,HD HP,HP HP,HD</td>
<td>HD,HD HP,LP HP,LD</td>
<td>HP,HP HD,VLP HD,VLD</td>
</tr>
<tr>
<td></td>
<td>Data II (4 Alternatif)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LP,HD,LD,HD HP,HP HP,HP,MD</td>
<td>MP,MD,MD MD,HD,VDH MP,HP,AS HP,MD VHP,AS</td>
<td>AS,HP,HP AS,HP,HP HD,HD LP HD,HD,ID</td>
</tr>
<tr>
<td>3</td>
<td>MP,HD,MD MD,DD,VDH HP,DP,MP MP,MP MP,HP,HD</td>
<td>MP,HD,HP MD,VDH HP,HP,HP HP,HP HD</td>
<td>AS,MP,MP AS,MP,MP MD,MD LP HD,HD,ID</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PK</th>
<th>Kriteria ke-1</th>
<th>Kriteria ke-2</th>
<th>Kriteria ke-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data I (3 Alternatif)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>VHD,HD VHP,HP,HP,HD</td>
<td>DD,VDH DP,HP VHP,HD</td>
<td>DP,DP DD,LP DD,LD</td>
</tr>
<tr>
<td>2</td>
<td>HD,HD HP,HP,HP,HD</td>
<td>VHD,HD VHP,MP HP,MD</td>
<td>DP,DP DD,AS VHP VLD</td>
</tr>
<tr>
<td>3</td>
<td>VHD,HD VHP,MP HP,MD</td>
<td>DD,VDH DP,HP VHP,HD</td>
<td>DP,DP DD,AS DD,AS</td>
</tr>
<tr>
<td>4</td>
<td>VHD,HD VHP,HP,HP,HD</td>
<td>VHD,HD VHP,VLP HP,VDL</td>
<td>DP,DP DD,LP DD,LD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PK</th>
<th>Kriteria ke-1</th>
<th>Kriteria ke-2</th>
<th>Kriteria ke-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data I (3 Alternatif)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keluaran Sistem</td>
<td>Perhitungan Manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data I (3 Alternatif)</td>
<td>VLP LP VLD</td>
<td>VLP LP VLD</td>
</tr>
<tr>
<td></td>
<td>Data I (4 Alternatif)</td>
<td>LP LP VHP MP</td>
<td>LP LP VHP MP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PK</th>
<th>Kriteria ke-1</th>
<th>Kriteria ke-2</th>
<th>Kriteria ke-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data I (3 Alternatif)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keluaran Sistem</td>
<td>Perhitungan Manual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data I (3 Alternatif)</td>
<td>MP VLP MD</td>
<td>MP VLP MD</td>
</tr>
</tbody>
</table>

Keterangan:
P: Pengambil Keputusan