STATUS RIZOBIIUM DAN CENDAWAN MIKORIZA ARBUSKULA (CMA)
PADA KEDAWUNG (*Parkia timoriana* (DC.) Merr.)
DI TAMAN NASIONAL MERU BETIRI JAWA TIMUR

Oleh :
AGUS SUKITO
E 03497028

JURUSAN KONSERVASI SUMBERDAYA HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2003
Sesungguhnya suatu umat yang selalu terbua dalam kenikmatan, terlena oleh kemewahan, tenggelam dalam kemilau harta benda dan tertipu oleh pesona bunyi nada dunia, serta kekerasan dan kekerasan telah menghalangi jalan kembali kebahagiaan.

Sungguh, Surga itu terlalu mahal untuk kau dapatkan dengan karya-karya biasa.

Karena dosa dan kesalahan yang setia mengikuti.
RINGKASAN

Pemanfaatan Kedawung, sebagai simpulisia obat terutama pada bagian biji. Biji Kedawung berkhasiat untuk mengobati penyakit nyeri haid, kholera, diare, masuk angin, penguat lambung dan luka, serta mengandung senyawa alkaloid, flavonoid, saponin, steroid, giukosa dan garam-garam alkali.

Rizobium merupakan bentuk asosiasi antara bakteri bintil akar dengan akar legum. Bentuk asosiasi ini ditampilkan secara fisik dalam bentuk nodul yang dapat dilihat oleh mata telanjang. Di dalam bintil akar tersebut mikroba ini mampu secara kimia menambah nitrogen bebas (N₂) dari atmosfer dan merubahnya menjadi amonia (NH₃) yang dapat dimanfaatkan oleh tanaman inang (host) untuk pertumbuhannya. Sedangkan mikroba sendiri memperoleh karbohidrat sebagai sumber energi. Keberadaan rizobium pada Kedawung sebagai spesies yang termasuk kelompok tanaman legum sampai saat ini belum diketahui.

Cendawan Mikoriza Arbuskula (CMA) adalah salah satu tipe cendawan pembentuk mikoriza yang akhir-akhir ini cukup populer dan mendapat perhatian dari para ahli lingkungan dan biologis, sebagai salah satu alternatif teknologi pupuk biologis untuk membantu pertumbuhan, meningkatkan produktivitas, dan kualitas tanaman hutan terutama yang ditanam pada lahan-lahan marginal yang kurang subur. CMA memiliki peran yang cukup penting, yaitu: memperbaiki nutrisi tanaman dan meningkatkan pertumbuhan, sebagai pelindung hayati (*bio-protector*), meningkatkan resistensi tanaman terhadap kekeringan, terlilit dalam siklus bio-geo-kimia, sinergis dengan mikroorganisme lain, dan mempertahankan keanekaragaman tumbuhan (Setiadi, 1999).
Tujuan dilakukan penelitian ini adalah untuk mengetahui status rizosbium dan CMA pada Kedawung (*Parkea timoriana*), dan untuk mengetahui keaneakanagaman CMA di rizosfer Kedawung yang tumbuh di habitat alam Taman Nasional Meru Betiri Jawa Timur.

Bintil akar sebagai petunjuk adanya rizosbium tidak dijumpai pada Kedawung, baik pada tingkat pohon maupun tingkat anak.

Pengamatan status CMA pada Kedawung menggunakan sampel akar dan tanah komposit langsung dan lapangan untuk dibuat preparat, dan melakukan metode *trapping* dengan menumbuhkan tanaman inang *Pueraria javanica* pada sampel tanah komposit dari lapangan.

Persentase infeksi akar yang terjadi pada tiap-tiap sampel pohon Kedawung di alam sangat bervariasi. Persentase infeksi yang tertinggi adalah pada P41 (pohon Kedawung bernomor 41) dengan nilai persentase sebesar 76.74%. Sedangkan nilai persentase yang terendah terdapat pada P26, P33 dan P100, yaitu 0.

Nilai infeksi yang terbesar terdapat pada A31 (anakan pada nomor pohon 31) sebesar 65.74%. Sedangkan nilai persentase terkecil dimiliki oleh A41 dan A52 sebesar 0.

Pemeriksaan infeksi CMA terhadap pohon Kedawung hasil *trapping* diperoleh data jumlah infeksi tertinggi pada P55 (pohon Kedawung dengan nomor pohon 55) sebesar 100%. Sedangkan jumlah terkecil terdapat pada P52 sebesar 2.56%.

Jumlah infeksi terbesar pada sampel anakan hasil *trapping* terdapat pada A52 sebesar 92.09%. Sedangkan jumlah infeksi terkecil terdapat pada A14 sebesar 4.26%.

Perhitungan persentase infeksi CMA di dalam akar menunjukkan nilai tertinggi pada P55 hasil *trapping* dengan nilai sebesar 100%, dan nilai terendah pada P26, P33 dan P100 dengan nilai 0 tanpa melalui *trapping*.

Jumlah spora yang terbanyak terdapat pada P55 sebesar 51 spora/50 gram contoh tanah.

Sementara terdapat beberapa sampel yang tidak dijumpai spora, yaitu pada P2, P14, P26, P29, P30, P33, P41, P51, P52, P54, P99, P100, P102 dan P103.

Hasil pengamatan memperlihatkan bahwa jumlah spora terbanyak yaitu pada A29 (59 spora/50 gram contoh tanah) dan P55 (51 spora/50 gram contoh tanah). A29 memiliki solum tanah yang dalam, dengan kondisi vegetasi non pohon berupa bangkal, tepusan, bambu dan semak. Sedangkan P55 memiliki kondisi tanah yang kering dengan vegetasi semak, rotan dan rumput.
Komparasi antara data infeksi CMA dan populasi spora diperoleh data menunjukkan bahwa tanaman dengan jumlah spora terbesar, yaitu pada A29, ternyata tidak berarti persentase infeksi akarnya terbesar pula. A29 memiliki persentase infeksi akar sebesar 89.29%. Persentase infeksi akar tertinggi dimiliki oleh P55 (100%), meskipun sampel ini hanya memiliki jumlah spora 51 spora/50 gram contoh tanah.

STATUS RIZOBIIUM DAN CENDAWAN MIKORIZA ARBUSKULA (CMA)
PADA KEDAWUNG (Parkia timoriana (DC.) Merr.)
DI TAMAN NASIONAL MERU BETIRI JAWA TIMUR

SKRIPSI
Sebagai salah satu syarat untuk
memperoleh gelar Sarjana Kehutanan
di Fakultas Kehutanan Institut Pertanian Bogor

Oleh:
AGUS SUKITO
E 03497028

JURUSAN KONSERVASI SUMBERDAYA HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2003
Nama Mahasiswa : Agus Sukito
Nomor Pokok : E 03497028

Menyetujui

Dosen Pembimbing I

Ir. Ervizal A.M. Zulud, MS
Tanggal :

Dosen Pembimbing II

Dr. Ir. Indika Mansur, MForSc
Tanggal :

Mengetahui

Ketua Jurusan Konservasi Sumberdaya Hutan
Fakultas Kehutanan
Institut Pertanian Bogor

Dr. Ir. Baksos Sosokandi, MScF
Tanggal : 2 Juli 2003

Tanggal Kelulusan : 27 Mei 2003
RIWAYAT HIDUP

Penulis dilahirkan di Selatbaru, sebuah desa di tengah pulau Bengkalis, Propinsi Riau, pada tanggal 29 Agustus 1979, sebagai anak ke 9 dari 9 bersaudara keluarga Bapak Marjuni dan Ibu Marsiyah.

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan, penulis melakukan penelitian dan menyusun karya ilmiah dengan judul “Status Rizobium dan Cendawan Mikoriza Arbuskula (CMA) pada Kedawung (Parkia timoriana (DC.) Merr.) di Taman Nasional Meru Betiri Jawa Timur” di bawah bimbingan Ir. Ervizal A.M. Zuhud, MS dan Dr. Ir. Irdika Mansur, MforSc.
KATA PENGANTAR

Bismillahirrahmanirrahim

Alhamdulillahirrabbill’alamin. Sholawat dan salam semoga tercurah kepada Rasulullah SAW sang junjunan.

Dengan sepenuh rasa hormat dan bakti, penulis mengucapkan rasa terimakasih kepada kedua orang tuaku tercinta, atas segala kasih sayang, pengorbanan, serta lantunan do’a yang tak pernah henti dari Emak dan Bapak yang menyertai Ananda. Semoga Allah SWT membalsanya dengan kenikmatan surga yang tiada tara.

Buat istriku tercinta, sang penggenap separuh Din dan pelengkap rusuk, menjadikan penulis benar-benar menjadi manusia seutuhnya. Terimakasih atas kasih sayang, pengorbanan, keta’atan dan do’anya. Semoga tetap menjadi istri yang sholehah.

Kepada yang terhormat, Bapak Ir. Ervizal A.M. Zuhud, MS dan Bapak Dr. Ir. Irdika Mansur, MForSc (semogga Allah SWT senantiasa mencurahkan Rahmat dan Kasih sayangNya) selaku dosen-dosen pembimbingku. Terima kasih atas segala ketelatenan, kesabaran, keikhlasan, kemudahan dan motivasinya kepada penulis, sehingga penulis dapat menyelesaikan studi dengan baik. Semoga Allah SWT membalas segala kebaikan Bapak dengan sebaik-baik pembalasan.

Buat adik-adikku: Iwan (calon dokter), Herdi (calon Sarjana Kehutanan) dan Feby kecil. Jadilah selalu orang-orang yang berguna.

Buats Bapak Ir. Trisna Priadi, MSc sekeluarga, terimakasih atas didikan, bantuan dan segala peran sebagai pengganti orang tua penulis di rantau. Tidak ada kata yang dapat penulis ungkapkan, semoga Allah memperemukan kita di JannahNya.

Khusus, kepada Keluarga Besar Partai Keadilan dan Partai Keadilan Sejahtera, terimakasih atas pembelajaran berpolitik dan bernasyarat yang beretika dan bermoral.

Kepada yang telah berjasa: mbak Susan, mbak Faiz, mbak Ninin, mbak Desy, mbak Nana, mas Del, dan keluarga besar lub bioteknologi hutan.

Kepada semua orang yang telah memberikan bantuan kepada penulis yang tidak dapat penulis sebutkan satu persatu. Semoga Allah membalas dengan balasan yang lebih baik.

Semoga karya kecil ini mampu menambah cahaya di kegelapan, dan menuntun kepada kebesaran Sang Maha Pencipta. Amin.

Bogor, Mei 2003

Penulis
DAFTAR ISI

DAFTAR ISI .. i
DAFTAR TABEL ... iii
DAFTAR GAMBAR .. iv
DAFTAR LAMPIRAN ... v

I. PENDAHULUAN
 A. Latar Belakang .. 1
 B. Tujuan ... 2

II. TINJAUAN PUSTAKA
 A. Kedawung (Parkia timoriama(DC.) Merr.) .. 3
 B. Rizobium ... 4
 C. Cendawan Mikoriza Arbuskula (CMA). .. 5

III. BAHAN DAN METODE
 A. Waktu dan Lokasi Penelitian ... 8
 B. Alat dan Bahan .. 8
 C. Metode Penelitian ... 8
 1. Pengambilan Contoh ... 8
 2. Pengamatan di Laboratorium .. 9
 a. Isolasi Bakteri Bintil Akar ... 9
 b. Ekstraksi Spora dan Identifikasi CMA ... 9
 c. Observasi Kolonisasi CMA pada Akar ... 10
 d. Metode Trapping ... 11

IV. KONDISI UMUM LOKASI PENELITIAN
 A. Letak dan Luas .. 13
 B. Kondisi Tanah .. 13
 C. Kondisi Topografi ... 13
 D. Iklim .. 13
 E. Hidrologi .. 13
 F. Flora .. 14
 G. Fauna ... 14

V. HASIL DAN PEMBAHASAN
<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Status Bintil Akar pada Kedawung di Alam</td>
<td>15</td>
</tr>
<tr>
<td>B. Status CMA pada Kedawung</td>
<td>17</td>
</tr>
<tr>
<td>a. Infeksi CMA</td>
<td>17</td>
</tr>
<tr>
<td>b. Populasi CMA</td>
<td>19</td>
</tr>
<tr>
<td>c. Sebaran Genus CMA</td>
<td>20</td>
</tr>
<tr>
<td>VI. KESIMPULAN DAN SARAN</td>
<td>29</td>
</tr>
<tr>
<td>A. Kesimpulan</td>
<td>29</td>
</tr>
<tr>
<td>B. Saran</td>
<td>29</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>30</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td></td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>1.</td>
<td>Kandungan Kimia Kedawung</td>
</tr>
<tr>
<td>2.</td>
<td>Status Bintil Akar Kedawung pada Tingkat Pohon</td>
</tr>
<tr>
<td>3.</td>
<td>Status Bintil Akar Kedawung pada Tingkat Anakan</td>
</tr>
<tr>
<td>4.</td>
<td>Persentase Infeksi CMA pada Akar Kedawung pada Tingkat Pohon di Alam</td>
</tr>
<tr>
<td>5.</td>
<td>Persentase Infeksi CMA pada Akar Kedawung pada Tingkat Anakan di Alam</td>
</tr>
<tr>
<td>6.</td>
<td>Persentase Infeksi CMA Hasil Trapping pada tingkat Pohon</td>
</tr>
<tr>
<td>7.</td>
<td>Persentase Infeksi CMA Hasil Trapping pada tingkat anak</td>
</tr>
<tr>
<td>8.</td>
<td>Jumlah Spora CMA Hasil Trapping pada tingkat Pohon</td>
</tr>
<tr>
<td>9.</td>
<td>Jumlah Spora CMA Hasil Trapping pada tingkat Anakan</td>
</tr>
<tr>
<td>10.</td>
<td>Sebaran Jumlah Genus Spora CMA Hasil Trapping pada Tingkat Pohon</td>
</tr>
<tr>
<td>11.</td>
<td>Sebaran Jumlah Genus Spora CMA Hasil Trapping pada Tingkat Anakan</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bagan Alir Kegiatan Eksporasi Status CMA pada Kedawung</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Bagan Alir Ekstraksi Spora dengan Teknik Tuang dan Saring</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Bagan Alir Kolonisasi CMA pada Akar Kedawung</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>Model Inokulasi Sampel Tanah pada Teknik Trapping</td>
<td>12</td>
</tr>
<tr>
<td>5.</td>
<td>Spora di dalam Penampang Akar (100 X)</td>
<td>22</td>
</tr>
<tr>
<td>6.</td>
<td>Hifa Internal di dalam Penampang Akar (100 X)</td>
<td>23</td>
</tr>
<tr>
<td>7.</td>
<td>Vesikula di dalam Penampang Akar (100 X)</td>
<td>23</td>
</tr>
<tr>
<td>8.</td>
<td>Spora Genus Acaulospora (100 X)</td>
<td>24</td>
</tr>
<tr>
<td>9.</td>
<td>Spora Genus Acaulospora (40 X)</td>
<td>24</td>
</tr>
<tr>
<td>10.</td>
<td>Spora Genus Acaulospora (40 X)</td>
<td>25</td>
</tr>
<tr>
<td>11.</td>
<td>Spora Genus Gigaspora (40 X)</td>
<td>25</td>
</tr>
<tr>
<td>12.</td>
<td>Spora Genus Gigaspora (100 X)</td>
<td>26</td>
</tr>
<tr>
<td>13.</td>
<td>Spora Genus Glomus (100 X)</td>
<td>26</td>
</tr>
<tr>
<td>14.</td>
<td>Spora Genus Glomus (100 X)</td>
<td>27</td>
</tr>
<tr>
<td>15.</td>
<td>Spora Genus Glomus (40 X)</td>
<td>27</td>
</tr>
<tr>
<td>16.</td>
<td>Spora Genus Glomus (100 X)</td>
<td>28</td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Keadaan Tanah dan Vegetasi Non Pohon di Sekitar Kedawung</td>
<td>34</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. Latar Belakang

Pemanfaatan Kedawung sebagai simplisia obat terutama pada bagian biji. Biji Kedawung berkhiasat untuk mengobati penyakit nyeri hati, kholera, diare, masuk angin, penuh lambung dan luka, serta mengandung senyawa alkaloid, flavonoid, saponin, steroid, glukosa dan garam-garam alkali.

Teknik budidaya yang dilakukan harus merupakan teknik yang tidak saja efektif, tetapi lebih murah dan berwawasan lingkungan. Maka aplikasi teknologi mikroba tanah berupa pemanfaatan pupuk biologis (biofertilizer) dari inokulan rizobium dan cendawan mikoriza arbuskula (CMA), merupakan alternatif strategi yang perlu dilakukan.

Kedawung termasuk famili Leguminosae yang pada umumnya dapat membentuk simbiosis dengan rizobium dan CMA. Namun demikian sampai saat ini pengkajian status simbiosis belum banyak dilakukan pada jenis-jenis Kedawung yang tumbuh di Taman Nasional Meru Betiri. Menurut Abroli (1990), bintil akar yang terbentuk hasil asosiasi rizobium dengan akar tanaman sekitar 90% pada tanaman legum dan sekitar 10% pada tanaman non-legum.

Rizobium merupakan bentuk asosiasi antara bakteri bintil akar dengan akar legum. Bentuk asosiasi ini ditampilkan secara fisik dalam bentuk nodul yang dapat dilihat oleh mata telanjang. Di dalam bintil akar tersebut mikroba ini mampu secara kimia menambah nitrogen bebas (*N₂*) dari atmosfer dan merubahnya menjadi amonia (*NH₃*) yang dapat dimanfaatkan oleh tanaman inang (*host*) untuk pertumbuhannya. Sedangkan mikroba sendiri memperoleh karbohidrat sebagai sumber energi.
Cendawan Mikoriza Arbukula (CMA) adalah salah satu tipe cendawan pembentuk mikoriza yang akhir-akhir ini cukup populer dan mendapat perhatian dari para ahli lingkungan dan biologis, sebagai salah satu alternatif teknologi pupuk biologis untuk membantu pertumbuhan, meningkatkan produktivitas, dan kualitas tanaman hutan terutama yang ditanam pada lahan-lahan marginal yang kurang subur. CMA memiliki peran yang cukup penting, yaitu: memperbaiki nutrisi tanaman dan meningkatkan pertumbuhan, sebagai pelindung hayati (bio-protection), meningkatkan resistensi tanaman terhadap kekeringan, terlibat dalam siklus bio-geo-kimia, sinergis dengan mikroorganisme lain, dan mempertahankan keanekaragaman tumbuhan (Setiadi, 1999).

Pengembangan teknologi pupuk biologis (biofertilizer) dengan menggunakan CMA dan rizobium dalam peningkatan kualitas pertumbuhan tanaman, memberikan peluang bagi dunia konservasi untuk dapat menanggulangi permasalahan kelangkaan terhadap spesies Kedawung. Oleh karena itu, upaya penggalian informasi berupa status CMA dan rizobium pada Kedawung, sangat penting untuk dilakukan.

B. Tujuan

Tujuan dilakukan penelitian ini adalah:

II. TINJAUAN PUSTAKA

A. Kedawung (*Parkia timoriana* (DC.) Merr.)

Berdasarkan taksonomi atau pengelompokanannya, kedawung memiliki susunan taksonomi sebagai berikut (Dephubun dan Fakultas Kehutanan, 2000):

- **Kingdom**: Plantae
- **Divisio**: Spermatophyta
- **Sub Divisio**: Angiospermae
- **Klas**: Dicotyledoneae
- **Sub Klas**: Rosidae
- **Ordo**: Fabales
- **Famili**: Fabaceae
- **Genus**: Parkia

Heyne (1987) menerangkan bahwa Kedawung merupakan pohon raksasa hutan (Bel. Woudreus) dengan tinggi bisa mencapai 50 m dan keliling batang 7,5 m, sering tinggi 40 m dengan diameter 2-3 m. Dephubun dan Fakultas Kehutanan (2000) menambahkan bahwa Kedawung memiliki batang berKayu, tegak, permukaan licin, bercabang di atas membentuk tajuk yang lebar dan membentuk payung, batang muda berwarna coklat dan setelah tua berwarna putih kotor. Daun majemuk menyirip ganda, tangkai daun berkelanjar, permukaan atas hijau mengkilat, beranak daun banyak. Bunga majemuk, berbunga pada akhir musim hujan, karangan bunganya berbentuk bongkol dengan kelompok bunga jantan di bagian pangkalnya, tangkai bunga panjang dan terkulai, polong panjang dan gepeng, warna coklat tua dan berKayu, kulit keras.

Menurut Soeef *et al.* (1998), kayu jenis *Parkia* menghasilkan kayu yang ringan sampai sedang dengan berat jenis 350-810 kg/cm³ dengan kadar air 15%. Warna kayu teras bermacam-macam, antara lain putih, kuning atau kuning pucat. Kayu teras memiliki warna yang tidak berbeda dengan kayu gubal. Tekstur agak kasar dan tidak rata, beraroma seperti bawang putih. Lingkaran pertumbuhan tidak
jelas, lapisan sempit marginal parenkim hanya tampak dengan lensa tangan. Pembuluh berukuran sedang hingga sangat besar, sebagian besar soliter, juga dalam radial kelipatan 2-3 (kadang-kadang lebih dari 4). Kayu jenis Parkia digunakan sebagai konstruksi bangunan, pertukangan, furnitur, perabot rumah tangga, molding, interior, peti kayu, korek api dan kertas.

Daunnya dapat digunakan sebagai obat (perut nyeri, mulas), bijinya dapat digunakan sebagai obat (nyeri haid atau akan bersalin, demam nefas, kolera, mulas, sakit perut, borok luka) dan kulitnya dapat digunakan sebagai obat kudis. Menurut Dephubun dan Fakultas Kehutanan (2000), Kedawung memiliki kandungan kimia yang dapat dilihat pada Tabel 1.

Tabel 1. Kandungan Kimia Kedawung

<table>
<thead>
<tr>
<th>No</th>
<th>Bagian Tumbuhan</th>
<th>Kandungan Kimia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Akar</td>
<td>Alkaloid, flavonoid, saponin dan steroid.</td>
</tr>
<tr>
<td>2.</td>
<td>Daun</td>
<td>Alkaloid, flavonoid, saponin dan steroid.</td>
</tr>
<tr>
<td>4.</td>
<td>Biji</td>
<td>Zat glikosa, zat damar, zat samak dan garam-garam alkali</td>
</tr>
</tbody>
</table>

B. Rizobium

Bakteri penambat nitrogen dapat dibedakan menjadi enam genus yaitu Rhizobium, Bradyrhizobium (Jordan, 1984), Azorhizobium (Dreyfus et al., 1988), Sinorhizobium (Chen et al., 1988), Mesorhizobium dan satu genus lain yang mempunyai karakteristik yang berbeda dari kelima genus lainnya (Young dan Haukka, 1996).

Karacterisasi dari bintil akar adalah warnanya yang merah kecoklatan yang disebabkan karena leghaemoglobin (Lb) yang merupakan keistimewaan pada bintil yang memfiksasi nitrogen. Leghaemoglobin merupakan suatu pigmen merah yang dikandung oleh bintil aktif untuk memfiksasi nitrogen (Atlas and Bartha, 1994). Lebih lanjut dijelaskan bahwa Lb berfungsi sebagai transpor elektron, menyediakan O2 bagi bakteroid untuk memproduksi ATP, tetapi dalam waktu yang sama melindungi sistem nitrogenase yang sensitif terhadap O2. Leghaemoglobin hanya terdapat pada bintil akar tanaman legum, tetapi tidak terdapat pada jenis tanaman lain.

C. Cendawan Mikoriza Arbuskula (CMA)

Istilah mikoriza pertama kali dipublikasikan oleh Frank (pada tahun 1885) pada suatu komposit antara jamur dengan organ akar dari Cupuliferae (Harley dan Smith, 1983). Menurut Setiadi (1992), mikoriza adalah suatu bentuk hubungan simbiosis mutualisme antara cendawan (myches) dengan perakaran (rhizas) tumbuhan tinggi. Dimana cendawan memberikan keuntungan kepada tanaman inang dan sebaliknya cendawan mendapatkan karbohidrat dari tanaman inang.

Cendawan mikoriza arbuskula termasuk ke dalam ordo Glomales, kelas Zygomycetes. Berdasarkan pada struktur vesikula dan atau arbuskula yang terbentuk, ordo Glomales terbagi menjadi

Dijelaskan lebih lanjut dalam INVAM (http://invam.caf.wvu.edu/myc_info/Taxonomy/Authors/Authors.htm) bahwa telah ditemukan dua famili tambahan, masing-masing mempunyai satu genus, yaitu famili Paraglomaceae dengan genus Paraglomus dan famili Archaeosporaceae dengan genus Archaeospora.

Beberapa manfaat yang dapat diperoleh inang dari adanya asosiasi mikoriza adalah meningkatkan penyerapan unsur hara, meningkatkan ketahanan terhadap kekeringan, tahan terhadap serangan patogen akar dan mikoriza dapat memperbaiki hormon dan zat pengatur tumbuh (Setiadi, 1987).

Infeksi CMA terjadi di dalam kortek akar, tidak di dalam endodermis atau batang, dan akar-akar yang terinfeksi tidak rusak. Intensitas infeksi CMA dipengaruhi oleh berbagai macam faktor, meliputi pemupukan dan nutrisi tanaman, pestisida, intensitas cahaya, musim, kelembaban tanah, pH, kepadatan inoculum dan tingkat kerentanan.

CMA merupakan cendawan yang penyebabannya sangat luas mulai dari daerah padang pasir, tropis, dan sub tropis (Haymann, 1982). Setiadi (1989) menambahkan bahwa CMA dapat dijumpai pada berbagai ekosistem yang meliputi hutan hujan rapat, lahan hutan terbuka, semak, savana, padang rumput, bukit pasir, dan semi gurun. Namun CMA jarang ditemukan dalam hutan temperate yang dikuasai oleh konifer dan areal yang amat basah seperti lahan padi sawah merupakan habitat yang kurang disukai.
III. BAHAN DAN METODE

A. Waktu dan Lokasi Penelitian

B. Alat dan Bahan

Sedangkan alat yang digunakan untuk pengambilan contoh tanah dan akar dari lapangan adalah: cangkul, plastik, dan spidol. Sedangkan alat untuk pengamatan di laboratorium adalah saringan spora (ukuran : 710 μm, 425 μm, 125 μm, dan 45μm), mikroskop, tabung reaksi, cawan petri, pipet, pipet mikro, gelas slide, cover slip, sentrifuge, tabung sentrifuge, gelas plastik, siring, dan scalpel.

B. Metode Penelitian

1. Pengambilan Contoh

Parameter yang dicatat dari setiap sampel tegakan Kedawung berupa status bintil akar Kedawung pada tingkat pohon dan semai di alam. Apabila terdapat bintil akar, maka diambil sebagai contoh untuk dilakukan isolasi bakteri zoobrium. Status bintil akar kemudian dicatat pada tally sheet.

Pengamatan terhadap keanekaragaman CMA dilakukan pada seluruh sampel pohon dan anakak Kedawung. Selanjutnya dilakukan pengambil akar dengan diameter 1 mm dan tanah komposit
dari bawah tegakan Kedawung hingga kedalaman 20 cm sebanyak 500 gram untuk dibawa ke laboratorium.

2. Pengamatan di Laboratorium
a. Isolasi Bakteri Bintil Akar (BBA)

Bintil akar kering yang digunakan adalah bintil akar yang ditemukan di lapangan pada akar Kedawung. Bintil akar tersebut direndam dalam air sutung selama 24 jam, lalu disterilisasi dengan pencelupan dalam ethanol 95% (v/v) selama 10 detik dan perendaman dalam H_2O_2 10% (v/v) selama 3 menit. Bintil kemudian dibilas dengan air sutung pada tabung steril sebanyak 5 kali, lalu dilumatkan dengan batang pengaduk dengan penambahan 1 ml NaCl 0.85% (v/v) (Widiastuti, 1998).

Suspensi dari bintil lalu digores pada agar cawan manitol ekstrak khamir (MEK) yang ditambahkan zat warna merah kongo 0.0025% dan diinkubasikan pada suhu kamar (28°-30°C) selama 10 hari. Setelah itu diamati bentuk koloni BBA yang terlihat.

Untuk penyimpanan, koloni yang terpisah dari agar cawan dipindahkan ke agar miring MEK tanpa penambahan zat warna, lalu diinkubasikan pada suhu kamar selama 10 hari dan selanjutnya disimpan pada suhu 4°C.

b. Ekstraksi Spora dan Identifikasi CMA

Kegiatan eksporasi status CMA secara keseluruhan dapat dilihat melalui bagan alir pada Gambar 1.

Gambar 1. Bagan alir kegiatan eksporasi status CMA pada tanaman Kedawung

Prosedur kerja dari teknik tuang dan saring ini pertama adalah mencampurkan contoh tanah sebanyak 50 gram dengan 500-1000 ml air, diaduk sampai merata dan selanjutnya didiamkan beberapa saat hingga partikel-partikel besar mengendap. Campuran contoh tanah dengan air tersebut selanjutnya dimasukkan ke dalam satu set saringan dengan ukuran 710 μm, 425 μm, 125 μm, dan 45 μm. Kemudian dari atas saringan disemprot dengan air. Selanjutnya saringan paling atas dilepas dan saringan kedua disemprot dengan air kembali. Setelah saringan kedua dilepas, sejumlah tanah sisa yang tertinggal pada saringan terbawah dipindahkan ke dalam tabung sentrifuge sebanyak 20-25 ml.

Gambar 2. Bagian alir ekstraksi spora dengan teknik tuang dan saring.

c. Observasi Kolonisasi CMA pada Akar

Observasi kolonisasi CMA dilakukan melalui staining akar. Tanda-tanda anatomis yang mencirikan ada tidaknya infeksi CMA tidak dapat dilihat kecuali akar-akar yang terinfeksi diwarnai.
dan dilihat dengan mikroskop, oleh sebab itu teknik pewarnaan sangat penting di dalam identifikasi penularan CMA (Setiadi, 1989).

Contoh akar dari lapangan dibersihkan dengan air biasa untuk melepaskan semua miselium luar. Bagian akar yang diambil adalah bagian yang muda (serabut) dan dimasukkan ke dalam tabung reaksi untuk direndam dalam larutan KOH 10% (w/v) dan didiamkan selama semalam hingga akar berwarna kuning bersih. Setelah akar berwarna kuning bersih, larutan KOH dibuang dan akar dibulas dengan air yang mengalir. Kemudian diberi larutan HCl 2% (w/v) dan didiamkan selama semalam hingga akar berwarna kuning jernih. Larutan HCl kemudian dibuang dan diganti dengan larutan staining (gliserol, asam laktat dan aquades dengan perbandingan 2:2:1 dan ditambah trypan blue 0.05%) dan didiamkan selama semalam. Larutan staining dibuang dan diganti dengan larutan destaining (larutan staining tanpa trypan blue) dan didiamkan selama 24 jam. Akar tersebut lalu dipotong-potong dengan panjang ±1 cm dan disusun pada gelas objek (1 gelas objek untuk 10 potongan akar), kemudian ditutup dengan gelas penutup, lalu ditekan agar diperoleh preparat yang setipis mungkin, kemudian diamati dibawah mikroskop. Adanya struktur hifa eksternal, hifa internal, vesikel dan arbuskula merupakan suatu identifikasi bahwa contoh akar tersebut terinfeksi oleh CMA.

Persentase yang terinfeksi dihitung dengan rumus metode panjang slide dari Giovanetti dan Mosse (1980):

\[
\% \text{ infeksi akar} = \frac{\text{Field of View (+)}}{\text{Field of View}} \times 100\%
\]

Secara jelas teknik kolonisasi CMA pada akar Kedawung dapat kita lihat pada bagan alir berikut:

![Bagan alir kolonisasi CMA pada akar Kedawung](image)

b. Metode Trapping

Metode trapping yaitu cara untuk mengetahui kelimpahan spora CMA dengan menumbuhkan spora pada inang tumbuh. Tanaman inang yang digunakan dalam hal ini adalah *Pueraria javanica*. Dengan metode trapping ini diharapkan faktor-faktor yang menghambat perkembangan CMA di alam dapat dieliminasi, sehingga CMA dapat tumbuh secara optimal.

Metode trapping dilakukan dengan mencampurkan sampel tanah yang diambil dari lapangan dengan zeolit secara berlapis dengan perbandingan lapisan zeolit dengan lapisan tanah adalah 3 : 1
(lihat Gambar 4). Kemudian ditumbuhkan dengan *P. javanica* di dalam gelas plastik. Selanjutnya 3 bulan kemudian dilakukan pemeriksaan terhadap setiap sampel mengenai status CMA dengan melakukan ekstraksi spora, identifikasi CMA dan observasi kolonisasi CMA pada akar tanaman.

Gambar 4. Model inokulasi sample tanah dari lapangan pada teknik *Trapping*
IV. KONDISI UMUM LOKASI PENELITIAN

A. Letak dan Luas

Secara geografis Taman Nasional Meru Betiri terletak antara 8° 22' 16" - 8° 32' 05" LS dan 113° 57' 51" - 113° 57' 06" BT. Lokasi penelitian berada di Desa Andongrejo, Kecamatan Tempurejo, yang masuk dalam wilayah Daerah Tingkat II Kabupaten Jember, Propinsi Jawa Timur, dengan luas wilayah 36.700 hektar.

B. Kondisi Tanah

C. Kondisi topografi

D. Iklim

Menurut klasifikasi iklim Schmidt dan Ferguson, kawasan Taman Nasional Meru Betiri bagian utara dan timur (Sukamade-Malangari) mempunyai tipe iklim B, sedangkan bagian selatan dan barat mempunyai tipe iklim C. Musim hujan berlangsung sekitar bulan November sampai Maret, sedangkan musim kemarau berlangsung pada bulan April sampai Oktober. Curah hujan rata-rata tahunan bervariasi antara 2.554 mm – 3.478 mm. Suhu udara rata-rata berkisar antara 23ºC-33ºC.

E. Hidrologi

Keadaan topografi kawasan Taman Nasional Meru Betiri yang berbukit dan bergunung mengakibatkan terjadinya sungai-sungai yang cukup banyak yang tersebar di seluruh bagian kawasan taman nasional. Sungai-sungai yang ada di kawasan Taman Nasional Meru Betiri antara lain adalah
Sungai Sukamade (yang mengalir sepanjang tahun), sungai Permisan, sungai Meru dan Sungai Sekar Pisang yang kesemuanya bermuara di Pantai Selatan Jawa.

Daerah aliran sungai yang utama di antara punggung-punggung gunung adalah Sungai Bandelait, Sungai Meru dan Sungai Sukamade.

F. Flora

Sebagian besar hutan Meru Betiri merupakan tipe vegetasi hutan hujan tropika. Pada tipe vegetasi ini tumbuh banyak jenis epifit, seperti anggrek dan paku-pakuan serta liana. Tipe vegetasi rheopit terdapat di dataran yang dibanjiri oleh sungai. Jenis yang tumbuh antara lain glagah (Saccharum spontaneum LINN.).

Jenis tumbuhan yang banyak dijumpai diantaranya jenis walangan (Pterospermum diversifolium BL.), winong (Tetrameles nudiflora R.Br.), gundang (Ficus variegata BL.), pancek kidang (Aglaja odoratissima BL.), rau (Dracontomelon mangiferum BL.), glintungan (Bischofia javanica BL.), kedoyo (Dysosyllum amooroides Miq.), randu agung (Gossampirus heptaphylla BAKH.), nyamph (Lissea chinensis LAMK.), serta rotan warak (Plectocoma elongata BL.).

Kekayaan flora lain yang dapat dijumpai di Taman Nasional Meru Betiri adalah berbagai jenis tumbuhan obat seperti cabe jawa (Piper retrofractum VAHL.), kemukus (Piper cubeba LINN.), Kedawung (Parkia timoriana (DC.) Merr.), dan kluwek (Pangium edule REINW.).

G. Fauna

Jenis-jenis satwa liar yang dapat dijumpai dalam kawasan Taman Nasional Meru Betiri adalah : macan tutul (Panthera pardus), ajag (Cuon alpinus), banteng (Bos javanicus), babi hutan (Sus sp.), lutung (Presbytis cristata), kera (Macaca fasciacaiae), beberapa reptil seperti sanca (Phytos sp.), beberapa burung seperti merak (Pavo muticus), rangkong (Buceros rhinoceros), dan beberapa jenis burung lainnya.
V. HASIL DAN PEMBAHASAN

A. Status bintil akar pada Kedawung di alam

Dalam penelitian ini dilakukan pengamatan secara langsung di lapangan terhadap status bintil akar pada Kedawung yang tumbuh di Taman Nasional Meru Betiri, Jawa Timur. Hasil pengamatan dapat dilihat pada Tabel 2 dan 3.

Tabel 2. Status Bintil Akar Kedawung pada Tingkat Pohon.

<table>
<thead>
<tr>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Bintil</th>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Bintil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>0</td>
<td>11</td>
<td>P41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P2</td>
<td>0</td>
<td>12</td>
<td>P44</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>P14</td>
<td>0</td>
<td>13</td>
<td>P51</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>P26</td>
<td>0</td>
<td>14</td>
<td>P52</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>P28</td>
<td>0</td>
<td>15</td>
<td>P54</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>P29</td>
<td>0</td>
<td>16</td>
<td>P55</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>P30</td>
<td>0</td>
<td>17</td>
<td>P99</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>P31</td>
<td>0</td>
<td>18</td>
<td>P100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>P32</td>
<td>0</td>
<td>19</td>
<td>P102</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>P33</td>
<td>0</td>
<td>20</td>
<td>P103</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan : P = Pohon

Pengamatan juga dilakukan terhadap anakak Kedawung di sekitar pohon yang dijadikan sebagai sampel. Namun tidak semua sampel pohon mempunyai anakak, sehingga jumlah sampel anakak lebih sedikit dibandingkan dengan jumlah sampel pohon. Hasil pengamatan dapat dilihat pada Tabel 3.

Tabel 3. Status Bintil Akar Kedawung pada Tingkat Anakan

<table>
<thead>
<tr>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Bintil</th>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Bintil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>0</td>
<td>9</td>
<td>A41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>0</td>
<td>10</td>
<td>A44</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A14</td>
<td>0</td>
<td>11</td>
<td>A51</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A26</td>
<td>0</td>
<td>12</td>
<td>A52</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A28</td>
<td>0</td>
<td>13</td>
<td>A54</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A29</td>
<td>0</td>
<td>14</td>
<td>A55</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A30</td>
<td>0</td>
<td>15</td>
<td>A100</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A31</td>
<td>0</td>
<td>16</td>
<td>A102</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan : A = Anakan

Bintil akar sebagai petunjuk adanya rizobium tidak dijumpai pada Kedawung, baik pada tingkat pohon maupun tingkat anakak (Tabel 2 dan 3). Menurut Setiadi (1989), ada dua faktor utama
yang mempengaruhi pembentukan bintil akar dan proses penambatan nitrogen, yakni faktor-faktor lingkungan dan faktor genetik (Setiadi, 1989).

Menurut Widiastuti (1998), pH optimal untuk fiksasi nitrogen antara 5.5-6.0 walaupun bakteri bintil akar dapat tumbuh pada medium bebas N pada pH 4.2-7.0. Kedamaan pH tanah di lokasi adalah berkisar antara 5.0-7.0. Maka faktor pH ini pun sangat mendukung terbentuknya bintil akar.

Selanjutnya Setiadi (1989) menambahkan bahwa pembentukan bintil akar melalui beberapa tahapan, secara garis besar tahapan itu adalah:
1. pembentukan akar-akar rambut
2. peningkatan populasi rizobium di sekitar akar rambut
3. pembengkakan akar rambut dan infeksi oleh bakteria
4. pembentukan infection threads
5. pembentukan bintil akar

B. Status CMA pada Kedawung

a. Infeksi CMA

Tabel 4. Persentase Infeksi CMA pada akar Kedawung pada tingkat pohon di alam

<table>
<thead>
<tr>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>44.66</td>
<td>11</td>
<td>P41</td>
<td>76.74</td>
</tr>
<tr>
<td>2</td>
<td>P2</td>
<td>16.47</td>
<td>12</td>
<td>P44</td>
<td>36.14</td>
</tr>
<tr>
<td>3</td>
<td>P14</td>
<td>28.06</td>
<td>13</td>
<td>P51</td>
<td>8.24</td>
</tr>
<tr>
<td>4</td>
<td>P26</td>
<td>0</td>
<td>14</td>
<td>P52</td>
<td>28.18</td>
</tr>
<tr>
<td>5</td>
<td>P28</td>
<td>28.95</td>
<td>15</td>
<td>P54</td>
<td>13.76</td>
</tr>
<tr>
<td>6</td>
<td>P29</td>
<td>51.14</td>
<td>16</td>
<td>P55</td>
<td>14.52</td>
</tr>
<tr>
<td>7</td>
<td>P30</td>
<td>48.57</td>
<td>17</td>
<td>P99</td>
<td>59.13</td>
</tr>
<tr>
<td>8</td>
<td>P31</td>
<td>34.21</td>
<td>18</td>
<td>P100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>P32</td>
<td>36.84</td>
<td>19</td>
<td>P102</td>
<td>39.18</td>
</tr>
<tr>
<td>10</td>
<td>P33</td>
<td>0</td>
<td>20</td>
<td>P103</td>
<td>70.7</td>
</tr>
</tbody>
</table>

Keterangan: P = Pohon

Pada Tabel 4 di atas, kita dapat melihat bahwa persentase infeksi akar yang terjadi pada tiap-tiap sampel pohon Kedawung di alam sangat bervariasi. Persentase infeksi yang tertinggi adalah pada P41 (pohon Kedawung bernomor 41) dengan nilai persentase sebesar 76.74%. Sedangkan nilai persentase yang terendah terdapat pada P26, P33 dan P100, yaitu 0.

Tabel 5. Persentase infeksi CMA pada akar Kedawung pada tingkat anakan di alam

<table>
<thead>
<tr>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>12.96</td>
<td>9</td>
<td>A41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>50</td>
<td>10</td>
<td>A44</td>
<td>58.65</td>
</tr>
<tr>
<td>3</td>
<td>A14</td>
<td>15.15</td>
<td>11</td>
<td>A51</td>
<td>7.98</td>
</tr>
<tr>
<td>4</td>
<td>A26</td>
<td>38.64</td>
<td>12</td>
<td>A52</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A28</td>
<td>37.5</td>
<td>13</td>
<td>A54</td>
<td>17.59</td>
</tr>
<tr>
<td>6</td>
<td>A29</td>
<td>26.35</td>
<td>14</td>
<td>A55</td>
<td>10.75</td>
</tr>
<tr>
<td>7</td>
<td>A30</td>
<td>2.86</td>
<td>15</td>
<td>A100</td>
<td>42.22</td>
</tr>
<tr>
<td>8</td>
<td>A31</td>
<td>65.74</td>
<td>16</td>
<td>A102</td>
<td>11.54</td>
</tr>
</tbody>
</table>

Keterangan: A = Anakan
Pada tingkat anakan, persentase jumlah infeksi CMA pada akar tiap sampel ditunjukkan oleh Tabel 5. Nilai infeksi yang terbesar terdapat pada A31 (anakan pada nomor pohon 31) sebesar 65.74%. Sedangkan nilai persentase terkecil dimiliki oleh A41 dan A52 sebesar 0.

Pengamatan status infeksi CMA dari hasil Trapping dapat dilihat hasilnya pada Tabel 6 (tingkat pohon) dan Tabel 7 (tingkat anakan) berikut.

Tabel 6. Persentase infeksi CMA hasil Trapping pada tingkat pohon

<table>
<thead>
<tr>
<th>No</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
<th>No</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>39.52</td>
<td>11</td>
<td>P41</td>
<td>85.51</td>
</tr>
<tr>
<td>2</td>
<td>P2</td>
<td>76.07</td>
<td>12</td>
<td>P44</td>
<td>73.83</td>
</tr>
<tr>
<td>3</td>
<td>P14</td>
<td>64.02</td>
<td>13</td>
<td>P51</td>
<td>27.17</td>
</tr>
<tr>
<td>4</td>
<td>P26</td>
<td>14.29</td>
<td>14</td>
<td>P52</td>
<td>2.56</td>
</tr>
<tr>
<td>5</td>
<td>P28</td>
<td>72.86</td>
<td>15</td>
<td>P54</td>
<td>39.44</td>
</tr>
<tr>
<td>6</td>
<td>P29</td>
<td>53.64</td>
<td>16</td>
<td>P55</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>P30</td>
<td>86.99</td>
<td>17</td>
<td>P99</td>
<td>56.05</td>
</tr>
<tr>
<td>8</td>
<td>P31</td>
<td>70.15</td>
<td>18</td>
<td>P100</td>
<td>58.44</td>
</tr>
<tr>
<td>9</td>
<td>P32</td>
<td>54.38</td>
<td>19</td>
<td>P102</td>
<td>55.47</td>
</tr>
<tr>
<td>10</td>
<td>P33</td>
<td>56.82</td>
<td>20</td>
<td>P103</td>
<td>11.26</td>
</tr>
</tbody>
</table>

Keterangan: P = Pohon

Pemeriksaan infeksi CMA terhadap pohon Kedawung hasil trapping diperoleh data jumlah infeksi tertinggi pada P55 (pohon Kedawung dengan nomor pohon 55) sebesar 100%. Sedangkan jumlah terkecil terdapat pada P52 sebesar 2.56%.

Tabel 7. Persentase infeksi CMA hasil Trapping pada tingkat anakan

<table>
<thead>
<tr>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Jumlah Infeksi(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>12.78</td>
<td>9</td>
<td>A41</td>
<td>88.2</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>64.96</td>
<td>10</td>
<td>A44</td>
<td>58.48</td>
</tr>
<tr>
<td>3</td>
<td>A14</td>
<td>4.26</td>
<td>11</td>
<td>A51</td>
<td>58.68</td>
</tr>
<tr>
<td>4</td>
<td>A26</td>
<td>36.52</td>
<td>12</td>
<td>A52</td>
<td>92.09</td>
</tr>
<tr>
<td>5</td>
<td>A28</td>
<td>76.27</td>
<td>13</td>
<td>A54</td>
<td>77.11</td>
</tr>
<tr>
<td>6</td>
<td>A29</td>
<td>89.29</td>
<td>14</td>
<td>A55</td>
<td>61.29</td>
</tr>
<tr>
<td>7</td>
<td>A30</td>
<td>77.27</td>
<td>15</td>
<td>A100</td>
<td>45.89</td>
</tr>
<tr>
<td>8</td>
<td>A31</td>
<td>56.44</td>
<td>16</td>
<td>A102</td>
<td>26.76</td>
</tr>
</tbody>
</table>

Keterangan: A = anakan

Pada Tabel 7, jumlah infeksi terbesar pada sampel anakan hasil trapping terdapat pada A52 sebesar 92.09%. Sedangkan jumlah infeksi terkecil terdapat pada A14 sebesar 4.26%.

Perhitungan persentase infeksi CMA di dalam akar menunjukkan nilai tertinggi pada P55 hasil trapping dengan nilai sebesar 100%, dan nilai terendah pada P26, P33 dan P100 dengan nilai 0 tanpa melalui trapping.
Menurut Imas et al. (1989), akar tanaman yang terinfeksi oleh CMA tidak menunjukkan tanda morfologi yang mudah dikenali dari luar seperti pada ektomikoriza. Proses infeksi CMA diawali oleh adanya propagul yang infektif, dapat berupa hifa, pragmen hifa dan akar, atau spora. Propagul tersebut berkecambah dan menginfeksi akar inangnya dengan membentuk struktur apresoria. Selanjutnya membentuk hifa internal yang berkembang menjadi struktur hifa gelung atau arbuskula dan pada famili tertentu juga membentuk struktur vesikula.

b. Populasi CMA

Penghitungan jumlah spora CMA yang dilakukan dengan dengan teknik sieving diperoleh hasil seperti pada Tabel 8 (tingkat pohon) dan Tabel 9 (tingkat anakan) berikut.

Tabel 8. Jumlah Spora CMA Hasil Trapping pada Tingkat Pohon

<table>
<thead>
<tr>
<th>No</th>
<th>Nomor Pohon</th>
<th>Jumlah Spora</th>
<th>No</th>
<th>Nomor Pohon</th>
<th>Jumlah Spora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>11</td>
<td>11</td>
<td>P41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P2</td>
<td>0</td>
<td>12</td>
<td>P44</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>P14</td>
<td>0</td>
<td>13</td>
<td>P51</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>P26</td>
<td>0</td>
<td>14</td>
<td>P52</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>P28</td>
<td>12</td>
<td>15</td>
<td>P54</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>P29</td>
<td>0</td>
<td>16</td>
<td>P55</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>P30</td>
<td>0</td>
<td>17</td>
<td>P99</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>P31</td>
<td>2</td>
<td>18</td>
<td>P100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>P32</td>
<td>26</td>
<td>19</td>
<td>P102</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>P33</td>
<td>0</td>
<td>20</td>
<td>P103</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan: P = pohon

Jumlah spora yang terbanyak terdapat pada P55 sebesar 51 spora/50 gram contoh tanah seperti yang ditunjukkan oleh Tabel 8 di atas. Sementara terdapat beberapa sampel yang tidak dijumpai spora, yaitu pada P2, P14, P26, P29, P30, P33, P41, P51, P52, P54, P99, P100, P102 dan P103.

Hasil pengamatan memperlihatkan bahwa jumlah spora terbanyak yaitu pada A29 (59 spora/50 gram contoh tanah) dan P55 (51 spora/50 gram contoh tanah). A29 memiliki solum tanah yang dalam, dengan kondisi vegetasi non pohon berupa bangunan, tepusan, bambu dan semak. Sedangkan P55 memiliki kondisi tanah yang kering dengan vegetasi semak, rotan dan rumput.
Menurut Widiastuti dan Kramadibrata (1992) bahwa keanekaragaman vegetasi tidak mempengaruhi keanekaragaman spesies CMA, tetapi mempengaruhi populasi sporanya. Faktor iklim memiliki pengaruh yang kecil terhadap perbedaan populasi CMA karena sampel diambil pada musim yang sama (kemaraun).

<table>
<thead>
<tr>
<th>No</th>
<th>Nomor Pohon</th>
<th>Jumlah Spora</th>
<th>No</th>
<th>Nomor Pohon</th>
<th>Jumlah Spora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>49</td>
<td>9</td>
<td>A41</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>0</td>
<td>10</td>
<td>A44</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A14</td>
<td>5</td>
<td>11</td>
<td>A51</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A26</td>
<td>19</td>
<td>12</td>
<td>A52</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A28</td>
<td>33</td>
<td>13</td>
<td>A54</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A29</td>
<td>59</td>
<td>14</td>
<td>A55</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A30</td>
<td>2</td>
<td>15</td>
<td>A100</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>A31</td>
<td>0</td>
<td>16</td>
<td>A102</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan: A = anak

Komparasi antara data infeksi CMA dan populasi spora diperoleh data menunjukkan bahwa tanaman dengan jumlah spora terbesar, yaitu pada A29, ternyata tidak berarti persentase infeksi akarnya terbesar pula. A29 memiliki persentase infeksi akar sebesar 89.29%. Persentase infeksi akar tertinggi dimiliki oleh P55 (100%), meski sampel ini hanya memiliki jumlah spora 51 spora/50 gram contoh tanah.

Selain itu, menurut Gunawan (1993), persentase infeksi pada akar dan produksi spora oleh CMA dipengaruhi oleh spesies CMA itu sendiri, lingkungan dan tanaman inangnya, sehingga baik jumlah spora maupun persentase infeksi akar tidak dipengaruhi oleh satu faktor saja, melainkan akumulasi dari berbagai faktor yang dapat mempengaruhinya.

c. Sebaran genus CMA

Hasil pengamatan terhadap sebaran genus spora CMA hasil Trapping ditunjukkan pada Tabel 10 dan Tabel 11.
<table>
<thead>
<tr>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Acaulospora</th>
<th>Glomus</th>
<th>Gigaspora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P1</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>P14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>P26</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>P28</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>P29</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>P30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>P31</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>P32</td>
<td>0</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>P33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>P41</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>P44</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>P51</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>P52</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>P54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>P55</td>
<td>0</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>P99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>P100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>P102</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>P103</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan: P = pohon

Pada saat pengamatan spora di laboratorium, spora CMA yang ditemukan pada umumnya berbentuk tunggal. Genus Acaulospora yang ditemukan memiliki jenis yang beraneka ragam. Hal ini terlihat dari penampilan warna, bentuk, ukuran dan dinding spora yang berbeda. Warna spora Acaulospora yang ditemukan berwarna bening susu, kuning, coklat, coklat tua kemerahan dan hitam.
Warna spora *Glomus* yang ditemukan berwarna putih, coklat dan kuning. Sedangkan genus *Gigaspora* yang ditemukan berwarna coklat kehitaman.

Tabel 11. Sebaran Genus Spora CMA Hasil Trapping pada Tingkat Anakan

<table>
<thead>
<tr>
<th>No.</th>
<th>Nomor Pohon</th>
<th>Acaulospora</th>
<th>Glomus</th>
<th>Gigaspora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A14</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A26</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A28</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A29</td>
<td>59</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A30</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>A41</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>A44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>A51</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>A52</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>A54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>A55</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>A100</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>A102</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan : A = anakan

Beberapa penampang spora yang ditemukan dapat dilihat pada gambar-gambar berikut.

Gambar 5. Spora di dalam penampang akar (100 X)
Gambar 6. Hifa internal di dalam penampang akar (100 X)

Gambar 7. Vesikula di dalam penampang akar (100 X)

Gambar 9. Spora Genus Acaulospora (40 X)

Gambar 12. Spora Genus *Gigaspora* (100 X)

Gambar 14. Spora Genus Glomus (100 X)

Gambar 15. Spora Genus Glomus (40 X)
Gambar 16. Spora Genus *Glomus* (100 X)
VI. KESIMPULAN

A. Kesimpulan

Dari penelitian ini dapat disimpulkan bahwa:

1. Pada Kedawung tidak ditemukan bersimbiosis dengan rizobium dan tidak ditemukan membentuk bintil akar.
2. Kedawung bersimbiosis dengan CMA. Genus CMA yang bersimbiosis dengan Kedawung sebanyak 3 genus, yaitu *Acaulospora*, *Glomus* dan *Gigaspora*.

B. Saran

Perlu dilakukan pengujian lebih lanjut terhadap efektivitas infeksi genus *Acaulospora* pada tingkat anakan Kedawung dan genus *Glomus* pada pohon Kedawung dengan melakukan uji spora tunggal, kemudian dibandingkan dengan genus-genus yang lain.
DAFTAR PUSTAKA

Lampiran 1. Keadaan Tanah dan Vegetasi Non Pohon di Sekitar Kedawung

<table>
<thead>
<tr>
<th>Nomor Pohon</th>
<th>Keadaan tanah</th>
<th>Vegetasi non pohon</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>solum dalam, subur, berbatu</td>
<td>bangban, tepusan</td>
</tr>
<tr>
<td>P2</td>
<td>solum dalam, subur, sedikit berbatu</td>
<td>rayutan, bambu</td>
</tr>
<tr>
<td>P14</td>
<td>solum dalam, subur</td>
<td>bambu, jejerukan</td>
</tr>
<tr>
<td>P26</td>
<td>solum dalam, subur</td>
<td>semak, aren</td>
</tr>
<tr>
<td>P28</td>
<td>solum dalam, subur</td>
<td>bambu, semak, rumput</td>
</tr>
<tr>
<td>P29</td>
<td>solum dalam, subur</td>
<td>bambu</td>
</tr>
<tr>
<td>P30</td>
<td>solum dalam, subur</td>
<td>bangban, rumput, bambu</td>
</tr>
<tr>
<td>P31</td>
<td>solum dalam, kering</td>
<td></td>
</tr>
<tr>
<td>P32</td>
<td>berpasir, berbatu, di pinggir sungai</td>
<td></td>
</tr>
<tr>
<td>P33</td>
<td>solum dalam, kering, dekat sungai</td>
<td></td>
</tr>
<tr>
<td>P41</td>
<td>solum dalam, subur</td>
<td>semak</td>
</tr>
<tr>
<td>P44</td>
<td>solum dalam, subur</td>
<td>rotan, tepusan, bangban, semak</td>
</tr>
<tr>
<td>P51</td>
<td>solum dalam, kering</td>
<td>bangban, liana, semak</td>
</tr>
<tr>
<td>P52</td>
<td>solum dalam, kering, sedikit berbatu, dipinggir parit</td>
<td>bambu</td>
</tr>
<tr>
<td>P54</td>
<td>solum dalam, kering</td>
<td>semak</td>
</tr>
<tr>
<td>P55</td>
<td>solum dalam, kering</td>
<td>semak, rotan, rumput</td>
</tr>
<tr>
<td>P99</td>
<td>solum dangkal, sedikit berbatu, kering</td>
<td>semak</td>
</tr>
<tr>
<td>P100</td>
<td>solum dangkal, berbatu besar, kering</td>
<td>rayutan, jejerukan, semak</td>
</tr>
<tr>
<td>P102</td>
<td>solum dalam, kering</td>
<td>rotan, bangban, tepusan</td>
</tr>
<tr>
<td>P103</td>
<td>solum dalam, kering</td>
<td>rotan, semak</td>
</tr>
</tbody>
</table>