PENGARUH TIPE LAPISAN PERMUKAAN DAN KOMPOSISI *FLAKE* ECENG GONDOK (*Eichornia crassipes*) TERHADAP SIFAT FISIS MEKANIS PAPAN KOMPOSIT

AGUS AHMAD KURNIAWAN
E02498044

INSTITUT PERTANIAN BOGOR

JURUSAN TEKNOLOGI HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2002
PENGARUH TIPE LAPISAN PERMUKAAN DAN KOMPOSISI
FLAKE ECENG GONDOK (*Eichornia crassipes*) TERHADAP
SIFAT FISIS MEKANIS PAPAN KOMPOSIT

AGUS AHMAD KURNIAWAN
E02498044

Skripsi
Sebagai Salah Satu Syarat Memperoleh Gelar Sarjana Kehutanan
Pada Fakultas Kehutanan Institut Pertanian Bogor

JURUSAN TEKNOLOGI HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2002
RINGKASAN

Eceng gondok yang secara internasional dikenal dengan sebutan water hyacinth, adalah gulma perairan yang sudah sejak lama menimbulkan permasalahan ekonomis, ekologis, dan sosial. Di lain pihak keberadaan eceng gondok sebagai bahan berlignoselulosa sama halnya dengan kayu memungkinkan untuk dijadikan bahan baku industri hasil hutan seperti untuk pulp, kertas dan juga untuk bahan baku pembuatan papan komposit. Tujuan yang ingin dicapai dalam penelitian ini adalah mengetahui kemungkinan penggunaan eceng gondok (Eichornia crassipes) sebagai bahan baku atau bahan pencampur papan komposit, menganalisis pengaruh penambahan flake eceng gondok, penambahan anyaman sayatan bambu tali, dan pengaruh interaksi keduaunya terhadap sifat fisik mekanis papan komposit yang dihasilkan, serta membandingkan sifat fisik mekanis papan yang dihasilkan dengan standar JIS A 5908 1994 dan standar SNI-03 2105 1996.

Penelitian ini menggunakan rancangan faktorial acak lengkap dengan 2 faktor perlakuan yaitu faktor komposisi flake eceng gondok pada taraf 0%, 10%, 20%, dan 30%, serta faktor tipe lapisan permukaan papan komposit yang terdiri dari taraf layered composite board dan non layered composite board, dengan dua kali ulangan.

Bahan yang digunakan dalam penelitian ini terdiri dari: flake kayu sengon (Paraserianthes falcatoria), tangkai daun (petioles) eceng gondok (Eichornia crassipes), anyaman sayatan bambu tali (Gigantochloa apus), perekat phenol formaldehid, parafin, dan aquades, sedangkan peralatan yang digunakan untuk pengujian adalah dan Universal Testing Machine (UTM). Flake sengon dan flake eceng gondok yang telah dikeritingkakan ditimbang beratnya sesuai dengan tipe perlakuan yang akan diaplikasikan, kemudian dilakukan pengadukan (mixing) dengan 10% perekat phenol formaldehid dan 1% parafin. Adonan yang telah diaduk merata dibuat lapik berukuran 30x30 cm². Khusus untuk layered composite board bagian
atas dan bawah lapik dilapisi oleh anyaman sayatan bambu tali yang telah dikeritingkan. Kemudian lapik dikempa pada suhu 103±2°C dan tekanan 23 kgf/cm² selama 15 menit, selanjutnya dikondisikan pada suhu kamar selama satu minggu, dan diuji sifat fisik mekanisnya.

Berdasarkan hasil analisis sifat fisik papan komposit yang dihasilkan, dapat disimpulkan bahwa secara umum masih memungkinkan untuk menggunakan flake eceng gondok sampai taraf 30%, kecuali untuk sifat pengembangan tebal penggunaan flake eceng gondok pada non layered composite board optimum sampai taraf 20%, sedangkan penggunaan tipe lapisan permukaan tergantung tujuan yang ingin dicapai.

Berdasarkan hasil analisis sifat mekanis papan komposit yang dihasilkan, didapat nilai optimum penggunaan flake eceng gondok untuk sifat MOE dan MOR adalah 10% bagi non layered composite board dan 30% bagi layered composite board. Sedangkan untuk sifat kuat pegang sekrup dan internal bond penggunaan flake eceng gondok sampai 30% secara teknis masih diperbolehkan.

Peruntukan papan komposit sebagai bahan konstruksi, penggunaan flake eceng gondok tidak boleh melebihi 10% untuk non layered composite board, sedangkan untuk layered composite board, penggunaan flake eceng gondok sampai taraf 30% secara teknis masih diperbolehkan.

Peruntukan papan komposit sebagai bahan non konstruksi seperti untuk furniture, siding, dan plafon, penggunaan flake eceng gondok sampai taraf 30% masih memungkinkan secara teknis untuk semua tipe lapisan permukaan, kecuali untuk penggunaan yang kurang toleran terhadap pengembangan tebal yang besar, penggunaan flake eceng gondok untuk non layered composite board tidak boleh melebihi taraf 20%.

Untuk mendapatkan informasi yang cukup mengenai aspek teknis pembuatan papan komposit modifikasi berbahan baku campuran, perlu dilakukan penelitian lanjutan mengenai pengaruh ketebalan anyaman sayatan bambu tali, penggunaan perekat jenis lain, dan atau penggunaan anyaman sayatan kulit bambu terhadap sifat fisis-mekanis papan komposit.
Nama : Agus Ahmad Kurniawan
No. Pokok : E02498044

Menyetujui,
Pembimbing Skripsi

Iq. Ijang Suryana, MSc.
Tanggal: 17-01-2003

Mengetahui,
Ketua Jurusan, Teknologi Hasil Hutan

Iq. Faust Febrianto, MS.
Tanggal: 20-01-2003

Tanggal lulus: 30 Desember 2002
RIWAYAT HIDUP

Selama menjadi mahasiswa, penulis pernah aktif dalam kegiatan organisasi kemahasiswaan seperti International Forestry Student Association / IFSA (Organisasi Mahasiswa Kehutanan Internasional) dan Himpunan Mahasiswa Jurusan Teknologi Hasil Hutan (HIMASILTN). Di sela-sela kesibukan kuliah, penulis juga berprofesi sebagai staf pengajar les privat Bina Madani Bogor.

Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kehutanan pada Fakultas Kehutanan IPB, penulis melakukan penelitian dan menyusun karya ilmiah berjudul Pengaruh Tipe Lapisan Permukaan dan Komposisi Flake Eceng Gondok (Eichornia crassipes) Terhadap Sifat Fisis Mekanis Papan Komposit di bawah bimbingan Ir. Jajang Suryana, MSc.
KATA PENGANTAR

Alhamdulillahi robbil’alamiin, segala puji dan syukur penulis panjatkan kehadirat Illahi Robbi, karena dengan rahmat dan hidayah-Nya karya ilmiah yang berjudul *Pengaruh Tipe Lapisan Permukaan dan Komposisi Flake Eceng Gondok (Eichornia crassipes) Terhadap Sifat Fisis Mekanis Papan Komposit* ini dapat penulis selesaikan tepat pada waktunya.

Karya ilmiah ini adalah sebagian dari rangkaian panjang perkuliahan yang penulis tempuh dengan penuh kerja keras dan kesabaran, dimana beban yang berat ini tidak mungkin penulis lewati tanpa dukungan dan doa dari semua pihak. Oleh karena itu sudah sepatutnya ucapan terima kasih dan penghargaan yang setinggi-tingginya penulis sampaikan kepada:

1. Orang tua tercinta (Bapak dan Mamah) yang dengan ucucran keringat serta air mata dalam usaha dan doa untuk mendidik dan membesarkan penulis, semoga keduanya selalu dalam limpahan rahmat Allah SWT.

2. Bapak Ir. Jajang Suryana, MSc selaku dosen pembimbing skripsi atas pengarahan, bimbingan dan kesabarannya hingga penulis dapat menyelesaikan karya ilmiah ini.

5. Saudara dan saudari tersayang (Teh Enung, Teh Iyam, Aa Opik, Ais Kokoy, Cucu, dan Acep), Kakak ipar (‘A Ade, ‘A Mimid, ‘A Didin, dan Ae) serta keponakan yang tercinta (Firmansyah, Aprianti, Fitriani, Siti Nurhafshah, Fahmi, Rizal, Humam, dan Rizki Muhammad) terima kasih
atas arahan kasih sayang, doa, dan perhatiannya, saya bangga memiliki kalian semuanya.

8. Rekan-rekan "Mobster" khususnya buat Mardi, Paul, Danur, Adang, Bagus, Waluyo, Budi, Sahadi, K' Gun, Sandri, Yoedi, Lery, Ucup, Abah beserta keluarga, dan lain-lain yang tidak dapat di sebutkan satu persatu, Thanks for the all your friendships.

9. Sahabatku di Jurusan Kimia '35 terutama untuk Swasti "RIA" Endriani yang telah banyak memberi bantuan, support, semangat, dan perhatiannya, sehingga memacu penulis untuk selalu meningkatkan prestasi akademis. GOOD LUCK, and take care of U'r self, OK?

10. Semua guru dan dosen yang telah membimbing saya mulai dari SD hingga saya menyelesaikan perkuliahan program sarjana, semoga amal kebaikannya dibalas oleh Allah SWT dengan pahala yang berlipat ganda.

11. Semua jajaran pejabat, senior, KKPH, KBKPH, KRPH, staf, dan karyawan PT. Perhutani Unit I Jawa Tengah terutama di jalur Cilacap-Pekalongan-Pemalang-Baturraden, terima kasih atas kerjasama dan kebaikannya yang penulis dapatkan ketika mengikuti Praktek Pengenalan dan Pengelolaan Hutan.

12. Seluruh jajaran pejabat, staf karyawan, dan senior di PT Diamond Raya Timber DT. I Riau, dimana penulis melakukan PKL selama dua bulan penuh.

13. Teman seperjuangan di IPB asal SMUN I Banjaran:, Sandhi dan Ani; Senior: Ahmad, Barkah, dan Teh Ema, terima kasih atas segala bantuan dan kebaikannya.
14. Calon istri *sholihah*-ku yang tidak tahu siapa dan tidak tahu pula dimana, skripsi ini adalah salah satu hasil perjuanganku yang ditekuni dengan penuh kerja keras dan kesabaran, kupersembahkan untukmu atas segala kesetiaan yang akan engkau berikan padaku dikemudian hari.

15. Semua pihak yang telah membantu dalam proses penelitian hingga tuntasnya karya ilmiah ini, yang tidak mungkin dituliskan semuanya.

Tak ada gading yang tak retak, oleh karenanya penulis menyadari bahwa karya ilmiah ini masih jauh dari sempurna, sehingga saran dankritik yang sifatnya membangun akan penulis terima dengan lapang dada. Akhirnya penulis berharap karya ilmiah ini dapat bermanfaat dalam rangka pengembangan ilmu pengetahuan, dan mudah-mudahan dicatat sebagai suatu amal ibadah oleh Allah SWT.

Bogor, Desember 2002
penulis,
DAFTAR ISI

KATA PENGANTAR ... i
DAFTAR ISI ... iv
DAFTAR TABEL .. vii
DAFTAR GAMBAR ... viii
DAFTAR LAMPIRAN ... ix

I. PENDAHULUAN
 A. Latar Belakang ... 1
 B. Tujuan .. 2

II. TINJAUAN PUSTAKA
 A. Papan Partikel ... 3
 1. Definisi dan Karakteristik Papan Partikel ... 4
 2. Sumber dan Tipe Bahan Baku ... 5
 3. Pembuatan Papan Partikel ... 6
 4. Kegunaan Papan Partikel ... 7
 B. Perekat dan Perekatan ... 7
 1. Karakteristik Perekat dan Perekatan ... 7
 2. Jenis-Jenis Perekat ... 8
 3. Perekat Phenol Formaldehida ... 9
 C. Sengon (Paraserianthes falcatoria) .. 10
 1. Tinjauan Botanis ... 10
 2. Sifat AnATOMI Kayu Sengon ... 11
 3. Sifat Pengerjaan dan Kegunaan ... 12
 D. Eceng Gondok (Eichhornia crassipes) ... 12
 1. Deskripsi Eceng Gondok ... 12
 2. Eceng Gondok Sebagai Gulma .. 13
 3. Penyebaran Eceng Gondok di Indonesia 13
4. Permasalahan Yang ditimbulkan Oleh Keberadaan Eceng Gondok 14
5. Penelitian Pemanfaatan dan Manfaat Eceng Gondok 14
6. Kandungan Kimia Eceng Gondok ... 15
E. Bambu Tali (Gigantochloa apus Kurz.) ... 15
F. Sifat Umum Bambu ... 16
 1. Bambu Tali (Gigantochloa apus Kurz.) ... 17

III. METODOLOGI PENELITIAN
A. Bahan dan Alat ... 19
 1. Bahan ... 19
 2. Alat ... 19
B. Waktu dan Tempat Penelitian ... 19
C. Metode Penelitian ... 20
 1. Pembuatan Flake ... 20
 2. Pembuatan Anyaman Sayatan Bambu .. 20
 3. Penentuan Kadar Air Flake dan Anyaman Sayatan Bambu Tali 21
 4. Penentuan Resin Solid Content Perekat 21
 5. Perhitungan Keperluan Bahan Baku .. 22
 6. Pembuatan Papan Komposit .. 23
 7. Pembuatan Contoh Uji .. 23
 8. Pengujian Sifat Fisis dan Mekanis Papan Komposit 24
 a. Pengujian Sifat Fisis Papan Komposit 24
 b. Pengujian Sifat Mekanis Papan Komposit 25
 9. Pengolahan Data .. 27

IV. HASIL DAN PEMBAHASAN
A. Nomenklatur ... 30
B. Sifat Fisis Papan Komposit ... 30
 1. Kerapatan.. 30
 2. Kadar Air.. 33
 3. Pengembangan Tebal .. 35
 4. Daya Serap Air .. 37
C. Sifat Mekanis Papan Komposit
 1. Modulus of Elasticity (MOE) ... 39
 2. Modulus of Rupture (MOR) ... 41
 3. Internal Bond (IB) .. 43
 4. Kuat Pegang Sekrup (KPS) ... 45

V. KESIMPULAN DAN SARAN
 A. Kesimpulan ... 47
 B. Saran ... 47

DAFTAR PUSTAKA ... 48
LAMPIRAN-LAMPIRAN .. 52
<table>
<thead>
<tr>
<th>Halaman</th>
<th>Daftar Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1. Standar sifat fisik dan mekanis papan partikel</td>
</tr>
<tr>
<td>5</td>
<td>2. Sumber bio-based resources untuk papan komposit</td>
</tr>
<tr>
<td>14</td>
<td>3. Sifat-sifat kayu sengon</td>
</tr>
<tr>
<td>15</td>
<td>4. Komposisi kimia eceng gondok</td>
</tr>
<tr>
<td>16</td>
<td>5. Komposisi proximit eceng gondok pada stem, daun, dan petioles</td>
</tr>
<tr>
<td>18</td>
<td>6. Sifat fisik dan mekanis bambu tali beserta empat jenis bambu lainnya</td>
</tr>
<tr>
<td>No.</td>
<td>Judul</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Skema Umum Pembuatan Papan Komposit</td>
</tr>
<tr>
<td>2</td>
<td>Pola Pemotongan Contoh Uji</td>
</tr>
<tr>
<td>3</td>
<td>Pengujian Kekuatan Lentur Papan Komposit</td>
</tr>
<tr>
<td>4</td>
<td>Pengujian Keteguhan Rekat Internal</td>
</tr>
<tr>
<td>5</td>
<td>Pengujian Kuat Pegang Sekrup</td>
</tr>
<tr>
<td>6</td>
<td>Pengaruh Komposisi Flake Eceng Gondok Terhadap Kerapatan</td>
</tr>
<tr>
<td>7</td>
<td>Pengaruh Komposisi Flake Eceng Gondok Terhadap Kadar Air</td>
</tr>
<tr>
<td>8</td>
<td>Pengaruh Perlakuan Terhadap Pengembangan Tebal</td>
</tr>
<tr>
<td>9</td>
<td>Pengaruh Perlakuan Terhadap Pengembangan Daya Serap Air</td>
</tr>
<tr>
<td>10</td>
<td>Pengaruh Perlakuan Terhadap Modulus of Elasticity</td>
</tr>
<tr>
<td>11</td>
<td>Pengaruh Perlakuan Terhadap Modulus of Rupture</td>
</tr>
<tr>
<td>12</td>
<td>Pengaruh Perlakuan Terhadap Internal Bond</td>
</tr>
<tr>
<td>13</td>
<td>Pengaruh Perlakuan Terhadap Kuat Pegang Sekrup</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

1. Kebutuhan bahan baku pembuatan papan komposit ... 52
2. Kerapatan papan komposit pada berbagai perlakuan .. 53
3. Kadar air papan komposit pada berbagai perlakuan ... 53
4. Pengembangan tebal papan komposit pada berbagai perlakuan 53
5. Daya serap air papan komposit pada berbagai perlakuan 54
6. Modulus of Elasticity (MOE) papan komposit pada berbagai perlakuan 54
7. Modulus of Rupture (MOR) papan komposit pada berbagai perlakuan 54
8. Internal Bond (IB) papan komposit pada berbagai perlakuan 55
9. Kuat Pegang Sekrup (KPS) papan komposit pada berbagai perlakuan 55
10. Papan komposit tipe layered composite board dan tipe non layered composite board pada berbagai taraf komposisi flake eceng gondok ... 56
11. Hasil uji statistik sifat fisis mekanis papan komposit 57
I. PENDAHULUAN

A. Latar Belakang

Pertumbuhan jumlah penduduk dan tingkat kesejahteraan masyarakat yang semakin meningkat berkorrelasi positif terhadap demand kayu. Hal ini selain dikarenakan kuantitas kebutuhan total masyarakat terhadap produk kayu dan turunannya yang semakin meningkat, juga lebih disebabkan oleh semakin beragamnya material konstruksi dan produk rumah tangga yang berasal dari kayu dan turunannya.

Sebagai turunan kayu, papan komposit dikembangkan selain untuk meningkatkan efisiensi penggunaan sumberdaya alam, juga untuk meng-cover beberapa kelemahan yang terdapat pada kayu solid. Diantara sifat unggul produk komposit dibanding kayu solid adalah papan komposit fleksibel dalam ukuran, kerapatan papan dapat dibuat sesuai dengan tujuan penggunaan, panil bersifat homogen, serta cacat kayu dapat terdistribusikan secara merata. Di samping itu, papan komposit juga memungkinkan dalam menggunakan bahan baku yang berasal dari limbah industri perkayuan, limbah pembalakan, limbah industri pulp dan kertas, penggunaan hasil hutan non kayu seperti bambu, rotan, dan sawit, serta memungkinkan penggunaan serat tanaman tahunan yang berlignoselulosa, atau bahkan kombinasi dari komponen tersebut yang dapat terus dieksplorasi untuk mencapai efisiensi yang maksimum dalam mendukung zero waste concept.

Sehubungan dengan masih langkanya penelitian papan komposit yang berbasis bahan baku dari serat tanaman, perlu kiranya dilakukan penelitian dasar mengenai kemungkinan penggunaan bahan yang berasal dari serat tanaman.

Eceng gondok yang secara internasional dikenal dengan sebutan water hyacinth, adalah salah satu gulma yang sudah sejak lama menimbulkan permasalahan baik secara ekonomis karena telah menghabiskan banyak dana dalam pemberantasaannya; secara ekologis karena dapat berdampak buruk terhadap lingkungan seperti penangkalan danau atau waduk, penurunan produksi biota
perairan, dan menurunkan *dissolved oxygen* badan air; serta dampak secara sosial seperti dapat mengganggu sistem transportasi perairan dalam bidang pertanian dan wisata.

Di lain pihak keberadaan eceng gondok sebagai bahan berlignoselulosa sama halnya dengan kayu memungkinkan untuk dijadikan produk industri hasil hutan seperti pulp, kertas dan juga bahan baku pembuatan papan komposit.

Penelitian ini mencoba mengembangkan papan komposit modifikasi berbahan baku flake kayu sengon (*Paraserianthes falcataria* Nielson) dan flake eceng gondok (*Eichornia crassipes*) yang direkat bersamaan dengan anyaman sayatan bambu tali (*Gigantochloa apus*) oleh perekat phenol formaldehid. Diharapkan dengan kombinasi ini dapat meningkatkan sifat-sifat panil yang dibuat, mengoptimalkan penggunaan bahan baku dalam rangka menambah nilai guna (*value added*), dan mengeksporasi bahan lain selain kayu untuk dijadikan sumber bahan baku papan komposit.

B. Tujuan

Tujuan yang ingin dicapai dalam penelitian ini adalah:

1. Mengetahui kemungkinan penggunaan eceng gondok (*Eichornia crassipes*) sebagai bahan baku atau bahan pencampur dalam pembuatan papan komposit.
2. Optimasi penggunaan eceng gondok dalam rangka meningkatkan *value added* bahan.
A. Papan Partikel

1. Definisi dan Karakteristik Papan Partikel

Menurut Haygreen dan Bowyer (1982), papan partikel adalah produk panil yang dihasilkan dengan memaparkan partikel-partikel kayu dan sekaligus mengikatnya dengan suatu perekat. Tipe-tipe papan partikel sangat berbeda dalam hal ukuran dan bentuk partikel, jumlah resin yang digunakan, dan kerapatan panil yang dihasilkan sehingga dengan peubah-peubah tersebut sifat-sifat dan kegunaan potensial papan berbeda-beda.

| Tabel 1. Standar sifat fisik dan mekanis papan partikel |
| --- | --- | --- |
| Parameter | Satuan | Base particle board | Veneered particle board |
| Sifat fisik : | | | |
| Kerapatan (ρ) | g/cm² | 0,4-0,9 | 0,4-0,9 |
| Kadar Air (KA) | % | 5-13 | 5-13 |
| Pengembangan Tebal (PT) | % | <12 | <12 |
| Sifat mekanis : | | | |
| Modulus of Rupture (MOR) | kgf/cm² | >82 | >153 |
| Modulus of Elasticity (MOE) | kgf/cm² | >20.400 | >28.600 |
| Internal Bond (IB) | kgf/cm² | >1,5 | >3,1 |
| Kuat Pegang Sekrup (KPS) | kgf | >31 | >51 |
| Sumber : JIS A 5908 1994 |

Malloney (1993) mengklasifikasikan papan partikel ke dalam tiga kelas kerapatan, yakni:

a. *Low density particle board*, yaitu papan partikel yang dibuat dengan kerapatan kurang dari 37 lbs/ft³ (<0,59g/cm³)

b. *Medium density particle board*, yaitu papan partikel yang dibuat dengan kerapatan antara 37-50 lbs/ft³ (0,59-0,80g/cm³)
c. *High density particle board*, yaitu papan partikel yang dibuat dengan kerapatan lebih dari 50 lbs/ft³ (≈0,80g/cm³).

Ukuran, bentuk, orientasi elemen-elemen dalam lembaran panil komposit, sifat-sifat permukaan elemen, tipe dan sumber dari elemen-elemen mempunyai pengaruh yang sangat besar terhadap sifat-sifat akhir dan penampilan papan komposit (Rowell, 1998).

Menurut Malloney (1993), parameter yang mempengaruhi sifat-sifat papan partikel adalah:

a. Spesies kayu, kerapatan kayu, keasaman kayu, kadar ekstraktif dalam kayu, *extraneous material*, dan lokasi tumbuh pohon penghasil kayu

b. *Binder* atau resin yang digunakan sebagai perekat

c. Bahan *additive*

d. Kadar air dan distribusinya pada saat pembuatan lapik (*mat forming*)

e. Pemaparan ukuran partikel

f. Profil kerapatan

g. Pengarahan partikel (*particle alignment*)

h. Kerapatan papan sasaran.

Batasan *wood composite* berkembang menjadi *bio-based composite* karena komposit bukan hanya dapat dibuat dari kayu. Rowell (1998) menyatakan bahwa
secara tradisional sumber dari bio-based composite adalah kayu, dan terus berlangsung sebagai sumber utama. Untuk sejumlah produk-produk baru bio-based composite penggunaan serat-serat menjadi lebih umum dan serat-serat ini dapat berasal dari berbagai sumber tanaman pertanian dan bahan berlignoselulosa lainnya.

2. Sumber dan Tipe Bahan Baku

<table>
<thead>
<tr>
<th>Sumber bio-based resources</th>
<th>Volume (dry metric ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kayu</td>
<td>1.750.000.000</td>
</tr>
<tr>
<td>Straw (jerami)</td>
<td>1.145.000.000</td>
</tr>
<tr>
<td>Stalks (batang, tangkai)</td>
<td>970.000.000</td>
</tr>
<tr>
<td>Sugar cane bagasse</td>
<td>75.000.000</td>
</tr>
<tr>
<td>Reeds (alang-alang)</td>
<td>30.000.000</td>
</tr>
<tr>
<td>Bambu</td>
<td>30.000.000</td>
</tr>
<tr>
<td>Cotton staple (serabut kapas)</td>
<td>15.000.000</td>
</tr>
<tr>
<td>Core (jute, kenaf, hemp)</td>
<td>8.000.000</td>
</tr>
<tr>
<td>Papyrus</td>
<td>5.000.000</td>
</tr>
</tbody>
</table>

Marra (1969) dalam Malloney (1993) menyebutkan bahwa papan partikel dapat dibuat dari berbagai tipe dan ukuran partikel yang meliputi 14 elemen pembentuk papan yang dapat diproduksi dari residu kayu atau material yang tidak cocok sebagai kayu bahan plywood, yang semuanya dapat berkontribusi untuk
mengembangkan konsep produk baru seperti log, lumber, thick veneer, paper fiber, wood flour, dan selulosa.

Pendapat tersebut senada dengan pendapat Hadi (1998) yang menyatakan bahwa industri papan partikel merupakan salah satu usaha yang memanfaatkan kayu berkualitas rendah, limbah kayu, maupun bahan berlignoselulosa lainnya. Oleh karena itu industri ini dapat memanfaatkan limbah eksploitasi, limbah industri perkayuan, kayu bengkok, dolok berkualitas afkir, maupun kayu berdiameter kecil.

3. Pembuatan Papan Partikel

Tahapan pembuatan papan partikel menurut Malloney (1993) adalah sebagai berikut:

a. **Particle preparation**, meliputi semua kegiatan penyiapan partikel baik baik partikel yang berasal dari log maupun dari limbah (residu), seperti sebetan (shaving), pulp chips, potongan plywood, dan serbuk gergaji.

b. **Drying**, adalah kegiatan pengeringan partikel untuk mendapatkan kadar air yang diinginkan. Kadar air setelah malalui tahapan ini diharapkan bisa mencapai 2-4%.

c. **Particle classification**, bertujuan untuk memisahkan ukuran partikel yang kasar dengan partikel yang halus untuk menyiapkan bahan untuk face dan core.

d. **Blending**, proses pengadukan partikel, resin, dan additive, untuk menjadi adonan yang siap dibentuk lapik.

e. **Forming**, proses pembuatan lapik sebelum dikempa panas.

f. **Prepressing**, proses untuk meminimalisasi ukuran tebal lapik dan untuk meningkatkan daya kohesif.

g. **Pressing**, pengempaan lapik dengan suhu dan waktu tetentu.

h. **Finishing**, meliputi kegiatan pengkondisian, pengampelasan ermukaan dan perapihan tepi (trimming).

i. **Post treating**, dalam proses ini berbagai perlakuan untuk meningkatkan kualitas panil diberikan. Perlakuan umum adalah impregnasi dengan bahan pengawet dan fire retardant.
4. Kegunaan Papan Partikel

Hadi (1998) menyatakan bahwa penggunaan papan partikel di lapangan semakin luas yaitu untuk meubel (antara lain meja, kursi, lemari, meja tulis, meja komputer, dan peralengkapan kelas), dan sebagai bahan bangunan (antara lain plafon, dinding pemisah, pintu dan bagian lain yang memikul beban). Pendapat ini senada dengan Widarmana (1984) yang menyatakan bahwa penggunaan panil PANIL kayu pada dasarnya untuk dua macam keperluan umum, yaitu:

a. Penggunaan untuk bangunan yang meliputi penutup (siding) komponen bangunan, sebagai dinding, lantai, atap, langit-langit, sebagai komponen struktural bangunan, sebagai cetakan (bekisting) beton.

b. Penggunaan bukan untuk bangunan meliputi bahan untuk perabotan rumah tangga (furniture), bahan untuk keperluan transport (mobil, kapal dan lain-lain), bahan untuk keperluan kemasan (peti, kontainer, dan lain-lain), industri radio dan televisi serta untuk industri kerajinan.

B. Perekat dan Perekatan

1. Karakteristik Perekat dan Perekatan

Perekat (adhesive) adalah suatu bahan yang mempunyai kemampuan untuk menggabungkan material melalui sentuhan permukaan (Houwink dan Solomon, 1965; Vick, 1999).

Ikatan perekat terhadap komponen kayu telah berperan penting dalam pengembaban faktor efisiensi penggunaan sumber kayu. Secara besar penggunaan perekat berlangsung pada industri konstruksi. Lebih jauh lagi, sejumlah besar penggunaan perekat pada industri bahan bangunan seperti plywood, structural flakeboard, papan partikel, fiberboard, structural framing and timbers, jendela arsitektur, jendela dan bingkai, produk laminasi kayu industri (factory-laminated wood product) dan glass fiber insulation. Perekat digunakan dalam jumlah kecil untuk merakit bahan bangunan dalam perumahan dan konstruksi pabrik, khususnya pada sistem lantai dan dinding berpanel. Sedangkan bahan yang direkat (Adherend) adalah sebuah substrat yang memegang substrat lain oleh perekat. Lebih lanjut yang
dimaksud dengan perekatan (Adhesion) adalah pernyataan untuk dua permukaan yang berlekat bersama melalui interfacial force, ikatan valensi, aksi kunci (interlocking) atau kombinasi dari semuanya (Vick, 1999).

Hadi dan Ruhendi (1986) menyatakan bahwa kualitas perekat erat hubungannya dengan kualitas perekatan yang dihasilkan, dimana kualitas perekat yang baik akan menghasilkan perekatan yang baik pula. Selanjutnya dijelaskan pula bahwa parameter yang penting dalam menentukan kualitas suatu perekat antara lain: kandungan padat perekat, kekentalan perekat, keasaman (pH), working life, dan waktu pematangan (curing time).

Menurut Panshin et al. (1975) peristiwa perekatan dibagi menjadi dua tipe, yaitu:

a. Perekatan mekanis, terjadi apabila suatu cairan masuk kedalam permukaan berpori kemudian mengeras dalam pori-pori tersebut.
b. Perekatan spesifik, terjadi karena adanya gaya tarik menarik perekat dengan bahan yang direkatnya.

Teori yang pertama dipertanyakan karena adanya kenyataan bahwa bahan tidak berpori yang direkat juga dapat melekat satu sama lainnya disebabkan oleh daya fisik dan kimia, sama halnya seperti bergabungnya atom membentuk molekul dan bergabung menjadi benda (Ruhendi, 1986)

2. Jenis-Jenis Perekat

Menurut Houwink dan Solomon (1965), berdasarkan asal bahannya perekat dapat digolongkan kedalam tiga golongan besar, yaitu:

a. Perekat nabati, yaitu perekat yang berasal dari tumbuh-tumbuhan seperti perekat kedelai, perekat tanin, dan perekat tapioka.
b. Perekat hewani, yaitu perekat yang berasal dari hewan seperti kulit hewan, perekat tulang hewan, perekat darah, perekat ikan dan perekat kasein.
c. Perekat sintetis, yaitu perekat yang terbuat dari bahan-bahan organik, yang terbagi lagi menjadi:
1) Perekat *thermoplastic*, yaitu perekat yang mengeras dalam keadaan dingin dan akan melunak bila dipanaskan dan kembali mengeras bila dinginkan, contohnya polivinyl asetat, neoprene dan alifatik resin.

2) Perekat *thermosetting*, yaitu perekat yang mengeras bila dipanaskan dan akan tetap mengeras bila didinginkan kembali serta reaksinya bersifat irreversible, contohnya perekat Urea formaldehid (UF), Melamin Formaldehid (MF), Phenol Formaldehid (PF), dan Resorsinol Formaldehid (RF).

3) Perekat yang terdiri dari dua polimer yang merupakan gabungan dari perekat *thermoplastic* dan perekat *thermosetting*, contohnya perekat nilon.

3. Perekat Phenol Formaldehid

Himmelblau (1995) menyatakan bahwa resin PF untuk panel struktural terdiri dari 2 mol formaldehid per mol phenol untuk menghasilkan lebih dari dua ikatan methylene (-CH₂) per molekul phenol dalam resin. Formula resin mengandung sekitar 55% (dalam berat) phenol, 34% formaldehid, dan 11% NaOH sebelum ditambahkan filler dan extender. Rasio molar phenol terhadap formaldehid dan jumlah NaOH mempengaruhi kekentalan resin dan distribusi berat molekul. Resin dibuat dengan mengkombinasikan phenol formaldehid dalam air dengan katalis Na⁺. NaOH biasanya ditambahkan dalam tahapan untuk mendukung derajat polimerisasi (DP) yang tinggi dalam sebuah porsii resin. Komponen resin dimasak dalam sebuah ketel pada suhu 70-90°C selama beberapa jam sampai tingkat kekentalan yang diinginkan untuk menghasilkan reaksi polimerisasi.
Youngquist (1999) menyatakan bahwa phenol formaldehyd adalah tipe resin yang digunakan dalam produk yang membutuhkan tingkat keawetan dalam pemaparan eksterior, sebagai contoh Oriented Strand Board (OSB), Softwood plywood dan pembatas dinding (siding). Resin ini membutuhkan waktu pengempaan yang lebih lama dan temperatur yang lebih tinggi daripada urea formaldehyd, sehingga membutuhkan konsumsi energi yang lebih besar dan produktivitas yang lebih rendah. Produk yang menggunakan resin phenol formaldehyd memiliki stabilitas dimensi yang lebih rendah karena kadar air yang rendah, yang terdapat pada produk akhir. Warnanya yang gelap dari resin phenol formaldehyd membuatnya tidak cocok untuk aplikasi produk dekoratif seperti panelling dan furniture.

C. Sengon (Paraserianthes falcataria Nielson)

1. Tinjauan Botanis

Sengon merupakan pohon yang termasuk anggota famili Mimosaceae (keluarga petai-petaian) dan merupakan salah satu pohon yang pertumbuhannya sangat cepat. Pertumbuhan selama 25 tahun dapat mencapai tinggi 45 meter dengan diameter batang mencapai 100cm. Mengingat pertumbuhannya yang cepat sengon dijuluki sebagai pohon ajaib (the miracle tree). Pada umur 6 tahun sengon sudah dapat menghasilkan kayu bulat sebanyak 372 m³/ha. Pohon sengon berbatang lurus, tidak berbanir, kulit berwarna kelabu keputih-putihan, licin, tidak mengelupas, dan memiliki batang bebas cabang mencapai 20 meter. Tajuk berbentuk perisai, agak jarang, dan selalu hijau. Sengon berdaun majemuk ganda, berbunga sepanjang tahun dan berbuah pada bulan Juni-November (akhirnya pada musim kemarau). Bunga pohon sengon tersusun dalam malai dengan ukuran daun mahkota yang kecil sekitar 0,5-1cm. Benang sari menonjol lebih panjang dari daun mahkota, warna bunga putih

Pohon sengon akan mencapai ketinggian 7 meter dalam jangka waktu kurang dari setahun, 13-18 meter dalam 3 tahun, 21 meter dalam 4 tahun, dan 30 meter dalam 9-10 tahun, dalam rotasi 8-12 tahun dapat menghasilkan riap tahunan 25-40m³ per Ha. Untuk pertama kalinya pada tahun 1980 digunakan untuk papan partikel, diamana papan partikel yang dihasilkan lebih resisten terhadap rayap dibanding papan partikel yang dibuat dari kayu karet (Prawirohatmodjo, 1992).

2. Sifat Anatomi Kayu Sengon

Tabel 3. *Sifat-sifat kaya sengon*

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat Dasar</th>
<th>Besaran/Ukuran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tekstur</td>
<td>agak kasar dan berkelongkang</td>
</tr>
<tr>
<td>2.</td>
<td>Berat Jenis</td>
<td>0,24-0,49 (rata-rata 0,33)</td>
</tr>
<tr>
<td>3.</td>
<td>Kelas Kuat dan Kelas Awet</td>
<td>IV-V</td>
</tr>
<tr>
<td>4.</td>
<td>MOE</td>
<td>26.200 kgf/cm² (basah)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.600 kgf/cm² (kering)</td>
</tr>
<tr>
<td>5.</td>
<td>MOR</td>
<td>405 kgf/cm² (basah)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>526 kgf/cm² (kering)</td>
</tr>
<tr>
<td>6.</td>
<td>Panjang serat</td>
<td>1.242 mikron</td>
</tr>
<tr>
<td>7.</td>
<td>Diameter serat</td>
<td>46 mikron</td>
</tr>
<tr>
<td>8.</td>
<td>Tebal dinding serat</td>
<td>3,3 mikron</td>
</tr>
<tr>
<td>9.</td>
<td>Diameter lumen</td>
<td>39,4 mikron</td>
</tr>
<tr>
<td>10.</td>
<td>Penyusutan</td>
<td>2,5 % (radial)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5,2% (tangensial)</td>
</tr>
</tbody>
</table>

Sumber: Martawijaya et al. (1989)

Menurut Mandang dan Pandit (1997), kaya sengon memiliki karakteristik sebagai berikut:

Ciri umum: warna kayu teras dan gubal pada pohon muda sukar dibedakan, sedangkan pada pohon tua warna teras putih sampai cokelat kemerahan atau kuning
nuda sampai cokelat kemerahan, sedikit corak, dengan tekstur agak kasar sampai kasar, arah serat berpadu kadang lurus, serta nilai kekerasan yang agak lunak.

Ciri anatomi: Pori tatabaur, bentuk bundar sampai bundar telur, soliter dan berganda radial yang terdiri atas 2-3 pori, jumlahnya sekitar 4-7 per mm², diameter tangensial sekitar 160-340 mikron, bidang perporasi sederhana, parenkimnya scanty sampai selubung, kebanyakan bertipe apotriknal baur yang terdiri atas 1-3 sel yang membentuk garis tangensial diantara jari-jari, jari-jari umumnya sempit yang terdiri atas 1-2 seri, jumlahnya 6-12 per mm arah tangensial, komposisi selnya homoseluler dan hanya terdiri atas sel-sel baring.

Sifat kegunaan: sebagai bahan bangunan perumahan utama di pedesaan, peti, papan partikel, papan serat, papan wol, papan semen, pulp dan kertas, kelom dan barang kerajinan.

3. Sifat Pengerjaan dan Kegunaan

Menurut Sutigno (1987), kayu sengon dapat dikeritingkan tanpa cacat yang berarti. Cacat pengeringan yang biasa terjadi adalah melengkung atau memilin. Penyusutan arah radial 2,5% dan arah tangensial 5,2% dari basah sampai kering tanur.

Kayu sengon dapat digunakan sebagai bahan bangunan (papan, balok, tiang, kasau, dll.), selain itu dapat juga dipakai untuk pembuatan peti, vinir, pulp, papan semen, wol kayu, papan serat, papan korek api, dan kayu bakar (Martawijaya *et al.*, 1989).

D. Eceng Gondok (*Eichornia crassipes*)

1. Deskripsi Eceng gondok

Eceng gondok (*Eichornia crassipes* (Mart) Solms) merupakan jenis tumbuhan air yang termasuk genus *Eichornia*, famili Pontedericeae, kelas monocotyledonae dan divisi Phanerogamae (Stodala, 1967 dalam Musbakri 1999)

Menurut Suprapti (2000), eceng gondok memiliki daun berbentuk bulat telur dan berwarna hijau segar mengkilat, berbunga ungu muda (nila), daun ditopang oleh
bingkai daun (*petioles*) berbentuk silinder memanjang sampai 1 meter dengan diameter 1-2 cm yang berisi serat kuat dan lemas serta mengandung banyak air. Eceng gondok memiliki dua cara perkembangbiakan yaitu dengan biji dan tunas (*stolon*) yang berada di atas akar. Di samping itu, eceng gondok memiliki kemampuan merubah pH air di lingkungan tempat tumbuhnya. Suhu ideal untuk pertumbuhannya berkisar antara 28°-30°C dengan derajat keasaman (pH) antara 4-12.

2. Eceng Gondok Sebagai Gulma

Menurut Sastroumo (1977) eceng gondok tiap tahun berbunga dan setelah 20 hari terjadi penyerbukan, buah masak, lepas dan pecah kemudian biji masak ke dalam air. Eceng gondok merupakan gulma lingkungan perairan dan merupakan jenis tumbuhan yang agresif. Tanaman ini bukan tanaman asli daerah Indonesia yang mampu menguasai vegetasi alami dan menghambat pertumbuhan jenis-jenis asli bahkan memusnahkan.

Keberadaan eceng gondok sebagai gulma yang sulit diberantas menimbulkan berbagai masalah bukan saja di Indonesia, tetapi juga di beberapa negara lain diseluruh belahan dunia yang sejak lama mendapatkan permasalahan baik sosial, ekonomi maupun lingkungan oleh keberadaan eceng gondok.

Karena telah banyak merugikan dan telah banyak menelan biaya yang sangat besar dalam pemberantasannya, di Amerika eceng gondok mendapat julukan Million Dollar Weed, sedangkan di Thailand disebut Praktob Java yang artinya penyakit dari Jawa (karena kebetulan Thailand mendapatkan eceng gondok dari Jawa), dan di beberapa negara lain sering disebut Demon, Blue Devil, Bengal Terror, Curse Bengai, dan Cinderella of the plant world (Gopal dan Sharma, 1981; Suprapti 2000).

3. Penyebaran Eceng Gondok di Indonesia

Eceng gondok merupakan tanaman asli Brazil yang didatangkan ke Indonesia tahun 1894 yang semula ditujukan untuk melengkapi koleksi tanaman di Kebun Raya Bogor, sudah lebih 106 tahun berada di Indonesia dan telah menyebar ke seluruh
perairan yang ada memenuhi setiap jengkalnya, baik waduk, rawa, maupun sungai di perairan Jawa, Sumatera, Kalimantan, dan di daerah lainnya. (Suprapti, 2000).

Tjitosoedjirdjo et al. (1993) menjelaskan bahwa permasalahan yang ditimbulkan oleh keberadaan eceng gondok di Rawa Pening sudah lama dan sekarang telah menutupi kawasan seluas 400 hektar. Hasil penelitian menunjukkan tingkat pertumbuhan relatif di Danau Rawa Pening adalah 2,4% per hari dan berlipat ganda 28,9 hari berdasar berat segar.

4. Permasalahan Yang Ditimbulkan Oleh Keberadaan Eceng Gondok

Ding et al. (2000) menyebutkan bahwa eceng gondok sekarang ini telah terdistribusi secara alami di 17 propinsi di China dan menimbulkan kerugian lebih dari 10 propinsi. Adapun kerugian terbesar yang ditimbulkannya adalah kerugian ekonomi, sosial, dan lingkungan yaitu menutupi jalannya air, mempengaruhi transportasi air untuk pertanian dan pariwisata, menutupi danau dan sungai, menurunkan oksigen terlarut (dissolved oxygen) pada badan air, dan menurunkan produksi perairan.

5. Penelitian Pemanfaatan, dan Manfaat Eceng Gondok

Banyak peneliti melaporkan bahwa eceng gondok dapat menyerap zat pencemar dalam air dan dapat dimanfaatkan untuk mengurangi beban pencemaran lingkungan. Susilo (1977) dalam Aningsih (1999) melaporkan bahwa dalam waktu 24 jam eceng gondok mampu menyerap logam Cd, Hg, dan Ni sebesar 1,35 mg/g, 1,77 mg/g dan 1,16 mg/g bila logam itu berada dalam keadaan tidak tercampur, dan menyerap Cd
1.23 mg/g, Hg 1,88 mg/g dan Ni 0,35 mg/g berat kering apabila logam-logam itu berada dalam keadaan tercampur dengan logam lain dalam air.

Menurut Gopal dan Sharma (1981) kemungkinan pemanfaatan eceng gondok adalah:

a. Sebagai pakan ternak, walaupun memungkinkan untuk dibuat pakan ternak, penggunaannya sangat terbatas karena beberapa pertimbangan seperti kadar air yang terlalu tinggi, level yang rendah dari digestable protein (0,4%) dan kandungan yang rendah digestable nutrient (4,7%), serta cepat busuk.

b. Sebagai mulsa dan kompos, kadar air yang tinggi membuatnya cocok untuk dijadikan mulsa dan kompos untuk lahan pertanian.

c. Pulp dan kertas
d. Produk kimia seperti Potasium dan KCl
e. Sumber gibberelin, hormon tumbuh pada tumbuhan
f. Biogas dan power alcohol.

6. Kandungan Kimia Eceng Gondok

Menurut Zerrudo et al. (1979), tangkai daun (petioles) eceng gondok mengandung 34,6% fiber berdasarkan berat kering oven, dengan panjang fiber rata-rata 1,53 mm dan berdinding tipis, mengandung sedikit lignin, holoselulosa, pentosan yang tinggi, kadar abu yang tinggi, tetapi mengandung sedikit silika, ekstraktif cukup larut dalam alkohol-benzena tetapi larut banyak dalam NaOH 1%.

<table>
<thead>
<tr>
<th>Komposisi kimia eceng gondok</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>88,33</td>
</tr>
<tr>
<td>Abu</td>
<td>27,52</td>
</tr>
<tr>
<td>Total carbon</td>
<td>32,62</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>1,96</td>
</tr>
<tr>
<td>CaO</td>
<td>2,414</td>
</tr>
<tr>
<td>MgO</td>
<td>0,8756</td>
</tr>
<tr>
<td>P2O5</td>
<td>0,6319</td>
</tr>
<tr>
<td>K2O</td>
<td>4,583</td>
</tr>
</tbody>
</table>

Sumber: Sing and Ghosh (1983)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>stem</th>
<th>leaf</th>
<th>petioles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar abu % berat kering</td>
<td>22.29</td>
<td>22.67</td>
<td>14.62</td>
</tr>
<tr>
<td>Silika %</td>
<td>1.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bahan terlarut dalam air dingin %</td>
<td>29.81</td>
<td>10.35</td>
<td>15.30</td>
</tr>
<tr>
<td>Kelarutan dalam NaOH 1%</td>
<td>24.71</td>
<td>11.35</td>
<td>16.39</td>
</tr>
<tr>
<td>Kelarutan dalam alkohol-benzen %</td>
<td>56.59</td>
<td>51.67</td>
<td>43.77</td>
</tr>
<tr>
<td>Pentosan %</td>
<td>13.65</td>
<td>4.75</td>
<td>6.42</td>
</tr>
<tr>
<td>Lignin</td>
<td>15.83</td>
<td>17.52</td>
<td>18.20</td>
</tr>
<tr>
<td>Total selulosa</td>
<td>8.67</td>
<td>6.02</td>
<td>7.42</td>
</tr>
<tr>
<td></td>
<td>57.65</td>
<td>49.85</td>
<td>64.32</td>
</tr>
</tbody>
</table>

Sumber: Joedodibroto et al. (1973) dalam Gopal dan Sharma (1981)

Menurut Gopal dan Sharma (1981) eceng gondok mengandung 11,3% lignin, 13,3% pentosan, 21,9% selulosa, dan hanya 0,018% pati. Kadar selulosa dilaporkan ditemukan dalam kisaran nilai yang sangat besar yaitu 26,1%; 32%; 42%; dan 40-50%, dimana selulosa yang dihasilkan sebaik kapas dengan karakteristik serat sebagai berikut: panjang 1,53mm, lebar 0,023mm, tebal dinding sel 3,5μm dengan kadar abu yang tinggi.

E. Bambu Tali (*Gigantochloa apus* Kurz.)

1. Sifat Umum Bambu

Bambu adalah tumbuhan yang batangnya berbentuk buluh, berua, berongge, mempunyai cabang, berimpang dan mempunyai daun buluh yang menonjol. Berbeda dengan rotan, buluh bambu sulit dibengkokan (Heyne, 1987).

Sutiyono et al. (1992) dalam Misdarti (2000) menyatakan bahwa penyebaran alami bambu sangat dibatasi oleh faktor iklim dimana secara umum memerlukan suhu udara 9-36°C, RH minimum 80% dengan curah hujan 1000mm tiap tahun. Oleh karena itu daerah penyebaran terbatas hanya di daerah tropis sampai subtropis, secara

2. Bambu Tali (Gigantochloa apus Kurz.)

Menurut Dransfield dan Wijaya (1995), di Indonesia Gigantochloa apus dikenal dengan nama bambu tali, pring tali, pring apus (Jawa), dan awi tali (Sunda). Bambu tali sangat penting dalam kehidupan masyarakat Indonesia di pedesaan karena bambu ini memiliki berbagai macam kegunaan, yaitu untuk alat-alat rumah tangga, meubel, tali dan anyaman. Batang bambu dapat digunakan untuk bahan bangunan seperti atap, dinding, perancah dan jembatan, dan untuk alat musik. Bambu tali tumbuh berumpun dengan tinggi 8-30m, diameter 4-13cm dan tebalnya sampai 1,5cm. Warna buluhnya hijau keabuan sampai terang atau hijau kekuningan, mengkilat, ketikas masih muda ditutupi oleh lapisan lilin yang berwarna putih. Panjang ruas 20-60cm atau kurang dari 75cm, bukunya ramping dan menonjol keluar, helaian daun berbentuk lanse, ukuran 13-49cm, ketika masih muda, permukaan bagian bawahnya berbulu tipis dan sepanjang helaian daunnya ditumbuhi oleh bulu cokelat gelap. Komponen kimia dari bambu tali adalah holoselulosa 52,1-54,7%, pentosan 19,1-19,3%, lignin 24,8-25,8%, abu 2,7-2,9%, dan silika 1,8-5,2%.
<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat yang diuji</th>
<th>Betung</th>
<th>Gombong</th>
<th>Kuning</th>
<th>Tali</th>
<th>Sembilang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Berat Jenis</td>
<td>0.61</td>
<td>0.35</td>
<td>0.52</td>
<td>0.65</td>
<td>0.71</td>
</tr>
<tr>
<td>2.</td>
<td>Susut Volume (%)</td>
<td>10.62</td>
<td>12.36</td>
<td>11.29</td>
<td>12.45</td>
<td>11.05</td>
</tr>
<tr>
<td></td>
<td>Basah-KU</td>
<td>4.99</td>
<td>4.96</td>
<td>4.74</td>
<td>4.60</td>
<td>4.49</td>
</tr>
<tr>
<td></td>
<td>Susut tebal (%)</td>
<td>6.02</td>
<td>7.94</td>
<td>4.31</td>
<td>5.83</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td>Basah-KU</td>
<td>4.30</td>
<td>5.75</td>
<td>5.47</td>
<td>5.32</td>
<td>7.03</td>
</tr>
<tr>
<td></td>
<td>Susut lebar (%)</td>
<td>4.81</td>
<td>6.58</td>
<td>3.19</td>
<td>6.30</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td>Basah-KU</td>
<td>4.83</td>
<td>5.96</td>
<td>4.19</td>
<td>3.60</td>
<td>7.57</td>
</tr>
<tr>
<td>3.</td>
<td>MOR (kgf/cm2)</td>
<td>1638</td>
<td>1356</td>
<td>1148</td>
<td>-*</td>
<td>1824</td>
</tr>
<tr>
<td>4.</td>
<td>MOE (kgf/cm2)</td>
<td>131192</td>
<td>98294</td>
<td>76205</td>
<td>-*</td>
<td>143207</td>
</tr>
<tr>
<td>5.</td>
<td>Tekan // serat (kgf/cm2)</td>
<td>605</td>
<td>521</td>
<td>455</td>
<td>-*</td>
<td>627</td>
</tr>
<tr>
<td>6.</td>
<td>Tarik // serat (kgf/cm2)</td>
<td>2127</td>
<td>1914</td>
<td>1322</td>
<td>2004</td>
<td>1907</td>
</tr>
</tbody>
</table>

Catatan: *) tidak dapat diuji dengan peralatan karena dinding bambu terlalu tipis

III. METODOLOGI PENELITIAN

A. Bahan dan Alat

1. Bahan

Bahan yang digunakan dalam penelitian ini terdiri dari:

a. Papan kayu sengon (*Paraserianthes falcatoria*) berukuran 20cmx2cmx400cm yang didapat dari toko bangunan di daerah Dramaga, Bogor.

b. Tangkai daun (*petioles*) eceng gondok (*Eichornia crassipes*) yang didapat dari Situ Lido Cijeruk, Bogor.

c. Anyaman sayatan bambu tali (*Gigantochloa apus* Kurz.) dengan ukuran 300mmx300mmx1,87mm.

d. Perekat Phenol Formaldehid (PF) produksi PT. Palmolite Adhesive Industry.

e. Parafin berbentuk liquid sebagai *additive*.

f. Aquades

2. Alat

B. Waktu dan Tempat Penelitian

C. Metode Penelitian

1. Pembuatan Flake
 a. Flake petioles Eceng Gondok
 Eceng gondok yang masih utuh bagian cormus-nya dipotong bagian ujung dan
 pangkalnya dengan maksud untuk menghilangkan bagian daun dan akarnya sehingga
 didapat petioles eceng gondok bebas akar dan daun. Selanjutnya petioles yang
 didapat dipotong dengan ukuran panjang 2-3 cm, lalu dijemur dan diangin-anginkan
 dibawah terik matahari selama ± 7 hari untuk mendapatkan flake dengan kadar air
 kering udara.

b. Flake Kayu Sengon
 Pembuatan flake dari kayu sengon dilakukan secara mekanis menggunakan
 mesin flaker. Adapun prosedur pembuatannya adalah, papan kayu sengon yang
 didapat dari hasil konversi log dipotong secara longitudinal dengan ukuran panjang 2-
 3 cm menggunakan circular saw. Potongan yang didapat kemudian di proses di mesin
 flaker. Untuk mendapatkan ukuran yang relatif homogen, flake yang didapat
 selanjutnya disaring menggunakan screen berukuran lubang ± 5 mesh, selanjutnya
 dilakukan pengovenan selama satu hari untuk mendapatkan flake dengan kadar air 5-
 10%.

2. Pembuatan Anyaman Sayatan Bambu
 Anyaman sayatan bambu tali yang dipakai berasal dari sayatan bambu tali yang
 bebas kulit dan bebas nodus untuk mendapatkan bahan dengan struktur yang
 homogen. Anyaman sayatan bambu tali yang dipakai berukuran 300mmx300mmx1,87mm. Adapun cara pembuatannya adalah bambu dipotong
 dengan ukuran panjang 40cm, kemudian dibuang bagian nodusnya. Setelah itu baru
 dibelah sampai ukuran lebar 0,5cm-1cm. Hasil belahan selanjutnya dibuang bagian
 kulitnya dan disayat secara manual menggunakan pisau tajam untuk mendapatkan
 sayatan sesuai dengan ketebalan yang diinginkan, kemudian sayatan diampelas dan
 dianyam menggunakan pola atau motif anyaman ganda dua.
3. Penentuan Kadar Air *Flake* dan Anyaman Sayatan Bambu Tali

Penentuan kadar air didasarkan atas rasio jumlah air dalam bahan terhadap berat kering tanur bahan yang akan diuji kadar airnya, dimana jumlah air dalam bahan merupakan selisih berat pada kadar air tertentu dengan berat kering tanurnya.

Flake yang akan diuji kadar airnya, diambil sampelnya kemudian ditimbang untuk mendapatkan beratnya (B1). Selanjutnya sampel yang telah ditimbang, dioven pada suhu 103±2°C sampai beratnya konstan, lalu ditempatkan dalam eksikator selama 15-20 menit sampai sampel dingin. Sampel yang sudah didinginkan ditimbang untuk mendapatkan beratnya (B2). Untuk mendapatkan kadar air sampel dihitung melalui rumus:

\[
KA (%) = \frac{B1 - B2}{B2} \times 100
\]

dimana:

- B1 adalah berat sampel pada kadar air tertentu (g)
- B2 adalah berat sampel pada kadar air kering tanur (g)

4. Penentuan *Resin Solid Content (RSC)* Perekat

Dikarenakan perekat yang dipakai adalah *total adhesive base, maka resin solid content* perekat diduga dari *Solid Content (SC)* perekat. Adapun prosedur penentuan *solid content* perekat adalah sebagai berikut:

a. Penimbangan wadah kosong menggunakan neraca elektronik untuk mendapatkan berat wadah kosong.

b. Kemudian sample perekat yang akan diuji dimasukkan ke dalam wadah, lalu ditimbang untuk mendapatkan beratnya, lalu dioven pada suhu 103±2°C sampai beratnya konstan.

c. Sampel dan wadah yang sudah di oven dimasukkan ke dalam desikator dan dibiarkan selama 15-20 menit sampai dingin, selanjutnya ditimbang untuk menentukan beratnya.
d. Solid Content perekat dihitung dengan rumus:

\[
SC \, (\%) = \frac{(W_2 - W_1) - (W_3 - W_1)}{W_3 - W_1} \times 100\%
\]

dimana:
W_1 = Berat wadah kosong (g).
W_2 = Berat sampel perekat dalam wadah (g).
W_3 = Berat Sampel perekat dalam wadah setelah dioven (g).

5. Perhitungan Keperluan Bahan Baku

Banyaknya keperluan bahan baku sangat ditentukan oleh komposisi bahan baku, ukuran papan sasaran, kerapatan papan sasaran, kadar air bahan baku, jenis bahan baku, RSC perekat, dan tipe papan. Tipe papan dalam hal ini adalah papan tanpa lapisan anyaman sayatan bambu tali (Non Layered Composite Board/NLCB) dan papan berlapis anyaman sayatan bambu tali (Layered Composite Board/LCB).

a. Keperluan Bahan Baku Untuk Non Layered Composite Board (NLCB)

Kerapatan papan sasaran 0,7 g/cm³, ukuran papan 30x30x1 cm, persentase perekat terhadap berat kering tanur bahan 10%, dan persentase wax dalam hal ini parafin yang dipakai adalah 1% terhadap berat kering tanur bahan.

\[
\text{Kebutuhan bahan baku lignoselulosa total pada kadar air 0}\% = \frac{100}{100+10+1} \times 30 \times 30 \times 1 \times 0,7 \approx 568 \text{ g}
\]

\[
\text{Kebutuhan perekat (g)} = \frac{\{10\% \times 568 \text{ g}\} + \text{(toleransi)}}{\text{RSC}}
\]

\[
\text{Kebutuhan parafin (g)} = \{1\% \times 568 \text{ g}\} + \text{(toleransi)}
\]

\[
\text{Jika rasio kebutuhan flake eceng gondok terhadap flake kayu sengon} = \frac{X}{Y}, \text{maka:}
\]

\[
\text{Kebutuhan flake eceng gondok} = \left(\frac{X}{X+Y} \times 568 \text{ g} + \text{(toleransi)} \right) \times 1,8^*
\]

\[
\text{Kebutuhan flake kayu sengon} = \left(\frac{Y}{X+Y} \times 568 \text{ g} + \text{(toleransi)} \right) \times 1,8^*
\]
b. Keperluan Bahan Baku Untuk *Layered Composite Board (LCB)*

Kerapatan papan sasaran 0,7 g/cm³, ukuran papan 30cmx30cmx1cm, persentase perekat berat kering tanur bahan 10%, dan persentase wax yang dipakai adalah 1% terhadap berat kering tanur bahan.

- Kebutuhan bahan baku lignoselulosa total pada kadar air 0% adalah:

\[\frac{100}{100 + 10 + 1} \times 30 \times 30 \times 30 \times 0,7 \approx 568 \text{ g}\]

- Jika berat sepaG ajar anyaman sayatan bambu adalah \(Z\) g, maka kebutuhan *flake* total adalah 568 - \(Z\) g

- Kebutuhan perekat (g) = \(\frac{((10\% \times 568\text{g}) + \text{toleransi})}{RSC}\)

- Kebutuhan Parafin (g) = \((1\% \times 568\text{g}) + \text{toleransi})\)

- Jika rasio kebutuhan *flake* eceng gondok terhadap *flake* kayu sengon = \(X : Y\), maka:

- Kebutuhan *flake* eceng gondok = \(\left(\frac{X}{X+Y} \times (568 - Z \text{g}) + \text{toleransi}\right) \times 1,3^*\)

- Kebutuhan *flake* kayu sengon = \(\left(\frac{Y}{X+Y} \times (568 - Z \text{g}) + \text{toleransi}\right) \times 1,3^*\)

\(^\) S adalah KA dalam bentuk desimal.

Contoh: jika KA=5% maka \(S=0,05\)

6. Skema Pembuatan Papan Komposit

Skema pembuatan papan secara umum dapat di lihat pada Gambar 1.

7. Pembuatan Contoh Uji

Papan yang sudah di- trimming, lalu dibuat pola pemotongan seperti gambar dibawah ini:
Gambar 1. Skema umum pembuatan papan komposit
Keterangan:
- a. Contoh uji kadar air dan kerapatan ukuran 10x10cm
- b. Contoh uji pengembangan tebal dan daya serap air ukuran 5x5cm
- c. Contoh uji kekuatan lentur ukuran 20cmx5cm
- d. Contoh uji internal bonding ukuran 5cmx5cm
- e. Contoh uji kuat pegang sekrup ukuran 5cmx10cm

8. Pengujian Sifat Fisis Mekanis Papan Komposit

Pengujian sifat fisis dan mekanis papan pada penelitian ini didasarkan atas standar pengujian papan partikel JIS A5908 1994.

a. Sifat Fisis Papan Komposit

1) Kerapatan (Density)

Kerapatan adalah perbandingan antara berat kering tanur sampel papan dengan volume kering udaranya. Bila dirumuskan adalah sebagai berikut:

\[\text{Kerapatan (g/cm}^3\text{)} = \frac{B1}{VKU} \]

dimana:
- \(B1 \) = Berat kering udara sampel (g)
- \(VKU \) = Volume kering udara sampel (cm\(^3\))

2) Kadar Air (Moisture Content)

Contoh uji yang dipakai sama dengan contoh uji untuk penentuan kerapatan. Kerapatan merupakan rasio dalam persen antara banyaknya air dalam contoh uji terhadap berat kering tanur contoh uji papan komposit.

Adapun prosedurnya adalah sebagai berikut: contoh uji ditimbang untuk menentukan berat awal (B1), kemudian dimasukan ke dalam oven pada suhu 103±2°C. Setelah dioven dan didinginkan dalam eksikator, kemudian contoh uji ditimbang dan dioven lagi sampai beratnya konstan (B2). Bila dirumuskan adalah sebagai berikut:

\[\text{Kadar air (\%)} = \frac{B1 - B2}{B2} \times 100\% \]
3) Pengembangan Tebal

Contoh uji diukur tebalnya (T), lalu direndam selama 24 jam secara horizontal ±3 cm dibawah permukaan air, kemudian diukur lagi dimensinya (T2). Besarnya pengembangan dihitung dengan rumus:

\[
Pengembangan\ Tebal\ (\%) = \frac{T2-T1}{T2} \times 100
\]

4) Daya Serap Air

Contoh uji yang digunakan sama dengan contoh uji pengembangan tebal. Contoh uji ditimbang (B1), setelah itu direndam selama 24 jam dalam air, kemudian ditimbang lagi (B2). Daya serap air dihitung dengan rumus:

\[
Daya\ serap\ air\ (\%) = \frac{B2-B1}{B1} \times 100
\]

b. Pengujian Sifat Mekanis Papan Komposit

1) Modulus Patah atau Modulus of Rupture (MOR)

Pengujian dilakukan sampai contoh uji patah dengan menggunakan alat penguji Universal Testing Machine (UTM) dengan jarak sangga 15 cm. Nilai MOR dihitung dengan rumus:

\[
MOR\ (kg/cm^2) = \frac{3PL}{2bh^2}
\]

dimana:
\[
P = \text{Beban patah (kg)}
\]
\[
L = \text{Panjang bentang (cm)}
\]
\[
b = \text{Lebar contoh uji (cm)}
\]
\[
h = \text{Tebal contoh uji (cm)}
\]

2) Modulus Elastisitas atau Modulus of Elasticity (MOE)

Nilai MOE dihitung dengan rumus:
MOE (kg/cm²) = \frac{ΔPL^3}{4ΔYbh^3}
dimana:
P = Beban sebelum batas proporsi (kg)
L = Panjang bentang (cm)
Y = Lenturan pada beban sebesar P (cm)
b = Lebar contoh uji (cm)
h = Tebal contoh uji (cm)

Cara pengujian MOE dan MOR disajikan pada gambar dibawah ini:

Gambar 3. Pengujian kekuatan lentur papan komposit

3) Keteguhan Rekat Internal atau Internal Bond (IB)

Contoh uji direkatkan pada dua buah blok lempengan besi kemudian ditarik sejajar permukaan papan dengan beban sebesar P dengan alat Universal Testing Machine. Nilai internal bond ditetapkan dengan rumus:

\[IB (kg/cm^2) = \frac{P}{A} \]
dimana:
IB = Internal Bond (kg/cm²)
P = Besar beban maksimum (kg)
A = Luas contoh uji (cm²)

Adapun cara pengujian keteguhan rekat seperti disajikan pada gambar berikut:

Gambar 4. Pengujian keteguhan rekat internal
4) Kuat Pegang Sekrup atau *Screw Holding Power (SHP)*

Penguian kuat pegang sekrup tegak lurus permukaan adalah sebagai berikut:
contoh uji dipasangi sekrup berdiameter 3,1 mm hingga mencapai kedalaman 8mm. Kemudian contoh uji diapit kanan dan kiri. Sekrup kemudian ditarik ke atas hingga beban maksimum, yaitu sampai sekrup tercabut. Kuat pegang sekrup dinyatakan oleh besarnya beban maksimum yang dicapai dalam satuan kilogram. Cara pengujiannya seperti tampak pada gambar di bawah ini.

![Gambar 5. Penguian kuat pegang sekrup](image_url)

9. **Pengolahan Data**

Rancangan percobaan yang dipakai dalam penelitian ini adalah rancangan acak faktorial berbasis rancangan acak lengkap dengan 2 faktor perlakuan yakni:
Faktor A: Komposisi flakes eceng gondok dan flakes kayu sengon yang terdiri dari 4 taraf:

- **Taraf 1**: rasio flakes eceng gondok terhadap flakes kayu sengon = 0% : 100%
- **Taraf 2**: rasio flakes eceng gondok terhadap flakes kayu sengon = 10% : 90%
- **Taraf 3**: rasio flakes eceng gondok terhadap flakes kayu sengon = 20% : 80%
- **Taraf 4**: rasio flakes eceng gondok terhadap flakes kayu sengon = 30% : 70%

Faktor B: Struktur lapisan panil komposit yang terdiri dari 2 taraf:

- **Taraf 1**: Non Layereed Composite Board (NLCB)
- **Taraf 2**: Layered Composite Board (LCB)
Perlakuan yang diaplikasikan adalah kombinasi dari masing-masing taraf dari faktor A dan faktor B, dimana pengulangan dilakukan sebanyak 2 kali. Sehingga untuk penelitian ini diperlukan $4 \times 2 \times 2 = 16$ papan. Adapun bila disimbolkan, perlakuan yang dimaksud adalah: a_0b_0, a_1b_0, a_2b_0, a_3b_0, a_0b_1, a_1b_1, a_2b_1, dan a_3b_1.

Model statistika untuk penelitian ini adalah sebagai berikut:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$$

dimana:
- $i = 0,1,2,3 ; j = 1,2 ; k = 1,2$
- Y_{ijk} = Nilai pengamatan pada satuan percobaan ke-k yang memperoleh kombinasi perlakuan taraf ke-i dari faktor A dan taraf ke-j dari faktor B.
- μ = Nilai tengah populasi
- α_i = Pengaruh aditif taraf ke-i dari faktor A
- β_j = Pengaruh aditif taraf ke-j dari faktor B
- $(\alpha\beta)_{ij}$ = Pengaruh interaksi taraf ke-i faktor A dan taraf ke-j faktor B.
- ε_{ijk} = Pengaruh galat dari satuan percobaan ke-k yang memperoleh kombinasi perlakuan ij.

Asumsi dasar yang dipakai dari model di atas adalah galat percobaan harus timbul secara acak, menyebar secara bebas dan normal dengan nilai tengah sama dengan nol dan ragam σ^2 atau dituliskan sebagai $\varepsilon_{ijk} \sim \text{NI}(0, \sigma^2)$.

Model yang dipakai adalah model tetap dimana hanya berurusan dengan taraf-taraf faktor A dan faktor B yang tetap. Dalam hal ini kesimpulan yang ditarik hanya menyangkut taraf faktor yang dicobakan.

Asumsi yang diperlukan untuk model tetap penelitian ini adalah sebagai berikut:

$$\sum_i a_i = \sum_j \beta_j = \sum_i (\alpha\beta)_{ij} = \sum_j (\alpha\beta)_{ij} = 0$$

Hipotesis yang perlu diuji dalam model tetap ini adalah:

a. $H_0 : (\alpha\beta)_{ij} = 0$, artinya tidak ada pengaruh interaksi terhadap respon yang diamati.

$H_1 : (\alpha\beta)_{ij} \neq 0$, artinya ada pengaruh interaksi terhadap respon yang diamati.
b. H0 : $\alpha = 0$, artinya tidak ada pengaruh dari faktor A terhadap respon yang diamati.

H1 : $\alpha \neq 0$, artinya ada pengaruh dari faktor A terhadap respon yang diamati.

c. H0 : $\beta = 0$, artinya tidak ada pengaruh dari faktor B terhadap respon yang diamati.

H1 : $\beta \neq 0$, artinya ada pengaruh dari faktor B terhadap respon yang diamati.

Hipotesis tentang pengaruh perlakuan diuji melalui : $F_{hit} = KT/KTG$

Jika :

- $F_{hit} > F_{\alpha(v1,v2)}$ maka tolak H0
- $F_{hit} < F_{\alpha(v1,v2)}$ maka terima H0

Dalam penelitian ini, jika terdapat pengaruh interaksi yang nyata atau sangat nyata maka akan dilakukan uji lanjut Dunnet untuk melihat perlakuan yang berbeda terhadap kontrol. Selain itu dilakukan juga perbandingan antara nilai rataan hasil pengujian untuk masing-masing sifat fisik-mekanis papan komposit yang dibuat dengan nilai standar yang dipersyaratkan oleh standar JIS A 5908 1994 dan SNI-03 2105 1996.
IV. HASIL DAN PEMBAHASAN

A. Nomenklatur

Kombinasi perlakuan yang diaplikasikan terdiri dari non layered composite board dengan taraf flake eceng gondok 0% (a₀b₀), 10% (a₁b₀), 20% (a₂b₀), dan 30% (a₃b₀), serta layered composite board dengan taraf komposisi flake eceng gondok 0% (a₀b₁), 10% (a₁b₁), 20% (a₂b₁), dan 30% (a₃b₁).

B. Sifat Fisis Papan Komposit

1. Kerapatan (Density)

Kerapatan (density) menunjukan banyaknya massa zat persatuan volume, dimana nilai kerapatan yang tinggi biasanya mengindikasikan kekuatan yang tinggi pula.

Nilai kerapatan (tertera pada Lampiran 2) untuk tiap kombinasi perlakuan menunjukkan hasil yang bervariasi, dengan kisaran antara 0,62 g/cm³ untuk papan komposit yang mendapat perlakuan a₀b₀ sampai 0,69g/cm³ untuk papan yang mendapat kombinasi perlakuan a₃b₀.

Analisis sidik ragam (analysis of variance) membuktikan bahwa pada selang kepercayaan 95% atau taraf nyata 5%, kerapatan papan komposit yang dihasilkan hanya dipengaruhi oleh komposisi flake eceng gondok, sedangkan tipe lapisan serta interaksi faktor komposisi flake eceng gondok dan faktor tipe lapisan tidak berpengaruh nyata terhadap kerapatan papan komposit yang dihasilkan.

Kerapatan papan komposit cenderung meningkat seiring pertambahan taraf komposisi eceng gondok yang diaplikasikan pada non layered composite board, kecuali untuk komposisi flake eceng gondok dari taraf 0% sampai 20% pada layered composite board menunjukkan nilai yang konstan sebesar 0,64 g/cm³ (Gambar 6).

Kerapatan papan komposit berturut-turut untuk papan komposit yang mendapat perlakuan a₀b₀, a₀b₁, a₁b₀, a₁b₁, a₂b₀, a₂b₁, a₃b₀, a₃b₁ berturut-turut adalah sebesar 0,62
0,64 g/cm³; 0,63 g/cm³; 0,64 g/cm³; 0,65 g/cm³; dan 0,68 g/cm³ dengan nilai rataa kerapatan 0,65 g/cm³. Rataan nilai kerapatan sebesar 0,65 g/cm³ lebih kecil daripada nilai kerapatan papan komposit sasaran sebesar 0,70 g/cm³, hal tersebut diduga disebabkan oleh tidak merataanya pemaparan campuran flake pada adonan (furnish) ketika proses pembuatan lapik (mat forming) yang dilakukan secara manual.

Hasil uji lanjut menggunakan uji Dunnett pada selang kepercayaan 95% yang membandingkan tiap perlakuan dengan kontrol, menunjukkan bahwa hanya komposisi eceng gondok pada kombinasi perlakuan a₀ b₀ dan a₀ b₁ yang memberikan pengaruh yang berbeda terhadap kerapatan papan komposit yang dihasilkan. Nilai beda ini menunjukkan bahwa dengan kerapatan sebesar 0,68 g/cm³ dan 0,69 g/cm³ untuk papan komposit yang dihasilkan dari perlakuan a₀ b₀ dan a₀ b₁, memiliki nilai yang lebih baik dibanding kontrol. Walaupun demikian, semua papan yang dibuat telah sesuai dengan standar yang dipersyaratkan oleh JIS A 5908 1994 dan SNI-03 2105 1996 yang masing-masing mensyaratkan nilai 0,52 g/cm³-0,92 g/cm³. Berdasarkan nilai kerapatannya, papan komposit yang dihasilkan diklasifikasikan pada papan partikel berkerapatan sedang (medium density particle board).

![Diagram](image)

Gambar 6. Pengaruh komposisi flake eceng gondok terhadap kerapatan papan komposit.

Nilai rataan kerapatan papan komposit sebesar 0,69 g/cm³ yang diperoleh dari hasil pengukuran nilai kerapatan papan komposit yang mendapat perlakuan
komposisi flake eceng gondok 30%, memiliki nilai kerapatan yang relatif lebih besar dibanding papan komposit yang mendapat perlakuan komposisi flake eceng gondok dengan taraf yang lain (0%, 10%, dan 20%). Hal ini dikarenakan pada taraf 30%, flake eceng gondok yang diaplikasikan cenderung mengisi ruang kosong (gap) diantara struktur rekatan papan komposit yang dihasilkan, yang mengakibatkan struktur komposit menjadi lebih padat dan kompak, sehingga jumlah massa zat persatuan volume menjadi lebih besar. Lain halnya dengan adonan yang dikenai perlakuan pada taraf komposisi flake eceng gondok 0%, 10%, dan 20%, yang menghasilkan papan komposit dengan struktur komposit yang relatif berongga. Hal tersebut dapat dilihat secara visual menggunakan mata telanjang atau lup dengan pembesaran 10 kali atau lebih.

2. Kadar Air (KA)

Kadar air yang dianalisis merujuk pada banyaknya persentase air yang diikat oleh papan komposit terhadap berat komposit kering ovennya.

Nilai kadar air (tertera pada Lampiran 3) menunjukkan hasil yang bervariasi, dengan kisaran antara 8,50% (perlakuan a₀b₁) sampai 11,50% (perlakuan a₂b₁).

Hasil analisis sidik ragam menunjukkan bahwa pada selang kepercayaan 95% atau taraf nyata 5%, hanya komposisi flake eceng gondok yang mempengaruhi kadar air papan komposit yang dihasilkan, sedangkan tipe lapisan permukaan tidak berpengaruh nyata, begitupun dengan interaksinya tidak mempengaruhi kadar air papan komposit yang dihasilkan. Dengan adanya pengaruh yang tidak nyata dari faktor lapisan terhadap kadar air papan komposit yang dihasilkan, dinilai dari kadar airnya memberikan fleksibilitas untuk membuat papan komposit dengan tipe lapisan yang diinginkan, dalam hal ini tergantung dari tujuan pembuatan dan kaitannya dengan sifat fisik-mekanis lainnya. Sebagai contoh bila kita menginginkan lapisan yang lebih dekoratif dan dalam rangka optimasi pemanfaatan bambu tali, maka sangat bijaksana untuk membuat papan komposit berlapis anyaman sayatan bambu tali.

Kadar air meningkat sejalan dengan pertambahan taraf komposisi flake eceng gondok yang diaplikasikan pada adonan (furnish). Adapun kadar air rataan yang didapat dari hasil pengukuran adalah 9,47%, 10,23%, dan 11,24% berturut-turut untuk taraf komposisi eceng gondok 0%, 10%, dan 20%, kemudian nilai kadar air kembali turun pada taraf komposisi eceng gondok 30% menjadi 11,00% (Gambar 7).

Uji lanjut menggunakan uji Dunnett yang membandingkan tiap taraf perlakuan komposisi flake eceng gondok dengan kontrol membuktikan bahwa hanya taraf komposisi flake eceng gondok 20% dan 30% yang memberikan pengaruh yang berbeda terhadap kadar air papan komposit yang dihasilkan, sedangkan komposisi flake eceng gondok dengan taraf 10% tidak memberikan pengaruh yang berbeda nyata terhadap kadar air papan komposit yang dihasilkan. Nilai kadar air sebesar 9,47% yang dihasilkan dari papan komposit yang mendapat taraf perlakuan
komposisi flake eceng gondok 10% merupakan nilai kadar air terbaik yang didapat dari hasil penelitian ini (selain kontrol).

Gambar 7. Pengaruh komposisi flake eceng gondok terhadap kadar air papan komposit.

Walaupun demikian, kadar air yang diukur dari semua taraf perlakuan komposisi flake eceng gondok telah memenuhi standar yang ditetapkan oleh JIS A 5908 1994 dan SNI-03 2105 1996 yang mensyaratkan nilai kadar air maksimum 13%. Dari hasil analisis tersebut dimungkinkan untuk menggunakan komposisi flake eceng gondok sampai taraf 30%.

Kadar air yang relatif tinggi pada komposisi flake eceng gondok dengan taraf 20% dan 30% diduga disebabkan oleh semakin meningkatnya kadar eceng gondok dalam papan komposit yang dibuat, sifat higroskopisitas papan yang dibuat menjadi lebih tinggi, karena sebagai tumbuhan yang habitatnya di air dengan struktur tangkai daun (petioles) yang dirancang sedemikian rupa untuk dapat menyimpan cadangan air, eceng gondok lebih bersifat higroskopis dibanding kayu sengon ketika papan dikondisikan pada suhu kamar.
3. Pengembangan Tebal

Pengembangan tebal adalah besaran yang menyatakan pertambahan tebal contoh uji dalam persen terhadap tebal awalnya, setelah contoh uji (sample) direndam dalam air pada suhu kamar selama 24 jam.

Hasil pengujian (Lampiran 4) menunjukkan nilai pengembangan tebal non layered composite board meningkat seiring pertambahan taraf komposisi flake eceng gondok dari 0% hingga 30%, dengan nilai 22,31%; 26,56%; 30,00%; dan 32,60% untuk komposisi flake eceng gondok berturut-turut 0%, 10%, 20%, dan 30%. Begitu pula untuk layered composite board dari taraf komposisi eceng gondok 0% ke 10% nilai pengembangan tebal meningkat dari 40,59% ke 41,31%; juga dari taraf komposisi eceng gondok 20% ke 30% nilai pengembangan tebal meningkat dari 19,32% ke 19,76%; sedangkan dari taraf komposisi eceng gondok 10% ke 20% pengembangan tebal turun secara drastis dari 41,31% menjadi 19,32%.

Nilai rata-rata pengembangan tebal papan komposit yang dihasilkan adalah 29,05%, dengan nilai tertinggi didapat dari hasil pengukuran papan komposit yang mendapat perlakuan a1b1 sebesar 41,31% dan nilai pengembangan tebal yang paling rendah sebesar 19,32% didapat dari hasil pengukuran papan komposit yang mendapat perlakuan a2b1 (Gambar 8).

![Gambar 8. Pengaruh perlakuan terhadap pengembangan tebal papan komposit.](image-url)
Berdasarkan hasil analisis sidik ragam (analysis of variance) pada taraf nyata 5%, dapat dipahami bahwa hanya komposisi flake eceng gondok serta interaksi antara faktor komposisi flake eceng gondok dengan tipe lapisan permukaan papan komposit yang berpengaruh terhadap pengembangan tebal papan komposit yang dihasilkan, sedangkan tipe lapisan permukaan papan komposit tidak berpengaruh nyata.

Hasil uji lanjut menggunakan uji Dunnett yang membandingkan setiap perlakuan yang diberikan terhadap kontrol (a₀b₀), membuktikan bahwa hanya perlakuan a₀b₁, a₁b₁, dan a₃b₀ yang memberikan pengaruh yang berbeda terhadap pengembangan tebal papan komposit yang dihasilkan, sedangkan keempat perlakuan lainnya yaitu perlakuan a₁b₀, a₂b₀, a₂b₁, dan a₃b₁ tidak memberikan pengaruh yang berbeda.

Bila dibandingkan dengan nilai pengembangan tebal kontrol, jelas bahwa nilai pengembangan tebal untuk a₀b₁, a₁b₁, dan a₃b₀ dengan nilai 40,59%, 41,31%, dan 32,60% lebih besar dibandingkan nilai pengembangan tebal kontrol sebesar 22,31%.

Diduga bahwa keberadaan eceng gondok pada lapisan permukaan papan komposit dengan peluang terpapar (exposure) terhadap air yang lebih besar, cenderung mengakibatkan pengembangan tebal yang besar karena kadar lignin eceng gondok sebesar 11,3% lebih kecil dibanding kadar lignin kayu sengon sebesar 23,86%. Sedangkan keberadaan eceng gondok di bagian dalam komposit cenderung memberikan pengaruh yang baik karena struktur komposit setelah dikempa menjadi lebih kompak dan rapat sehingga mencegah timbulnya rongga pada papan komposit sebagai jalan bagi masuknya air menuju papan komposit.

Untuk papan komposit yang mendapat perlakuan a₃b₀ memiliki nilai pengembangan tebal yang lebih besar dibanding kontrol. Hal tersebut dikarenakan dengan semakin banyaknya flake eceng gondok yang diaplikasikan terhadap adonan (furnish), peluang flake eceng gondok untuk menyebar pada lapisan permukaan
semakin besar, atau dengan kata lain pada taraf komposisi eceng gondok yang besar (30%) pada papan tanpa lapisan anyaman sayatan bambu tali (non layered composite board) jumlah eceng gondok pada lapisan permukaan papan komposit yang dihasilkan lebih banyak dibandingkan pada taraf komposisi eceng gondok yang lebih kecil (0%, 10%, dan 20%), sehingga kemungkinan papan yang mendapat kombinasi perlakuan a_0b_0 untuk menyerap air menjadi lebih besar, sehingga dengan kadar lignin dari eceng gondok yang relatif rendah air yang terserap oleh komposit cenderung akan mengakibatkan pengembangan tebal yang lebih besar.

Sedangkan untuk papan komposit yang mendapat kombinasi perlakuan a_0b_1 dan a_1b_1, dikarenakan struktur dalam papan komposit yang berongga (gap), memungkinkan penyerapan air lebih banyak.

Dari hasil analisis nilai pengembangan tebal, penggunaan flake eceng gondok pada taraf 30% optimal untuk pembuatan layered composite board, sedangkan untuk non layered composite ditinjau dari pengembangan tebalnya, optimum digunakan pada pengaplikasian eceng gondok pada taraf 0%-20%.

4. Daya Serap Air (DSA)

Daya Serap Air menyatakan banyaknya air yang diserap oleh papan komposit dalam persen terhadap berat awalnya setelah contoh uji direndam dalam air pada suhu kamar selama 24 jam.

Nilai daya serap air papan komposit menunjukkan hasil yang bervariasi dengan kisaran antara 53,48% untuk papan komposit yang mendapat perlakuan a_0b_1 sampai 82,37% untuk papan komposit yang mendapat perlakuan a_0b_1, dengan nilai rataan sebesar 62,82% (Lampiran 5).

Hasil analisis sidik ragam menunjukkan bahwa untuk taraf nyata 5% (pada selang kepercayaan 95%), diantara faktor perlakuan yang diberikan tidak berpengaruh nyata terhadap nilai daya serap air papan komposit yang dihasilkan.

Menurut Haygreen dan Bowyer (1982), air terikat yang terdapat pada kayu terletak pada daerah amorf selulosa, yakni daerah yang bentuknya tidak teratur dengan gugus hidroksil (-OH) yang terbuka untuk adsorpsi air, dimana air terikat
ditahan oleh kekuatan adsorpsi yang sifatnya fisiko-kimia, bukan secara adsorpsi yang cenderung berupa ikatan permukaan.

Adanya kenyataan pengaruh yang tidak nyata dari faktor perlakuan yang diberikan terhadap nilai daya serap air papan komposit yang dihasilkan sangat logis dikarenakan kadar selulosa dari tiap bahan yang menyusun struktur komposit relatif sama yakni sekitar 50%, sehingga dengan persentase kadar selulosa yang sama, peluang air yang terserap oleh masing-masing bahan juga relatif sama.

Nilai daya serap air tidak dipersyaratkan dalam standar JIS A 5908 1994 dan SNI-03 2105 1996. Dengan hasil analisis pengaruh faktor perlakuan terhadap daya serap air papan komposit, dimana setiap perlakuan tidak menunjukkan respon yang berbeda dibanding kontrol, mengakibatkan penggunaan faktor perlakuan dengan masing-masing tarafnya menjadi lebih fleksibel tergantung dari tujuan yang ingin dicapai.
C. Sifat Mekanis Papan Komposit

1. Modulus of Elasticity (MOE)

Modulus of Elasticity merupakan besaran dalam istilah tehnik yang menunjukkan sifat elastisitas suatu material termasuk didalamnya papan komposit. Dengan semakin besarinya nilai MOE suatu material akan mengakibatkan material tersebut menjadi lebih kaku dan lebih tegar menahan beban luar (external force) yang lebih besar. Begitupun sebaliknya, bahan atau materil dengan nilai MOE yang kecil akan mengakibatkan bahan tersebut kurang tegar menahan beban luar (external force), sehingga biasanya bahan dengan nilai MOE yang lebih kecil suatu material akan melendut atau mengalami defleksi walaupun dikenai beban yang relatif kecil.

![Gambar 10. Pengaruh kombinasi perlakuan terhadap Modulus of Elasticity (MOE) papan komposit.](image)

Nilai MOE (tertera pada Lampiran 6), menunjukkan hasil yang bervariasi dengan kisaran antara 7,285,14 kgf/cm² untuk papan komposit yang mendapat perlakuan a₀b₀ sampai 24,023,37 kgf/cm² untuk papan komposit yang mendapat perlakuan a₂b₁, dengan nilai rataan sebesar 17,340,33 kgf/cm² atau setara dengan 1,699,35 N/mm².
Berdasarkan analisis sidik ragam dapat dipahami bahwa komposisi flake eceng gondok, tipe lapisan permukaan papan komposit dan interaksi antara kedua faktor tersebut menunjukkan pengaruh yang nyata terhadap nilai MOE papan komposit yang dihasilkan. Dikarenakan interaksi antar faktor nyata pada selang kepercayaan 95\% (taraf nyata 5\%), maka diperlukan uji lanjutan untuk melihat pengaruh sederhana yang berbeda dari perlakuan yang diaplikasikan.

Uji Dunnett yang membandingkan setiap perlakuan yang diaplikasikan terhadap kontrol (a\textsubscript{b0}), menunjukkan perbedaan yang nyata hanya pada perlakuan a\textsubscript{2b0}, a\textsubscript{3b0}, dan a\textsubscript{3b1}, sedangkan perlakuan lainnya walaupun menunjukkan kecenderungan yang menurun seiring meningkatnya taraf komposisi flake eceng gondok yang diberikan sampai 30\%, tetapi tidak menghasilkan pengaruh yang berbeda terhadap nilai MOE papan komposit yang dihasilkan.

Nilai MOE untuk perlakuan a\textsubscript{3b0} dan a\textsubscript{2b0} sebesar 7.285,14 kgf/cm2 dan 11.044,63 kgf/cm2 jauh berada di bawah nilai MOE standar yang disyaratkan oleh SNI-03-2105 1996 sebesar 15.000 kgf/cm2, dan standar JIS A 5908 1994 yang mensyaratkan nilai MOE minimum sebesar 20.400 kgf/cm2, sedangkan perlakuan a\textsubscript{3b1} dengan nilai MOE sebesar 15.027,17 kgf/cm2 jauh berada di bawah nilai MOE standar yang dipersyaratkan oleh JIS A 5908 1994 yang mensyaratkan nilai MOE minimum sebesar 20.400 kgf/cm2 tetapi masih lebih besar dibanding nilai MOE standar yang disyaratkan oleh SNI-03-2105 1996 sebesar 15.000 kgf/cm2, sehingga secara teknis hanya perlakuan a\textsubscript{2b0} dan a\textsubscript{3b0} yang tidak menghasilkan nilai MOE yang baik, sedangkan penilaian kualitas nilai MOE dari kombinasi perlakuan a\textsubscript{3b1} tergantung dari jenis standar yang dipakai.

Dikarenakan perlakuan a\textsubscript{2b0}, a\textsubscript{3b0}, dan a\textsubscript{3b1} memberikan pengaruh yang berbeda terhadap nilai MOE papan komposit yang dihasilkan, maka pengaplikasian eceng gondok sampai taraf 20\% terhadap adonan (furnish) dalam rangka optimalisasi penggunaan eceng gondok masih diperbolehkan untuk layered composite board berdasarkan standar JIS A5908 1994, dan sampai taraf 30\% berdasarkan SNI-03 2105 1996.
Pada kombinasi perlakuan a_0b_1, nilai MOE yang tinggi diduga disebabkan oleh efek struktur silang lapisan anyaman sayatan bambu yang secara mekanis memberikan kekuatan tambahan pada papan komposit yang dihasilkan, tanpa adanya perlemahan yang lebih disebabkan oleh kehadiran *flakes* eceng gondok pada papan komposit yang bersifat lebih remah dibanding kayu sengan setelah dikempa dengan tekanan dan suhu yang relatif besar.

Untuk perlakuan a_2b_0 dan perlakuan a_3b_1 nilai MOE yang rendah diduga karena perlemahan dari kehadiran *flake* eceng gondok pada papan komposit yang dihasilkan. Walupun struktur lapisan anyaman sayatan bambu tali memberikan kekuatan secara mekanis, namun nilai kekuatan tambahan ini pada kombinasi perlakuan a_3b_1 cenderung relatif lebih kecil dibandingkan perlemahan yang ditimbulkan oleh eceng gondok pada taraf 30%.

2. **Modulus of Rupture (MOR)**

Modulus of Rupture (MOR) merupakan besaran dalam bidang teknik yang menunjukkan beban maksimum yang dapat ditempuh oleh material termasuk dalam hal ini papan komposit persatuan luas sampai material itu patah.

Nilai MOR yang dihasilkan bervariasi dengan kisaran 52.735 kgf/cm² untuk papan komposit yang mendapat perlakuan a_3b_0 sampai 306.11 kgf/cm² untuk papan komposit yang mendapat perlakuan a_0b_1, dengan nilai rataan sebesar 181.32 kgf/cm².

Hasil analisis sidik ragam menunjukkan bahwa pengaruh pengaplikasian komposisi *flakes* eceng gondok, tipe lapisan dan interaksi keduanya berpengaruh nyata terhadap nilai MOR papan komposit yang dihasilkan, karena untuk semua *item*, nilai F hitung yang didapat lebih besar dari F tabelnya pada selang kepercayaan 95%.

Dikarenakan pengaruh interaksi nyata maka pengusutan pengaruh sederhana dari interaksi suatu faktor terhadap taraf dari faktor yang lainnya menjadi lebih penting, dibandingkan menelaah lebih jauh pengaruh utama dari tiap-tiap faktor perlakuan, karena nilai yang didapat tidak mencerminkan keadaan data yang sesungguhnya (Gasperz, 2000)
Ada kecenderungan penurunan nilai MOR papan komposit yang dihasilkan pada kedua tipe lapisan yang diberikan seiring pertambahan taraf komposisi flakes eceng gondok yang diaplikasikan ke dalam furnish (Lampiran 7). Walaupun demikian, hasil uji Dunnet yang membandingkan setiap perlakuan terhadap kontrol, menunjukkan bahwa tidak semua kombinasi perlakuan yang meberikan pengaruh yang nyata terhadap MOR papan komposit yang dihasilkan, yang dalam hal ini kombinasi perlakuan a_1b_0 dan a_3b_1 tidak memberikan pengaruh yang berbeda nyata terhadap nilai MOR dibanding kontrol, sedangkan kombinasi perlakuan a_2b_0, a_3b_0, a_0b_1, a_1b_1, a_2b_1, dan a_3b_1 memberikan pengaruh yang berbeda nyata terhadap nilai MOR dibanding kontrol.

![Diagram](image)

Gambar 11. Pengaruh kombinasi perlakuan terhadap Modulus of Rupture (MOR) papan komposit.

Nilai MOR papan komposit yang mendapat kombinasi perlakuan a_2b_0 dan a_3b_0 berturut-turut sebesar 36,62 kgf/cm2 dan 52,74 kgf/cm2 lebih kecil dibanding dengan nilai MOR papan komposit kontrol (Gambar 11). Hal ini dikarenakan selain tidak mendapatkan kekuatan mekanis dari sayatan anyaman bambu tali, juga pada kedua perlakuan tersebut dengan taraf eceng gondok yang lebih besar dibanding kontrol keberadaanya memberikan perlemahan terhadap nilai MOR papan komposit yang dihasilkan. Hal sebaliknya terjadi pada a_0b_1, a_1b_1, a_2b_1, dan a_3b_1 walaupun seiring
peningkatan taraf eceng gondok yang lebih besar disbanding kontrol, perlemahan yang diakibatkan oleh keberadaan *flake* eceng gondok dalam komposit sampai 30% cenderung lebih kecil bila dibandingkan perkuatan yang disebabkan oleh keberadaan lapisan anyaman sayatan bambu pada papan komposit yang dihasilkan.

Dari hasil analisis nilai MOR, dapat digeneralisasi bahwa penggunaan *flake* eceng gondok sampai 30% diperbolehkan pada *layered composite board*, sedangkan untuk *non layered composite board*, untuk menghasilkan nilai MOR yang memenuhi standard JIS A 5908 1994 dan SNI-03 2105 1996 yang menyarankan nilai MOR sebesar 82 kgf/cm² dan 80 kgf/cm² penggunaan eceng gondok hendaknya tidak melebihi 10%.

3. Internal Bond (IB)

Internal Bond pada dasarnya menunjukkan daya rekat perekat terhadap sirekatnya, atau dengan kata lain menunjukkan daya adhesi dari struktur internal papan komposit persatuan luas.

Nilai *internal bond* dari papan komposit yang dihasilkan bervariasi dengan kisaran antara 0,99 kgf/cm² untuk papan komposit yang mendapat perlakuan a₁b₁ sampai 2,58 kgf/cm² untuk papan komposit yang mendapat perlakuan a₂b₂, dengan nilai rataan sebesar 1,61 kgf/cm².

Nilai rataan *internal bond* (tertera pada Gambar 12) untuk papan komposit dengan taraf komposisi *flake* ecek gondok 10%, 20%, dan 30% berturut-turut adalah 1, 17 kgf/cm²; 1,26 kgf/cm², dan 1,47 kgf/cm². Bila dibandingkan terhadap kontrol (komposisi eceng gondok 0%) dengan nilai *internal bond* sebesar 1,96 kgf/cm², ternyata nilai *internal bond* yang dihasilkan dari ketiga perlakuan tersebut relatif lebih kecil. Tetapi berdasarkan analisis sidik ragam, walaupun nilai *internal bond* bervariasi, namun tidak berbeda nyata satu sama lainnya pada taraf nyata 5% (F hitung lebih besar daripada Ftabel), dengan kata lain taraf komposisi eceng gondok yang diberikan tidak berpengaruh terhadap nilai *internal bond* papan komposit yang dihasilkan.
Akan lain halnya bila selang kepercayaan diperkecil menjadi 92%, ternyata faktor komposisi berpengaruh nyata terhadap nilai *internal bond* papan komposit yang dihasilkan (Lampiran 10). Walau pun demikian tidak diharapkan untuk menyimpulkan pada selang kepercayaan yang semakin sempit, karena dengan semakin sempitinya selang kepercayaan, kesimpulan yang ditarik menjadi kurang valid.

![Diagram Internal Bond](image)

Gambar 12. Pengaruh kombinasi perlakuan terhadap Internal Bond papan komposit.

Untuk faktor tipe lapisan permukaan juga tidak mempengaruhi nilai *internal bond* papan komposit yang dihasilkan, walaupun nilai *internal bond non layered composite board* sebesar 1,46 g/cm² lebih kecil dibandingkan nilai *internal bond layered composite board* sebesar 1,75 kgf/cm². Nilai *internal bond* yang bervariasi ini diduga lebih disebabkan oleh galat percobaan.

Nilai rataan *internal bond* yang dihasilkan yakni sebesar 1,61 kgf/cm² sesuai dengan nilai standar yang disyaratkan oleh JIS A5908 1994 dan SNI-03 2105 1996 yang mensyaratkan nilai *internal bond* minimal 1,5 kgf/cm². Sehingga dapat disimpulkan bahwa berdasarkan nilai *internal bond* yang dihasilkan, penggunaan eceng gondok sampai 30% dan pembuatan papan komposit berlapis anyaman sayatan bambu tali secara teknis layak untuk diproduksi karena telah memenuhi standar nilai

Sehubungan dengan data yang dihasilkan, karena penggunaan taraf komposisi flakes eceng gondok dan anyaman sayatan bambu tali layak secara teknis, maka pertimbangan faktor yang telah diteliti tergantung dari tujuan yang ingin dicapai. Bila ingin mengoptimalkan penggunaan dan menambah added value eceng gondok, penggunaan sampai taraf 30% flakes eceng gondok masih ditolerir dari segi nilai internal bond-nya. Begitupun dengan penggunaan ayaman sayatan bambu, dalam rangka inventori penggunaan bahan baku non kayu, dari nilai internal bond yang dipersyaratkan memungkinkan untuk dikembangkan.

4. Kuat Pegang Sekrup (KPS)

Kuat Pegang sekrup (KPS) yang dalam standar internasional dikenal sebagai Screw Holding Power (SHP) adalah salah satu besaran yang menunjukkan kekuatan papan komposit atau produk panil kayu lainnya dalam menahan atau mencengkerami sekrup. Dalam pengaplikasiannya, nilai kuat pegang sekrup ini berkaitan dengan cocok atau tidaknya suatu papan komposit atau produk panel kayu lainnya untuk dibuat produk yang memerlukan sistem sekrup dalam penyambungan.

Nilai kuat pegang sekrup dari papan komposit yang dihasilkan cenderung bervariasi dengan kisaran antara 12 kgf untuk papan komposit yang mendapat perlakuan a,b sampai 48 kgf untuk papan komposit yang mendapat perlakuan a,b,, dengan rataan sebesar 23,88 kgf (Lampiran 9).

Hasil analisis sidik ragam menunjukkan bahwa pada selang kepercayaan 95%, hanya faktor tipe lapisan permukaan papan komposit yang mempengaruhi nilai kuat pegang sekrup papan komposit yang dihasilkan, sedangkan faktor komposisi flake eceng gondok tidak berpengaruh nyata, begitupun dengan interaksinya tidak mempengaruhi nilai kuat pegang sekrup papan komposit yang dihasilkan. Dengan adanya pengaruht yang tidak nyata dari faktor komposisi flake eceng gondok terhadap nilai kuat pegang sekrup papan komposit yang dihasilkan, dinilai dari sifat kuat pegang sekrup-nya memberikan fleksibilitas untuk membuat papan komposit dengan
komposisi *flakes* eceng gondok sampai taraf 30%, dalam hal ini tergantung dari tujuan pembuatan dan kaitannya dengan sifat fisis-mekanis lainnya.

Uji lanjut menggunakan uji Dunnett yang membandingkan tiap kombinasi perlakuan dengan kontrol (a\textsubscript{0}b\textsubscript{0}) membuktikan bahwa hanya kombinasi perlakuan a\textsubscript{3}b\textsubscript{1} yang memberikan pengaruh yang beda terhadap nilai kuat pegang sekrup papan komposit yang dihasilkan, sedangkan kombinasi perlakuan lainnya walaupun memberikan nilai yang berbeda dengan kontrol tetapi tidak memberikan pengaruh yang berbeda nyata terhadap nilai kuat pegang sekrup papan komposit yang dihasilkan.

![Bar Chart](chart.png)

Gambar 13. Pengaruh kombinasi perlakuan terhadap nilai kuat pegang sekrup papan komposit.

Nilai kuat pegang sekrup sebesar 48 kgf yang dihasilkan dari papan komposit yang mendapat perlakuan a\textsubscript{3}b\textsubscript{1} merupakan nilai kuat pegang sekrup terbaik yang didapat dari hasil penelitian ini, karena memenuhi standar yang ditetapkan oleh JIS A 5908 1994 dan SNI-03 2105 1996 yang mensyaratkan nilai kuat pegang sekrup berturut-turut sebesar 31 kgf dan 30 kgf.

Nilai kuat pegang sekrup yang relatif tinggi pada kombinasi perlakuan a\textsubscript{3}b\textsubscript{1} diduga disebabkan oleh keberadaan anyaman sayatan bambu pada lapisan yang cenderung memiliki nilai tarik tegak lurus yang relatif besar dibandingkan struktur komposit didalamnya.
V. KESIMPULAN DAN SARAN

A. Kesimpulan

1. Ditinjau dari sifat fisik-nya, secara umum masih memungkinkan untuk menggunakan flake eceng gondok sampai taraf 30%, kecuali untuk sifat pengembangan tebal, penggunaan flake eceng gondok pada non layered composite board optimum sampai taraf 20%, sedangkan penggunaan tipe lapisan permukaan tergantung tujuan yang ingin dicapai.

2. Ditinjau dari sifat mekanis-nya, didapat nilai optimum penggunaan flake eceng gondok untuk sifat Modulus of Elasticity dan Modulus of Rupture adalah 10% bagi non layered composite board dan 30% bagi layered composite board. Sedangkan untuk kuat pegang sekrup dan internal bond penggunaan flake eceng gondok sampai 30% secara teknis masih diperbolehkan.

3. Peruntukan papan komposit sebagai bahan konstruksi, penggunaan flake eceng gondok tidak boleh melebihi 10% untuk non layered composite board, sedangkan untuk layered composite board, penggunaan flake eceng gondok sampai taraf 30% secara teknis masih diperbolehkan.

4. Peruntukan papan komposit sebagai bahan non konstruksi seperti untuk furniture, siding, dan plafon, penggunaan flake eceng gondok sampai taraf 30% masih memungkinkan secara teknis untuk semua tipe lapisan permukaan, kecuali untuk penggunaan yang kurang toleran terhadap pengembangan tebal yang besar, penggunaan flake eceng gondok untuk non layered composite board tidak boleh melebihi taraf 20%.

B. Saran

Perlu dilakukan penelitian lanjutan mengenai pengaruh ketebalan anyaman sayatan bambu tali, penggunaan perekat jenis lain, dan atau penggunaan anyaman sayatan kulit bambu terhadap sifat fisik-mekanis papan komposit.
DAFTAR PUSTAKA

Lampiran 1. Data Kebutuhan Bahan Baku Pembuatan Papan komposit.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ulangan</th>
<th>Kombinasi perlakuan</th>
<th>Rasio Eceng Gondok terhadap Sengon</th>
<th>Berat Anyaman bambu tali (g)</th>
<th>Berat Flakes Eceng Gondok (g)</th>
<th>Berat Flakes Sengon (g)</th>
<th>Berat Perelot (g)</th>
<th>Berat Wax (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA</td>
<td>BAK</td>
<td>BE</td>
<td>BEK</td>
<td>BS</td>
<td>BSK</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>a₀b₀</td>
<td>0%</td>
<td>100%</td>
<td></td>
<td></td>
<td>56.8</td>
<td>681</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>a₁b₀</td>
<td>10%</td>
<td>90%</td>
<td></td>
<td></td>
<td>56.8</td>
<td>681</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>a₂b₀</td>
<td>20%</td>
<td>80%</td>
<td></td>
<td></td>
<td>113.6</td>
<td>144</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>a₃b₀</td>
<td>30%</td>
<td>70%</td>
<td></td>
<td></td>
<td>170.4</td>
<td>216</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>a₀b₁</td>
<td>0%</td>
<td>100%</td>
<td>161</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>a₁b₁</td>
<td>10%</td>
<td>90%</td>
<td>165</td>
<td>157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>a₂b₁</td>
<td>20%</td>
<td>80%</td>
<td>162</td>
<td>154</td>
<td>43.5</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>a₃b₁</td>
<td>30%</td>
<td>70%</td>
<td>154</td>
<td>147</td>
<td>41.4</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>a₀b₂</td>
<td>0%</td>
<td>100%</td>
<td>140</td>
<td>138</td>
<td>43.5</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>a₁b₂</td>
<td>10%</td>
<td>90%</td>
<td>162</td>
<td>154</td>
<td>84.2</td>
<td>107</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>a₂b₂</td>
<td>20%</td>
<td>80%</td>
<td>146</td>
<td>139</td>
<td>85.8</td>
<td>109</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>a₃b₂</td>
<td>30%</td>
<td>70%</td>
<td>135</td>
<td>129</td>
<td>131.7</td>
<td>167</td>
</tr>
</tbody>
</table>

Keterangan:
- BA = Berat anyaman bambu tali pada KA 5%
- BAK = Berat anyaman bambu tali pada KA 0%
- BE = Berat flakes eceng gondok pada KA 0%
- BEK = Berat flakes eceng gondok pada KA 15%
- BS = Berat flakes kayu sengon pada KA 0%
- BSK = Berat flakes kayu sengon pada KA 9%
- BP = Berat perekat pada RSC 100%
- BPK = Berat perekat pada RSC 55%
Lampiran 2. Keropotan papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes cceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a_0)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>b_0</td>
<td>0.60</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1.23</td>
<td>1.26</td>
</tr>
<tr>
<td>Rataan</td>
<td>0.64</td>
<td>0.63</td>
</tr>
<tr>
<td>b_1</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>Rataan</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.50</td>
<td>2.53</td>
</tr>
</tbody>
</table>

Lampiran 3. Kadar Air papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes cceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a_0)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>b_0</td>
<td>9.90</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>9.99</td>
</tr>
<tr>
<td>Subtotal</td>
<td>20.90</td>
<td>20.99</td>
</tr>
<tr>
<td>Rataan</td>
<td>10.45</td>
<td>10.50</td>
</tr>
<tr>
<td>b_1</td>
<td>7.99</td>
<td>9.00</td>
</tr>
<tr>
<td></td>
<td>9.00</td>
<td>11.00</td>
</tr>
<tr>
<td>Subtotal</td>
<td>16.99</td>
<td>20.00</td>
</tr>
<tr>
<td>Rataan</td>
<td>8.50</td>
<td>10.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>37.89</td>
<td>40.99</td>
</tr>
</tbody>
</table>

Lampiran 4. Pengembangan Tebal papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes cceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a_0)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>b_0</td>
<td>20.53</td>
<td>27.82</td>
</tr>
<tr>
<td></td>
<td>24.08</td>
<td>25.33</td>
</tr>
<tr>
<td>Subtotal</td>
<td>44.61</td>
<td>53.15</td>
</tr>
<tr>
<td>Rataan</td>
<td>22.31</td>
<td>26.58</td>
</tr>
<tr>
<td>b_1</td>
<td>41.31</td>
<td>42.88</td>
</tr>
<tr>
<td></td>
<td>39.86</td>
<td>39.73</td>
</tr>
<tr>
<td>Subtotal</td>
<td>81.17</td>
<td>82.61</td>
</tr>
<tr>
<td>Rataan</td>
<td>40.59</td>
<td>41.31</td>
</tr>
<tr>
<td>TOTAL</td>
<td>125.78</td>
<td>135.76</td>
</tr>
</tbody>
</table>
Lampiran 5. Daya serap air papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes eceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_0</td>
<td>a_1</td>
</tr>
<tr>
<td>b_0</td>
<td>61.04</td>
<td>52.60</td>
</tr>
<tr>
<td>Subtotal</td>
<td>119.80</td>
<td>102.97</td>
</tr>
<tr>
<td>Rataan</td>
<td>59.90</td>
<td>51.49</td>
</tr>
<tr>
<td>b_1</td>
<td>89.90</td>
<td>74.47</td>
</tr>
<tr>
<td>Subtotal</td>
<td>164.73</td>
<td>131.25</td>
</tr>
<tr>
<td>Rataan</td>
<td>82.37</td>
<td>65.63</td>
</tr>
<tr>
<td>TOTAL</td>
<td>284.53</td>
<td>234.22</td>
</tr>
</tbody>
</table>

Lampiran 6. Modulus of Elasticity (MOE) papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes eceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_0</td>
<td>a_1</td>
</tr>
<tr>
<td>b_0</td>
<td>21.784,55</td>
<td>16.470,23</td>
</tr>
<tr>
<td>Subtotal</td>
<td>41.515,25</td>
<td>36.291,51</td>
</tr>
<tr>
<td>Rataan</td>
<td>20.757,63</td>
<td>18.145,76</td>
</tr>
<tr>
<td>b_1</td>
<td>24.864,79</td>
<td>21.648,19</td>
</tr>
<tr>
<td>Subtotal</td>
<td>48.046,74</td>
<td>43.226,91</td>
</tr>
<tr>
<td>Rataan</td>
<td>24.023,37</td>
<td>21.613,46</td>
</tr>
<tr>
<td>TOTAL</td>
<td>89.561,99</td>
<td>79.518,42</td>
</tr>
</tbody>
</table>

Lampiran 7. Modulus Of Rupture (MOR) papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes eceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_0</td>
<td>a_1</td>
</tr>
<tr>
<td>b_0</td>
<td>188.99</td>
<td>180.76</td>
</tr>
<tr>
<td>Subtotal</td>
<td>332.17</td>
<td>332.04</td>
</tr>
<tr>
<td>Rataan</td>
<td>166.09</td>
<td>166.02</td>
</tr>
<tr>
<td>b_1</td>
<td>312.05</td>
<td>311.71</td>
</tr>
<tr>
<td>Subtotal</td>
<td>612.22</td>
<td>607.02</td>
</tr>
<tr>
<td>Rataan</td>
<td>306.11</td>
<td>303.51</td>
</tr>
<tr>
<td>TOTAL</td>
<td>944,39</td>
<td>939,06</td>
</tr>
</tbody>
</table>
Lampiran 8. Internal Bond (IB) papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes eceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_0</td>
<td>a_1</td>
</tr>
<tr>
<td>tipe lapisan (B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_0</td>
<td>2.31</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>2.13</td>
<td>1.21</td>
</tr>
<tr>
<td>Subtotal</td>
<td>4.44</td>
<td>2.36</td>
</tr>
<tr>
<td>Rataan</td>
<td>2.22</td>
<td>1.18</td>
</tr>
<tr>
<td>b_1</td>
<td>2.22</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>1.69</td>
<td>0.99</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3.91</td>
<td>2.34</td>
</tr>
<tr>
<td>Rataan</td>
<td>1.96</td>
<td>1.17</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8.35</td>
<td>4.70</td>
</tr>
</tbody>
</table>

Lampiran 9. Kuat pegang sekrup papan komposit pada berbagai tipe perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Komposisi flakes eceng gondok (A)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_0</td>
<td>a_1</td>
</tr>
<tr>
<td>tipe lapisan (B)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_0</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Subtotal</td>
<td>30.00</td>
<td>39.00</td>
</tr>
<tr>
<td>Rataan</td>
<td>15.00</td>
<td>19.50</td>
</tr>
<tr>
<td>b_1</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>33</td>
</tr>
<tr>
<td>Subtotal</td>
<td>30.00</td>
<td>51.00</td>
</tr>
<tr>
<td>Rataan</td>
<td>15.00</td>
<td>25.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td>60.00</td>
<td>90.00</td>
</tr>
</tbody>
</table>
Lampiran 10. Papan komposit tipe layered composite board dan tipe non layered composite board pada berbagai taraf komposisi flake eceng gondok.
Lampiran 11. Hasil uji statistik sifat fisik mekanis papan komposit

A. Analysis of Variance for Kerapatan (Density)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>0.007837</td>
<td>0.007837</td>
<td>0.0026279</td>
<td>15.25</td>
<td>0.001</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0.0000052</td>
<td>0.0000052</td>
<td>0.0000052</td>
<td>0.03</td>
<td>0.866</td>
</tr>
<tr>
<td>C1+C2</td>
<td>3</td>
<td>0.006719</td>
<td>0.006719</td>
<td>0.002240</td>
<td>1.30</td>
<td>0.340</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>0.0013789</td>
<td>0.0013789</td>
<td>0.0001724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
<td>0.0099397</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dunnett 95.0% Simultaneous Confidence Intervals
Response Variable Density
Comparisons with Control Level
C1 = 0 subtracted from:

<table>
<thead>
<tr>
<th></th>
<th>Lower</th>
<th>Center</th>
<th>Upper</th>
<th>-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.01903</td>
<td>0.007708</td>
<td>0.03444</td>
<td>(----------*--------)</td>
</tr>
<tr>
<td>2</td>
<td>-0.00680</td>
<td>0.020738</td>
<td>0.04747</td>
<td>(----------*--------)</td>
</tr>
<tr>
<td>3</td>
<td>0.03107</td>
<td>0.057803</td>
<td>0.08454</td>
<td>(----------*--------)</td>
</tr>
</tbody>
</table>

C1 = 0 subtracted from:
Level Difference SE of Adjusted
C1 of Means Difference T-Value P-Value
1 0.007708 0.009283 0.8303 0.7497
2 0.020738 0.009283 2.2339 0.1302
3 0.057803 0.009283 6.2266 0.0007

C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th></th>
<th>Lower</th>
<th>Center</th>
<th>Upper</th>
<th>-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.01399</td>
<td>0.001143</td>
<td>0.01628</td>
<td>(----------*--------)</td>
</tr>
</tbody>
</table>

C2 = 0 subtracted from:
Level Difference SE of Adjusted
C2 of Means Difference T-Value P-Value
1 0.001143 0.006564 0.1741 0.0661

B. Analysis of Variance for Kadar Air

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>0.0021538</td>
<td>0.0021538</td>
<td>0.0007179</td>
<td>5.03</td>
<td>0.030</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0.0002898</td>
<td>0.0002898</td>
<td>0.0002898</td>
<td>2.03</td>
<td>0.192</td>
</tr>
<tr>
<td>C1+C2</td>
<td>3</td>
<td>0.0009612</td>
<td>0.0009612</td>
<td>0.0003204</td>
<td>2.25</td>
<td>0.160</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>0.0011415</td>
<td>0.0011415</td>
<td>0.0001427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td></td>
<td>0.0045463</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dunnett 95.0% Simultaneous Confidence Intervals
Response Variable Kadar air
Comparisons with Control Level
C1 = 0 subtracted from:

<table>
<thead>
<tr>
<th></th>
<th>Lower</th>
<th>Center</th>
<th>Upper</th>
<th>-----------</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.01107</td>
<td>0.01325</td>
<td>0.03757</td>
<td>(----------*--------)</td>
</tr>
<tr>
<td>2</td>
<td>0.00531</td>
<td>0.02963</td>
<td>0.05396</td>
<td>(----------*--------)</td>
</tr>
<tr>
<td>3</td>
<td>0.00139</td>
<td>0.02271</td>
<td>0.05004</td>
<td>(----------*--------)</td>
</tr>
</tbody>
</table>

0.000 0.020 0.040 0.060
C1 = 0 subtracted from:

<table>
<thead>
<tr>
<th>Level</th>
<th>Difference</th>
<th>SE of</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>of Means</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td>T-Value</td>
</tr>
<tr>
<td>1</td>
<td>0,01321</td>
<td>0,008446</td>
<td>1,569</td>
</tr>
<tr>
<td>2</td>
<td>0,02363</td>
<td>0,008446</td>
<td>3,508</td>
</tr>
<tr>
<td>3</td>
<td>0,02571</td>
<td>0,008446</td>
<td>3,044</td>
</tr>
</tbody>
</table>

C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>Level</th>
<th>Difference</th>
<th>SE of</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>Lower</td>
<td>Center</td>
<td>Upper</td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0,02228</td>
<td>-0,008512</td>
<td>0,005261</td>
</tr>
</tbody>
</table>

C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>Level</th>
<th>Difference</th>
<th>SE of</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>of Means</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference</td>
<td></td>
<td>T-Value</td>
</tr>
<tr>
<td>1</td>
<td>-0,008512</td>
<td>0,005973</td>
<td>-1,425</td>
</tr>
</tbody>
</table>

C. Analysis of Variance for Pengembangan Tebal

Source	DF	Seq SS	Adj SS	Adj MS	F	P
C1 | 3 | 0,027853 | 0,027853 | 0,009284 | 11,86 | 0,003 |
C2 | 1 | 0,001713 | 0,001713 | 0,000173 | 2,19 | 0,177 |
C1*C2 | 3 | 0,098890 | 0,098890 | 0,033297 | 42,52 | 0,000 |
Error | 6 | 0,006264 | 0,006264 | 0,000783 | | |
Total | 15 | 0,135721 | | | | |

Dunnett 95.0% Simultaneous Confidence Intervals
Response Variable P
Comparisons with Control Level
C1 = 0
C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>C1*C2</th>
<th>Lower</th>
<th>Center</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,1070</td>
<td>0,19910</td>
<td>0,25121</td>
</tr>
<tr>
<td>1</td>
<td>-0,0422</td>
<td>0,04992</td>
<td>0,14204</td>
</tr>
<tr>
<td>1</td>
<td>0,1143</td>
<td>0,20638</td>
<td>0,29850</td>
</tr>
<tr>
<td>2</td>
<td>-0,0043</td>
<td>0,08780</td>
<td>0,17992</td>
</tr>
<tr>
<td>2</td>
<td>-0,1288</td>
<td>-0,03673</td>
<td>0,05538</td>
</tr>
<tr>
<td>3</td>
<td>0,0239</td>
<td>0,11604</td>
<td>0,20815</td>
</tr>
<tr>
<td>3</td>
<td>-0,1143</td>
<td>-0,03220</td>
<td>0,05991</td>
</tr>
</tbody>
</table>

C1 = 0
C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>C1*C2</th>
<th>Difference</th>
<th>SE of</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,19910</td>
<td>0,02798</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,04692</td>
<td>0,02798</td>
<td>1,784</td>
</tr>
<tr>
<td>1</td>
<td>0,20638</td>
<td>0,02798</td>
<td>7,375</td>
</tr>
<tr>
<td>2</td>
<td>0,08780</td>
<td>0,02798</td>
<td>3,138</td>
</tr>
<tr>
<td>2</td>
<td>-0,03673</td>
<td>0,02798</td>
<td>-1,313</td>
</tr>
<tr>
<td>3</td>
<td>0,11604</td>
<td>0,02798</td>
<td>4,147</td>
</tr>
<tr>
<td>3</td>
<td>-0,03220</td>
<td>0,02798</td>
<td>-1,151</td>
</tr>
</tbody>
</table>

D. Analysis of Variance for Daya Serap Air

Source	DF	Seq SS	Adj SS	Adj MS	F	P
C1 | 3 | 0,07507 | 0,07507 | 0,02502 | 1,67 | 0,249 |
C2 | 1 | 0,00681 | 0,00681 | 0,00681 | 0,46 | 0,519 |
C1*C2 | 3 | 0,12508 | 0,12508 | 0,04169 | 2,79 | 0,109 |
Error | 8 | 0,11953 | 0,11953 | 0,01494 | | |
Total | 15 | 0,32648 | | | | |
E. Analysis of Variance for Modulus of Elasticity (MOE)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>288683693</td>
<td>288683693</td>
<td>96227898</td>
<td>49.14</td>
<td>0.000</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>147092689</td>
<td>147092689</td>
<td>147092689</td>
<td>75.12</td>
<td>0.000</td>
</tr>
<tr>
<td>C1*C2</td>
<td>3</td>
<td>31201966</td>
<td>31201966</td>
<td>10400655</td>
<td>5.31</td>
<td>0.026</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>15665051</td>
<td>15665051</td>
<td>1956131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>482643400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dunnett 95.0% Simultaneous Confidence Intervals
Response Variable MOE
Comparisons with Control Level
C1 = 0
C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>C1*C2</th>
<th>Lower</th>
<th>Center</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>-1341</td>
<td>3266</td>
<td>7872</td>
</tr>
<tr>
<td>1 0</td>
<td>-7218</td>
<td>-2612</td>
<td>1999</td>
</tr>
<tr>
<td>1 1</td>
<td>-3750</td>
<td>856</td>
<td>5462</td>
</tr>
<tr>
<td>2 0</td>
<td>-14319</td>
<td>-9713</td>
<td>-5107</td>
</tr>
<tr>
<td>2 1</td>
<td>-4558</td>
<td>68</td>
<td>4674</td>
</tr>
<tr>
<td>3 0</td>
<td>-18079</td>
<td>-13472</td>
<td>-8866</td>
</tr>
<tr>
<td>3 1</td>
<td>-10337</td>
<td>-5730</td>
<td>-1124</td>
</tr>
</tbody>
</table>

C1 = 0
C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>Level</th>
<th>Difference of Means</th>
<th>SE of Difference</th>
<th>T-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1*C2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>1399</td>
<td>1399</td>
<td>2,334</td>
<td>0,1927</td>
</tr>
<tr>
<td>1 0</td>
<td>1399</td>
<td>1399</td>
<td>-1,867</td>
<td>0,3581</td>
</tr>
<tr>
<td>1 1</td>
<td>1399</td>
<td>1399</td>
<td>0,612</td>
<td>0,9805</td>
</tr>
<tr>
<td>2 0</td>
<td>1399</td>
<td>1399</td>
<td>-6,941</td>
<td>0,0006</td>
</tr>
<tr>
<td>2 1</td>
<td>1399</td>
<td>1399</td>
<td>0,049</td>
<td>1,0000</td>
</tr>
<tr>
<td>3 0</td>
<td>1399</td>
<td>1399</td>
<td>-9,628</td>
<td>0,0001</td>
</tr>
<tr>
<td>3 1</td>
<td>1399</td>
<td>1399</td>
<td>-4,095</td>
<td>0,0166</td>
</tr>
</tbody>
</table>

F. Analysis of Variance for Modulus of Rupture (MOR)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>42203</td>
<td>42203</td>
<td>14068</td>
<td>40.54</td>
<td>0.000</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>89521</td>
<td>89521</td>
<td>89521</td>
<td>257.96</td>
<td>0.000</td>
</tr>
<tr>
<td>C1*C2</td>
<td>3</td>
<td>4474</td>
<td>4474</td>
<td>1431</td>
<td>4.30</td>
<td>0.044</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>2776</td>
<td>2776</td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>138973</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dunnett 95.0% Simultaneous Confidence Intervals
Response Variable mor
Comparisons with control Level
C1 = 0
C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>C1*C2</th>
<th>Lower</th>
<th>Center</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>140,0</td>
<td>201,35</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td>-61,4</td>
<td>-0,1</td>
<td>61,26</td>
</tr>
<tr>
<td>1 1</td>
<td>137,4</td>
<td>198,75</td>
<td></td>
</tr>
<tr>
<td>2 0</td>
<td>-89,5</td>
<td>-28,15</td>
<td></td>
</tr>
<tr>
<td>2 1</td>
<td>115,7</td>
<td>177,02</td>
<td></td>
</tr>
<tr>
<td>3 0</td>
<td>-113,4</td>
<td>-52,03</td>
<td></td>
</tr>
<tr>
<td>3 1</td>
<td>2,4</td>
<td>63,69</td>
<td></td>
</tr>
</tbody>
</table>
G. Analysis of Variance for Internal Bond (IB)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>1,6774</td>
<td>1,6773</td>
<td>0,5591</td>
<td>3,30</td>
<td>0,079</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>0,3249</td>
<td>0,3249</td>
<td>0,3249</td>
<td>1,92</td>
<td>0,204</td>
</tr>
<tr>
<td>C1*C2</td>
<td>3</td>
<td>0,1862</td>
<td>0,1862</td>
<td>0,0621</td>
<td>0,37</td>
<td>0,780</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>1,3566</td>
<td>1,3566</td>
<td>0,1696</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>3,3490</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H. Analysis of Variance for Kuat Pegang Sekrup (KPS)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
<th>Adj SS</th>
<th>Adj MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>713,25</td>
<td>713,25</td>
<td>237,75</td>
<td>3,87</td>
<td>0,056</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>870,25</td>
<td>870,25</td>
<td>870,25</td>
<td>14,15</td>
<td>0,006</td>
</tr>
<tr>
<td>C1*C2</td>
<td>3</td>
<td>578,25</td>
<td>578,25</td>
<td>192,75</td>
<td>3,13</td>
<td>0,087</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>492,00</td>
<td>492,00</td>
<td>81,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>2433,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dunnett 95.0% Simultaneous Confidence Intervals
Response Variable KPS
Comparisons with Control Level

C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>C2</th>
<th>Lower</th>
<th>Center</th>
<th>Upper</th>
<th>-----------------</th>
<th>-----------------</th>
<th>-----------------</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,708</td>
<td>14,75</td>
<td>23,79</td>
<td>10,0</td>
<td>15,0</td>
<td>20,0</td>
</tr>
</tbody>
</table>

C2 = 0 subtracted from:

<table>
<thead>
<tr>
<th>Level</th>
<th>Difference</th>
<th>SE of</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>of Means</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14,75</td>
<td>3,821</td>
<td>3,762</td>
</tr>
</tbody>
</table>

Note: C1 adalah faktor komposisi flake eceng gondok.
C2 adalah faktor tipe lapisan permukaan.