Dan orang-orang yang berjihad
untuk (mencari kehiduan) Kami.
Benar-benar akan Kami tunjukkan
dengan mengujinya kepada mereka jalan-jalan Kami.
Dan sesungguhnya Allah
benar-benar berserta
orang-orang yang berbuat baik.
(Al-Ankabut : 69)

Miracle sometimes occurs,
but we have to work terribly hard for them.

(chaim Weizmann)

Untuk Bapak, Ibu, Agun, Novi dan Daus.
ALOKASI OPTIMAL
USAHA PENGENDALIAN NARKOBA :
Analisis Differential Game

MUNAWATI FITRIYAH

JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2001
RINGKASAN

Suatu permasalahan penyelamatan narkoba yang melibatkan konflik antara pengedar dan pemerintah di formulasi dalam permainan diferensial (differential game) dengan cara pemainnya tiap saat harus mengambil keputusan (continuously in time) dengan menggunakan model kontrol optimum (Parthasarathy dan Raghavan, 1971) dan variabel kontrol kedua pemain adalah u dan v. Dalam hal ini u adalah tingkat usaha pengedar (untuk mendapatkan pemakai baru). Sedangkan v adalah tingkat usaha pemerintah melakukan pemberantasan penyelamatan narkoba (melalui terapi pengobatan bagi korban narkoba dan tindakan hukum terhadap pengedar). Untuk mempermudah model permainan akan digunakan spesifikasi permasalahan yang memenuhi asumsi-asumsi permasalahan. Model permasalahan diferensial tersebut akan diselesaikan dengan menerapkan solusi keseimbangan feedback Nash yang memenuhi persamaan Hamilton-Jacobi-Belman.

Selanjutnya untuk memperjelas permasalahan akan diberikan contoh kasus numerik yang diselesaikan dengan menggunakan software Maple. Dari contoh kasus tersebut diperoleh nilai \(\phi \) optimum, yakni proporsi dana pemerintah yang digunakan untuk terapi pengobatan terhadap total dana yang tersedia.

Dalam model tersebut ditunjukkan bahwa pada akhirnya untuk mencapai keseimbangan pengedar tidak akan selalu berusaha untuk mendapatkan pemakai baru, karena risiko yang harus dihadapi terlalu besar dan merugikan pengedar. Sedangkan pemerintah berusaha melakukan suatu strategi pemberantasan narkoba dengan usaha yang optimal. Pada sisi demand pemerintah melakukan rehabilitasi perawatan untuk sebanyak mungkin pemakai. Pada sisi supply pemerintah memberikan tekanan dan tindakan hukum yang lebih keras lagi terhadap pengedar. Pada contoh permasalahan, terlihat bahwa kebijakan pemerintah harus dibagi antara usaha pada tindakan terapi dan usaha pada tindakan hukum, untuk mendapatkan imbalan yang optimal.
ALOKASI OPTIMAL
USAHA PENGENDALIAN NARKOBA :
Analisis Differential Game

MUNAWATI FITRIYAH

Skripsi
sebagai salah satu syarat untuk memperoleh gelar
Sarjana Sains
pada
Program Studi Matematika

JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2001
Judul: Alokasi Optimal Usaha Pengendalian Narkoba: Analisis Differential Game
Nama: Munawati Fitriyah
NIM: G05495029

Menyetujui,

Dra. Farida Hanum, M.Si
Pembimbing I

Dr. Ir. D. S. Priyarseno
Pembimbing II

Menggetahui,

Dra. Amri Aman, M.Sc.
Ketua Program Studi

Tanggal Lulus: 23 JAN 2001
RIWAYAT HIDUP

Penulis dilahirkan di Jakarta pada tanggal 17 September 1977 sebagai anak sulung dari tiga bersaudara, anak dari pasangan Darul Muna dan Siti Marwati.

Tahun 1995 penulis lulus dari SMA Negeri 91 Jakarta dan pada tahun yang sama lulus seleksi masuk IPB melalui jalur Undangan Seleksi Masuk IPB. Penulis memilih program studi matematika, jurusan matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam.
PRAKATA

Penulis mengucapkan terima kasih kepada berbagai pihak yang telah memberikan bantuan, bimbingan serta dorongan moral dan material terutama kepada Ibu Dra. Farida Hanum, M.Si dan Bapak Dr. Ir. D.S. Priyarsono selaku pembimbing, Bapak Ir. Tony Bakhtiar, M.Sc. selaku penguji luar, serta Bapak Dr. Ir. I Wayan Mangku atas kiriman jurnalnya.

Semoga tulisan ini dapat bermanfaat. Amin.

Bogor, 25 Januari 2001

Munawati Fitriyah
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR GAMBAR</td>
<td>vi</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>vi</td>
</tr>
<tr>
<td>1. PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>1.1 Latar belakang</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Tujuan</td>
<td>1</td>
</tr>
<tr>
<td>II. LANDASAN TEORI</td>
<td></td>
</tr>
<tr>
<td>2.1 Teori Permainan</td>
<td>1</td>
</tr>
<tr>
<td>2.2 Feedback Nash Equilibrium</td>
<td>3</td>
</tr>
<tr>
<td>III. MODEL PERMASALAHAN</td>
<td>3</td>
</tr>
<tr>
<td>IV. PEMBAHASAN</td>
<td></td>
</tr>
<tr>
<td>4.1 Keseimbangan feedback dari Permainan</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Contoh Permasalahan</td>
<td>7</td>
</tr>
<tr>
<td>4.3 Analisis Sensitivitas</td>
<td>8</td>
</tr>
<tr>
<td>V. KESIMPULAN</td>
<td>10</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>10</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>11</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

1. Gambar efisiensi pengedar dengan $x_0 = 5$ dan $a = 0.5-1.5$.. 8
2. Gambar efisiensi pemerintah pada terapi $x_0 = 5$ dan $b = 0.5-1.5$.. 8
3. Gambar efisiensi pemerintah pada tindakan hukum $x_0 = 5$ dan $\gamma = 0.5-1.5$ 9

DAFTAR LAMPIRAN

1. Hasil strategi $u(x)$ dan $v(x)$ yang admissible ... 12
2. Substitusi persamaan (4.3) dan (4.4) ke dua persamaan HJB (4.2) 12
3. Substitusi persamaan (4.6) ke persamaan (4.5) ... 13
4. Mencari nilai fungsi τ_2 dari persamaan (4.10) ... 14
5. Substitusi persamaan (4.11) ke persamaan (4.8) diperoleh $p_1(\omega_2)$ berderajat 4 14
6. Bukti eksistensi kontrol optimum $u(x),v(x)$ yang admissible ... 15
7. Kedinamikan variabel state x ... 16
8. Keseimbangan tunggal persamaan (4.17) .. 16
9. Penurunan contoh permasalahan .. 16
10. Mencari nilai ϕ optimal yang membuat nilai ω_2 maksimal ... 17
I. PENDAHULUAN

1.1 Latar Belakang

Dalam tulisan ini model permainan diferensial akan diselesaikan dengan menerapkan solusi keseimbangan feedback Nash yang menemui persamaan Hamilton-Jacobi-Belman. Untuk mempermudah penjelasan akan diuraikan suatu contoh kasus. Pada contoh kasus tersebut diperoleh kesimpulan bahwa pada akhirnya untuk mencapai keseimbangan pengedar tidak akan selalu berhasil untuk mendapatkan pemakai baru, karena risiko yang harus dihadapi terlalu besar dan merugikan bagi pengedar. Sedangkan pemerintah harus menentukan alokasi optimal antara terapi dan tindakan hukum.

Hasil analisis sensitivitas model ini memperlihatkan bahwa kebijakan pemerintah harus lebih meningkatkan usaha dan efisiensi pada terapi, karena usaha pada terapi memberikan pengaruh langsung terhadap penurunan jumlah pemakai narkoba.

1.2 Tujuan

- Tulisan ini bertujuan mempelajari dan mengimplementasikan masalah differential game.
- Mencari solusi keseimbangannya dengan menerapkan konsep feedback Nash equilibria.
- Menentukan alokasi optimal pemerintah antara treatment dan law enforcement dalam masalah pemberantasan narkoba pada permainan diferensial yang memenuhi keseimbangan feedback Nash dengan menggunakan persamaan Hamilton Jacobi Belman.

II. LANDASAN TEORI

2.1 Permainan

Suatu permainan terdiri dari:
- Dua atau lebih pemain.
- Strategi yang tersedia untuk setiap pemain.
Bentuk normal suatu permianan untuk n pemain mempunyai fungsi strategi \(\{ s_i, \ldots, s_n \} \) dan fungsi hasil \(\{ u_1, \ldots, u_n \} \).

Permainan tersebut dinotasikan dalam bentuk:
\[G = \{ s_1, \ldots, s_n; u_1, \ldots, u_n \} \]

Keterangan:
\(G \) : Permainan
\(s_i \) : strategi \((i = 1, \ldots, n)\) pemain ke-\(i \).
\(u_i \) : hasil tiap strategi \((i = 1, \ldots, n)\).

Dalam suatu permianan, setiap pemain berusaha untuk memilih strategi yang optimal untuk mendapatkan imbalan yang maksimal. Pada tulisan ini akan dibahas permianan yang pemainnya harus mengambil keputusan secara kontinu. Sehingga dalam permianan tersebut akan digunakan teori permianan diferensial.

Permainan diferensial (Differential game) diaplikasikan ke dalam kelompok permasalahan matematis terapan yang berhubungan dengan pemodelan suatu konflik. Pada dasarnya permianan diferensial terdiri dari dua pemain (pemburu dan buruan) yang mempunyai tujuan yang saling bertentangan. Pemburu berharap dapat menangkap buruan, sedangkan buruan berusaha untuk menghindar. Setiap pemain mempunyai strategi untuk mencapai tujuannya, dalam hal ini para pemain setiap saat harus mengambil keputusan secara berkesinambungan (continuously in time) (Parthasarathy dan Raghavan, 1971).

Homicidal chauffeur (sopir pembunuh) (Szurley dan Aboufadel) adalah salah satu contoh permainan diferensial. Pada permianan ini, seorang sopir dengan mobilies berusaha untuk menabrak seorang pejalan kaki. Mobilies dapat bergerak lebih cepat dari pejalan kaki, tapi pejalan kaki dapat bergerak dengan lebih lincah untuk menghindar. Pemburu dan buruan dalam permainan tersebut diperankan oleh sopir dan pejalan kaki. Pada masalah pemberantasan narkoba yang dibahas dalam tulisan ini, pemburu diperankan oleh pemerintah dan buruan diperankan oleh pengedar. Model permainan diferensial pada tulisan ini dibentuk oleh:

\[
maks \int_0^T \exp(-r_t) J(x(t), u(t) \ v) \ dt
\]

\[
maks \int_0^T \exp(-r_t) J^2(x(t), u(t) \ v) \ dt
\]

dengan kendala:
\[\dot{x} = f(x, u, v) \]
\[x(0) = x_0 \in X \]

Diasumsikan \(U^1, U^2, f \) terturunkan kontinu pada \(X \times S^1 \times S^2 \) dengan \(X \) ruang state dan \(S^1, S^2 \) adalah himpunan kontrol admissible kedua pemain. \(x_0 \) adalah nilai awal variabel state \(x \).

Sepasang strategi disebut Nash equilibrium pada suatu permianan jika tidak ada pemain yang dapat meningkatkan imbalannya dengan cara sepilah sehingga menyimpang dari pasangan strategi tersebut.

Kontrol Admissible
Suatu masalah kontrol optimum dapat dinyatakan sebagai masalah memaksimumkan atau meminimumkan:
\[J(u) = \int_{t_0}^{T} f(x(t), u(t), t) \ dt \]

dengan kendala
\[\dot{x} = f(x, u(t), t) \].

Perhatikan persamaan diferensial berikut:
\[\dot{x}(t) = f_i(x(t), u(t), t), \quad i = 1, 2, \ldots, n \]
\[u(t) = [u_1(t), u_2(t), \ldots, u_n(t)] \]
\[f_t, \quad x_1 (i = 1, 2, \ldots, n) \text{ dan } u_k (k=1, 2, \ldots,n) \]
merupakan fungsi-fungsi yang bernilai real dan \(f_t \) diasumsikan kontinu, \(x(t) \) kontinu dan mempunyai turunan yang kontinu bagian demi bagian.

Syarat batas untuk persamaan (2.2) diberikan oleh:
\[x_1 (t_0) = x_1^0, \quad (i=1, 2, \ldots, n) \]
\[u(t) \text{ disebut kontrol.} \]

\[\dot{u}(t) \text{ disebut variabel kontrol.} \]

\[x(t) \text{ disebut variabel keadaan.} \]

\[f_0 \text{ merupakan fungsi yang diberikan dan } t \text{ adalah state waktu.} \]

\[T \text{ tidak harus fixed (ditentukan).} \]

\[\text{u(t) dipilih dari himpunan fungsi, misalkan } \]
\[U, \text{ yang memaksimumkan/memimumkan target tertentu. Untuk } \]
\[U = \{ u(t) | u(t) \text{ kontinu bagian } \}
\[\text{demi bagian } \}, \text{ u(t) } \in U \text{ yang seperti ini disebut kontrol yang admissible.} \]
2.2 Feedback Nash equilibrium (Dawid dan Feichtinger, 1996).

Sepasang fungsi terukur\(^1\), \(s_1 : X \times [0, \infty) \rightarrow S^1\)
\(s_2 : X \times [0, \infty) \rightarrow S^2\), yang menjamin bahwa \(\hat{x} = f(x, s_1, s_2)\) terdefinisi pada \(X \times [0, \infty)\) disebut feedback Nash equilibrium dari permainan (2.1) jika dan hanya jika:
\[
\begin{align*}
J_1(x_0, s_1, s_2) &\geq J_1(x_0, \bar{s}_1, s_2) \\
J_2(x_0, s_1, s_2) &\geq J_2(x_0, s_1, \bar{s}_2)
\end{align*}
\]
(2.4)

terpenuhi untuk semua fungsi terukur \(\bar{s}_1 : X \times [0, \infty) \rightarrow S^1\), \(\bar{s}_2 : X \times [0, \infty) \rightarrow S^2\) yang menjamin persamaannya selalu terdefinisi pada semua \(x(0) = x_0 \in X\).

Misalkan
\[
H_i(x, u, v, \lambda) = U_i(x, u, v) + A[f(x, u, v)]
\]
(2.5)
da adalah sistem Hamilton dari permainan (2.1) di atas.

Maka teorema dibawah ini berlaku :

Teorema 1: Pasangan strategi \(s_1 : X \rightarrow S^1\), \(s_2 : X \rightarrow S^2\) menghasilkan keseimbangan feedback Nash permainan diferensial (2.1), jika terdapat dua fungsi di \(C^1\), \(q_1 : X \rightarrow \mathbb{R}^l\) dan \(q_2 : X \rightarrow \mathbb{R}^l\) (dengan \(C^1\) adalah himpunan fungsi-fungsi yang mempunyai turunan pertama yang kontinu) yang memenuhi persamaan Hamilton - Jacobi -Belman (HJB) berikut :
\[
r_i q_i(x) = H_i(x, s_1(x), s_2(x), q_1(x), q_2(x))
\]
\(r_1 \in \arg\max H_1(x, u, s_1(x), q_1(x))\)
\(r_2 \in \arg\max H_2(x, s_2(x), v, q_2(x))\)
da kondisi transversalitas :
\[
\lim_{t \to \infty} \exp(-r_1) q_1(x(t)) = \lim_{t \to \infty} \exp(-r_2) q_2(x(t)) = 0
\]
da mengikatkan berlakunya \(\hat{x} = f(x, s_1, s_2)\).
(Bukti lihat Shimomura, 1989).

III. MODEL PERMASALAHAN

Permasalahan yang melibatkan konflik antara pemerintah dan pengedar narkoba ini dimodelkan dalam bentuk permainan diferensial, dengan asumsi-asumsi sebagai berikut :

- Para pengedar narkoba sebagai pemain I.
- Pemerintah sebagai pemain II.
- Faktor yang mempengaruhi tingkat pertumbuhan pemakai narkoba adalah :
 * Aktivitas pengedar.
 * Kematian pemakai.
 * Terapi pengobatan atau rehabilitasi bagi pemakai narkoba.
- Strategi pemerintah untuk pemberantasan narkoba (drug fighting strategy) menggunakan dua cara, yaitu :
 * Treatment (perawatan) dengan cara terapi pengobatan / rehabilitasi.
 * Law enforcement (tindakan hukum) untuk menangkap para pengedar.
- Strategi pengedar adalah berusaha untuk memperoleh pelanggan (pemakai) baru.

Dengan demikian terdapat dua pemain yang mempunyai tujuan yang berbeda dalam model permainan diferensial ini.

Fungsi tujuan pengedar adalah:
\[
maks J_1 = \int_0^\infty \exp(-r_1) [C_1(u(t, f(x))) - C_2(u(t, \phi))] dt
\]
(3.1)

Fungsi tujuan pemerintah adalah:
\[
maks J_2 = \int_{x(0) = x_0}^\infty \exp(-r_2) [-C(x) = C_2(\phi)] dt
\]
(3.2)
dengan fungsi kendala kedua pemain :
\[
\dot{x} = g(x) \sqrt{u} - dx - f(x) \sqrt{\phi}
\]
(3.3)

Keterangan :
\(\bar{x}\) = Populasi masyarakat di daerah tersebut, dengan \(\bar{x} > 0\).
\(x\) = Banyaknya pemakai narkoba, dengan \(0 \leq x \leq \bar{x}\). Variabel ini digunakan sebagai variable state.
\(u\) = Usaha pengedar untuk mendaftarkan pelanggan baru dan digunakan sebagai variabel kontrol usaha pengedar, dengan \(u \geq 0\).

\(^1\) Definisi fungsi terukur lihat Bartle, 1966.
Usaha pengedar ini diinterpretasikan sebagai waktu yang dibahaskan pengedar untuk menarik pelanggan.

\(v \) = Total pengeusahaan pemerintah untuk masalah narkoba dan digunakan sebagai variabel kontrol usaha pemerintah, dengan \(v \geq 0 \).

\(\phi \) = Proporsi dana pemerintah yang digunakan untuk terapi pengobatan dengan \(\phi \in [0,1] \), sedangkan \(1-\phi \) adalah proporsi dana untuk tindakan hukum.

\(\bar{v} \) = Usaha pemerintah dalam tindakan hukum, dengan \(\bar{v} = (1-\phi)v \).

\(t \) = Waktu.

\(C_1(u,\bar{v}) \) = Biaya yang dikeluarkan pengedar sebagai akibat tindakan polisi.

\(C_2(v) \) = Biaya yang dikeluarkan pemerintah untuk mengendalikan masalah narkoba.

\(r_i \) = Tingkat diskon \(i \) di masa depan untuk kedua pemain, dengan \(i = (1,2), r_i > 0 \).

\(U(x) \) = Fungsi pendapatan pengedar.

\(D(x) \) = Fungsi biaya pemerintah yang disebabkan oleh pemakai.

\(g(x) \) = Fungsi pertumbuhan pemakai yang memenuhi \(g(0) = g(\bar{x}) = 0 \), dengan \(g \) unimodal dan simetrik pada \(\bar{x}/2 \).

\(f(x) \) = Tindakan perawatan dengan \(f \in C^1[0,\bar{x}] \), dengan \(C^1 \) adalah fungsi-fungsi yang mempunyai turunan pertama yang kontinu, dengan asumsi:

\[f(0) = 0, f(x) > 0, \left(\frac{f(x)}{x}\right)v < 0. \]

Ini berarti jika diberikan usaha terapi tetap banyaknya pemakai yang sembuh meningkat, tapi banyaknya yang terawat menurun.

\(d \) = Tingkat kematian pemakai.

Interpretasi fungsiional objektif adalah sebagai berikut:

Jika tidak ada usaha pemberantasan dari pihak kepolisian, dan juga tidak ada usaha dari pengedar, maka tidak ada pengedar yang akan tertangkap dan tidak ada biaya yang dikeluarkan pengedar. Hal ini mengakibatkan:

\[C_1(u,0) = 0, \forall u \geq 0. \]

\[C_1(0,\bar{v}) = 0, \forall \bar{v} \geq 0. \]

Misalkan ada pengedar yang berhasil ditangkap. Berarti pihak kepolisian dan pengedar akan meningkatkan usahanya secara linear, sehingga biaya yang dikeluarkan kelompok pengedar juga meningkat, sehingga dapat dituliskan sebagai \(C_1(u,\bar{v}) = r u \bar{v} \) dengan \(r > 0 \) adalah ukuran efisiensi tindakan hukum yang dilakukan.

Pemerintah sebagai pemain kedua harus menghadapi biaya yang disebabkan oleh pemakai dan biaya yang dikeluarkan untuk mengendalikan masalah narkoba.

Untuk analisis selanjutnya akan digunakan spesifikasi berikut:

\[g(x) = a\sqrt{x(x-x)} + bx, U(x) = ax, \quad C_1(u,\bar{v}) = \mu \bar{v}, \quad D(x) = bx, \quad C_2(v) = \delta v, \]

\[a, b, \alpha, \beta, \gamma, \delta > 0. \]

Dengan men subsitusikan persamaan-persamaan (3.4) ke persamaan (3.1) – (3.3) maka diperoleh:

\[\text{Fungsi tujuan pengedar adalah:} \]

\[\text{max} \quad J_1 = \int_0^{\infty} \exp(-r_1 t)(ax - \gamma(1-\phi)uv) \, dt. \]

\[\text{Fungsi tujuan pemerintah adalah:} \]

\[\text{max} \quad J_2 = \int_0^{\infty} \exp(-r_2 t)[-bx - \delta v] \, dt. \]

\[\text{dengan fungsi kendala kedua pemain:} \]

\[\dot{x} = a\sqrt{x(x-x)} + bx, \quad \delta v = \phi \in [0,1] \]

\[x(0) = x_0 \in [0,\bar{x}], \quad \phi \in [0,1] \]

\[\bar{x}, r_1, r_2, a, b, \alpha, \beta, \gamma, \delta > 0. \]
IV. PEMBAHASAN

4.1 Keseimbangan Feedback dari Permainan

Pada subbab ini akan diturunkan keseimbangan feedback permainan diferensial (3.5)-(3.7). Ini berarti diasumsikan bahwa kedua pemain memilih nilai variabel kontrol pada waktu \(t \) yang bergantung pada nilai variabel state pada saat \(t \). Karena \(t \) tidak muncul di \(J \), maupun \(J_2 \) kecuali pada faktor diskon, dan karena waktu yang infinite maka strategi feedback para pemain dipilih yang tidak bergantung pada \(t \) tapi hanya bergantung pada \(x \). Dari persamaan (2.5) bentuk Hamilton dari kedua pemain adalah:

\[
\begin{align*}
H_1(x, u, v, \lambda_x) &= ax - \gamma(1 - \phi)uv + \lambda_x[a\sqrt{x(x-x)}u - dx - b\sqrt{x}] \\
H_2(x, u, v, \lambda_v) &= -\beta x - \delta v + \lambda_v[a\sqrt{x(x-x)}u - dx - b\sqrt{x}]
\end{align*}
\]

(4.1)

Untuk menghitung solusi feedback Nash dari permainan, harus dicari nilai fungsi \(q_1(x) \) dan \(q_2(x) \) yang mempunyai turunan pertama yang kontinu, yang memenuhi persamaan Hamilton-Jacobi-Belman (HJB). Berdasarkan Teorema 1:

\[
\begin{align*}
\eta_1 q_1 &= ax - \gamma(1 - \phi)uv + q_1[a\sqrt{x(x-x)}u - dx - b\sqrt{x}] \\
\eta_2 q_2 &= -\beta x - \delta v + q_2[a\sqrt{x(x-x)}u - dx - b\sqrt{x}]
\end{align*}
\]

(4.2)

\[
\begin{align*}
u(x) &= \arg \max_u \left[ax - \gamma(1 - \phi)uv(x) + q_1(x)[a\sqrt{x(x-x)}u - dx - b\sqrt{x}]
ight] \\
v(x) &= \arg \max_v \left[-\beta x - \delta v + q_2(x)[a\sqrt{x(x-x)}u - dx - b\sqrt{x}]
ight]
\end{align*}
\]

dan kondisi transversalitasnya:

\[
\lim_{t \to \infty} \exp(-\eta_1 t) q_1(x) = \lim_{t \to \infty} \exp(-\eta_2 t) q_2(x) = 0
\]

Dari kondisi maksimum \(u \) dan \(v \), kontrol optimalnya adalah:

\[
\begin{align*}
u(x) &= \frac{4\delta^2 a^2 q_1^2(x-x)}{\gamma^2 b^4(1 - \phi)^2 \phi^2 \varphi^2 x} \\
v(x) &= \frac{b^2 \phi \varphi^2 x}{4\delta^2}
\end{align*}
\]

(4.3), (4.4)

(lihat Lampiran 1) dan dijamin strategi hasil \(u(x), v(x) \) adalah admissible (lihat Lampiran 6).

Substitusi persamaan (4.3) dan (4.4) ke persamaan HJB (4.2) diperoleh:

\[
\eta_1 q_1 = ax + \frac{a^2 \delta^2 q_1^2(x-x)}{\gamma^2 b^4(1 - \phi)^2 \phi^2 \varphi^2 x} - dx q_1 + \frac{\delta^2 \phi \varphi^2 x}{2\delta}
\]

\[
r_2 q_2 = -\beta x - \frac{\delta^2 \phi \varphi^2 x}{2\delta} - \frac{2\delta^2 \phi \varphi^2 x}{2\delta} - dx q_2 + \frac{\delta^2 \phi \varphi^2 x}{2\delta}
\]

(lihat Lampiran 2).

Diasumsikan bahwa solusi dari persamaan (4.3) dan (4.4) adalah linear dalam \(x \), yaitu:

\[
q_1(x) = \tau_1 + \tau_2 x \quad \Rightarrow q_1'(x) = \tau_2
\]

\[
q_2(x) = \alpha_1 + \alpha_2 x \quad \Rightarrow q_2'(x) = \alpha_2
\]

Dengan mensubstitusikan persamaan (4.5) dan (4.6) akan diperoleh:

\[
\eta_1 \tau_1 = \frac{a^2 \delta^2 \tau_2 x}{\gamma^2 b^4(1 - \phi)^2 \phi^2 \varphi^2 x}
\]

\[
\eta_2 \alpha_1 = \alpha - \frac{a^2 \delta^2 \tau_2 x}{\gamma^2 b^4(1 - \phi)^2 \phi^2 \varphi^2 x} - \frac{\phi \varphi \omega}{2\delta}
\]

\[
r_2 \alpha_2 = \frac{2\delta \tau_2 x}{\gamma^2 b^4(1 - \phi)^2 \phi^2 \varphi^2 x} - \frac{2\delta \tau_2 x}{\gamma^2 b^4(1 - \phi)^2 \phi^2 \varphi^2 x} - \frac{\phi \varphi \omega}{2\delta}
\]

(lihat Lampiran 3).
Nilai τ_i dan ω_i dapat dihitung dari (4.7) dan (4.9), tapi akan diabaikan, karena tidak muncul pada kontrol optimum (4.3) dan (4.4). Selanjutnya dari persamaan (4.10) diperoleh:

$$r_2 = Kq \frac{\omega_2^*}{2}, \text{ dengan}$$ (4.11)

$$K = \frac{\beta^3 \phi(1-\phi)}{\sigma^3 \beta^2}, \text{ dan}$$ (4.12)

$$p_1(\omega_2) = \frac{\phi b^* \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta + \frac{3 \phi b^* \omega_2^2 K}{16 \delta} \frac{K \omega_2}{4} \left(2 \tau_i - r_2 + d + \frac{K}{4} \beta\right) + \alpha = 0$$

dengan $K = \frac{\beta^3 \phi(1-\phi)}{\sigma^3 \beta^2}$

(lihat Lampiran 5). (4.14)

Untuk menjamin keberadaan kontrol optimum $u(x)$, $v(x)$ positif yang admissible pada persamaan (4.3) dan (4.4), maka harus diperlihatkan bahwa ada solusi (r_2^*, ω_2^*) pada sistem (4.11) dan (4.14) dengan $r_2^* > 0$ dan $\omega_2^* < 0$. Dari persamaan (4.11), dapat terlihat bahwa kondisi tersebut dapat terpenuhi jika dan hanya jika ada solusi negatif ω_2^* pada persamaan (4.14) dengan

$$p_2(\omega_2^*) = \frac{\phi b^* \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta < 0$$ (4.15)

(lihat Lampiran 6).

Perhatikan bahwa $p_2(0) < 0$ dan $\lim_{\omega \to -\infty} p_2(\omega) = \infty$.

Hal ini mengakibatkan terdapat bilangan real $\sigma < 0$ dengan $p_2(\omega) = 0$ dan $p_2 < 0 \forall \omega \in (\sigma, 0)$.

Di pihak lain dari persamaan (4.14) dan definisi $p_2(\omega_2)$ diperoleh :

$$p_1(\sigma) = \alpha > 0$$

$$p_1(0) = \alpha - \frac{\beta^3 K}{4}.$$

Jika diasumsikan bahwa

$$\alpha < \frac{\beta^3 K}{4}$$ (4.16)

maka $p_1(0) < 0$ yang mengakibatkan terdapat $\omega_2^* \in (\sigma, 0)$ dengan $p_1(\omega_2^*) = 0$ dan $p_2(\omega_2^*) < 0$. Sehingga menurut persamaan (4.11) $\tau_i^* > 0$ dan kedua kontrol optimum tersebut positif.

Sebelumnya telah dikonstruksikan fungsi $q_1(x)$ dan $q_2(x)$ yang memenuhi persamaan HJB. Kontrol optimal persamaan (4.3) dan (4.4) menggambarkan keseimbangan feedback Nash (3.5)-(3.7), jika kondisi transversalitas (4.2) terpenuhi. Untuk menunjukkan bahwa kondisi ini terpenuhi, akan diperlihatkan keseimbangan variabel state x, jika kedua pemain bergerak menurut persamaan (4.3) dan (4.4) pada r_2, ω_2^*.

Dengan mensubstitusikan kedua persamaan kontrol optimal ke dalam persamaan (3.7) menghasilkan:

$$\dot{x} = \frac{2 \tau_i x}{K \omega_2^*} - \frac{2 \tau_i^*}{K \omega_2^*} + d + \frac{b^2 \phi \omega_2^*}{2 \delta}$$ (4.18)

(lihat Lampiran 7).

Persamaan tersebut mempunyai keseimbangan tunggal sebagai berikut :

$$x^* = \frac{4 \tau_i x}{4 \tau_i^* \delta + 2 \delta \sigma \omega_2^* - b^2 \phi \omega_2^*}$$ (4.19)

(lihat Lampiran 8).

Koefisien x pada persamaan (4.19) bernilai negatif, sehingga keseimbangannya stabil asintotik global. Hal ini mengakibatkan kondisi transversalitas (4.2) terpenuhi dengan x konvergen ke x^* dan solusi (4.3) dan (4.4) yang didapatkan merupakan keseimbangan feedback Nash dari permainan.
Hasil tersebut dirangkum dalam teorema berikut.

Teorema 2
Di bawah kondisi (4.16) strategi-strategi feedback dari permainan (2.1) adalah:

\[
\begin{align*}
\mathbf{u}^*(x) &= \frac{4r_2^2}{K^2\alpha^2} \left(\overline{x} - x \right) / x \\
\mathbf{v}^*(x) &= \frac{b\phi\alpha^2}{4}\end{align*}
\]
(4.20)

dengan \(K \) pada persamaan (4.12), \(\alpha^2 \) adalah akar negatif terbesar pada persamaan (4.14) dan \(r_2^* \) diberikan pada persamaan (4.11), adalah strategi yang admissible dan mendefinisikan keseimbangan feedback Nash permainan diferensial (3.5)-(3.7). Pada posisi keseimbangan banyaknya pemakai dinyatakan oleh \(x^* \in (0, \overline{x}) \) yang diberikan pada persamaan (4.19).

Dengan menafsirkan solusi feedback persamaan (4.20), terlihat bahwa para pengedar akan semakin berani berada di jalan, jika banyaknya pemakai menurun. Sebaliknya mereka akan lebih berhati-hati jika banyaknya pemakai meningkat. Mereka ingin membentuk/membangun jumlah pemakai yang banyak secara relatif dan cepat dengan biaya yang tetap rendah, dengan cara mempertahankan jumlah tersebut. Kebijakan tersebut optimal bagi pengedar, karena pemerintah hanya akan menggunakan usaha yang sedikit dalam memberantas masalah narkoba ini selama jumlah pemakai kecil. Pemerintah akan mengeluarkan biaya lebih banyak jika jumlah pemakai semakin meningkat. Para pengedar akan mencari pemakai baru lagi untuk menggantikan pemakai yang meninggalkan atau sembuh karena terapi.

Solusi dari persamaan (4.20) diinterpretasikan sebagai jumlah biaya terpotong yang harus dihadapi pemerintah disebabkan oleh aktivitas para pengedar, yang diberikan oleh nilai fungsi:

\[
q_1(x_0) = \alpha_1^* + \alpha_2^*(x_0)
\]
(4.21)

dengan \(\alpha_1^* \) dan \(\alpha_2^* \) bergantung pada nilai \(\phi \).

Alokasi optimal biaya yang akan dikeluarkan untuk treatment dan law enforcement bergantung pada dana pemerintah dan akan berubah-ubah pada jangka waktu yang pendek. Disusun pemerintah telah menentukan nilai parameter \(\phi \) pada waktu \(t=0 \). Untuk mempercekal biaya terpotong yang disebabkan kegiatan pengedar dalam pendekatannya dengan pemakai, kebijaksanaan pemerintah harus memilih alokasi dana untuk treatment dan law enforcement yang membuat nilai \(q_2(x_0) \) maksimum. Nilai \(\psi \) optimal yang memaksimalkan \(q_2(x_0) \) akan dinyatakan oleh \(x^* \). Tetapi nilai \(\phi \) tidak dapat dilihat secara analitik sehingga akan dilihat secara numerik.

4.2 Contoh Permasalahan
Tujuan pemerintah dalam menanggulangi masalah narkoba ini adalah menentukan alokasi optimal biaya yang dinotasikan oleh \(\phi \) antara treatment dan law enforcement. Namun sebelumnya untuk mengatasi bahwa nilai optimal \(\phi \) selalu berada pada (0,1), perhatikan kasus-kasus berikut:

- \(\phi = 0 \) berarti semua dana diinvestasikan pada tindakan hukum (law enforcement).
- \(\phi = 1 \) berarti semua dana diinvestasikan pada perawatan/rehabilitasi (treatment).

Pada kasus ini peningkatan usaha yang dilakukan pengedar tidak akan memberikan pengaruh langsung terhadap pemakai. Tetapi tindakan hukum yang dilakukan pemerintah terhadap pengedar hanya akan membuat biaya yang harus dikeluarkan pengedar semakin besar. Di pihak lain jika pemerintah hanya menginvestasikan semua dana pada tindakan hukum, banyaknya pemakai hanya akan berkurang akibat dari kematian.

Perhatikan contoh kasus berikut:
Misalkan diberikan nilai-nilai parameter berikut ini:

- \(\overline{x} = 100 \)
- \(r_1 = 0.1 \)
- \(r_2 = 0.1 \)
- \(a = 1 \)
- \(b = 1 \)
- \(d = 0.1 \)
- \(\alpha = 0.25 \)
- \(\beta = 4 \)
- \(\gamma = 1 \)
- \(\delta = 0.5 \)
- \(\phi \in (1/2 - \sqrt{15}/8, 1/2 + \sqrt{15}/8) \).

(lihat Lampiran 9).

7
Artinya semua nilai pada \(\phi \) admissible untuk pemerintah dan akan saling ada keseimbangan feedback untuk masalah tersebut.

Diasumsikan pemerintah menghadapi jumlah pemakai narkoba sebanyak 5% dari populasi, Jadi \(x_0=5 \). Untuk menentukan nilai optimal \(\phi \), harus dihitung akar negatif terbesar pada persamaan (4.14), yaitu \(\omega_2 \), untuk setiap nilai \(\phi \). Nilai \(\omega_2^* \) ini digunakan untuk menghitung fungsi \(q_2(x_0) \) dengan menggunakan persamaan (4.11), (4.12), (4.9). Alokasi optimal akan diberikan oleh nilai \(\omega \) yang membuat nilai \(\omega_2^* \) maksimal. Karena ekspresi analitik \(q_2(x_0) \) tidak ada, maka tidak dapat dihitung nilainya untuk semua \(\phi \). Jadi, \(q_2(x_0) \) hanya dihitung untuk nilai-nilai pada interval yang admissible. Nilai \(\phi(x_0) \) hanya merupakan pendekatan dari nilai yang sesungguhnya.

Sehingga dengan menggunakan software Maple persamaan (4.9), (4.11), (4.12) dan (4.21) untuk setiap nilai \(\phi \) menghasilkan:

\[\phi(x_0) = 0.524, q_2(x_0) = -83.419, x^* = 1.281. \] (4.22)

(lihat Lampiran 10) dengan \(q_2 \) dan \(x^* \) dihitung untuk \(\phi = \phi(x_0) \). Dari hasil perhitungan pada persamaan (4.22) terlihat bahwa proporsi usaha pada treatment sedikit lebih besar daripada proporsi usaha pada law enforcement. Sedangkan total biaya terpotong pemerintah diberikan oleh \(q_2(x_0) = -83.419 \). Hal tersebut memperlihatkan bahwa kalibrasi parameter-nya tepat, karena hasil yang diperoleh membuat pemerintah dapat mengurangi jumlah pemakai narkoba dari 5% menjadi 1.3%.

4.3 Analisis Sensitivitas

Pada analisis sensitivitas akan digunakan nilai-nilai parameter pada contoh permasalahan untuk mendapatkan nilai \(\phi \) dan \(x^* \). Persamaan (4.16) digunakan untuk mendapatkan nilai \(\phi \). Sedangkan untuk mendapatkan nilai \(x^* \) digunakan persamaan (4.19).

4.3.1 Efisiensi Pengedar

Parameter \(a \) menyatakan efisiensi usaha pengedar. Pada Gambar 1a diperlihatkan bahwa semakin tinggi nilai \(a \), semakin rendah nilai \(\phi \). Pada pembahasan ini akan diperlihatkan nilai-nilai \(\phi \) dan \(x^* \) bila 0.5 \(\leq a \leq 1.5 \). Pada saat efisiensi usaha pengedar meningkat, pemerintah melakukan panganan usaha dari terapi pengobatan menjadi tindakan hukum. Karena peningkatan efisiensi pengedar memberikan pengaruh langsung terhadap peningkatan pemakai, terlihat pada Gambar 1b. Semakin tinggi efisiensi usaha pengedar, semakin banyak pemakai yang didapatkan sesuai dengan tingkat usaha pengedar.

![Gambar 1a](image1.png)

Gambar 1a

Gambar 1. Efisiensi pengedar dengan \(x_0=5 \) dan \(a=0.5-1.5 \)

![Gambar 1b](image2.png)

Gambar 1b
4.3.2 Efisiensi Usaha Pemerintah

- Efisiensi Pada Treatment (Terapi)

Selanjutnya akan dibahas pengaruh dari variasi efisiensi usaha pemerintah dalam terapi yang dinotasikan dengan b, dengan nilainya berkisar antara 0,5 sampai 1,5. Semakin tinggi usaha yang dilakukan pada terapi tentu saja proporsi dana yang diinvestasikan pada terapi semakin besar, hal tersebut dapat terlihat pada Gambar 2a. Sedangkan pada Gambar 2b menggambarkan bahwa peningkatan efisiensi terapi akan memberikan pengaruh yang besar dalam menurunkan banyaknya pemakai pada saat jumlah pemakai tinggi.

![Gambar 2a](image)

Gambar 2a. Efisiensi pemerintah dengan $x_0=5$ dan $b=0.5-1.5$

- Efisiensi Pada Tindakan Hukum

Pada kasus ini γ adalah efisiensi tindakan hukum, dan nilai yang akan dievaluasi juga antara 0,5 sampai 1,5. Pada Gambar 3a, efisiensi tindakan hukum mengakibatkan peningkatan ϕ. Hal tersebut kontradiksi pada kasus peningkatan nilai b. Karena b adalah efisiensi terapi yang berhubungan dengan proporsi yang dialokasikan untuk terapi pengobatan dan sisanya dialokasikan pada tindakan hukum. Tapi peningkatan pada γ akan mengakibatkan penurunan jumlah pemakai (lihat Gambar 3b), karena itu ϕ haruslah menaik. Tapi penurunan γ tidak akan berpengaruh besar dibandingkan penurunan efisiensi pada terapi. Terlihat pada Gambar 3b, jumlah pemakainya hanya bervariasi antara 0,7% sampai 2%. Efisiensi pada tindakan hukum prioritasnya harus lebih kecil dibandingkan prioritas terhadap tindakan terapi.

![Gambar 3a](image)

Gambar 3a. Efisiensi pemerintah pada tindakan hukum dengan $x_0=5$ dan $\gamma=0.5-1.5$
V. KESIMPULAN

Tulisan ini merekonstruksi suatu masalah differential game serta analisis sensitivitasnya pada implementasi permasalahan yang dituliskan oleh H. Dawid dan G. Feichtinger, pada tahun 1996.

DAFTAR PUSTAKA

LAMPIRAN
Lampiran 1 : Hasil strategi $u(x)$, $v(x)$ yang admissible

Dari kondisi maksimum untuk u dan v, hasil strategi $u(x)$, $v(x)$ admissible, kontrol optimalnya :

$$ v(x) = \arg\max_u \left[-\beta x - \delta v + q'_2(x)(a\sqrt{x(x-x)}u(x) - dx - b\sqrt{x}\phi) \right] $$

$$ \frac{\partial}{\partial v} \left[-\beta x - \delta v + q'_2(x)(a\sqrt{x(x-x)}u(x) - dx - b\sqrt{x}\phi) \right] = 0 $$

$$ \Rightarrow -\delta - \frac{q'_2(x)b\sqrt{x}\phi}{2\sqrt{v}} = 0 $$

$$ \Rightarrow 2\delta \sqrt{v(x)} = -\frac{q'_2(x)b\sqrt{x}\phi}{2\sqrt{v}} \quad (L.1.1) $$

$$ \Rightarrow v(x) = \left[-\frac{q'_2(x)b\sqrt{x}\phi}{2\delta} \right]^2 $$

$$ \Rightarrow v(x) = \frac{b^2\phi q'_2^2 x}{4\delta^2} \quad (4.4) $$

$$ u(x) = \arg\max_u [\alpha x - \gamma(1-\phi)nu(x) + q'_1(x)(a\sqrt{x(x-x)}u - dx - b\sqrt{x}\phi)] $$

$$ \frac{\partial}{\partial u} \left[-\gamma(1-\phi)nu(x) + q'_1(x)(a\sqrt{x(x-x)}u - dx - b\sqrt{x}\phi) \right] = 0 $$

$$ \Rightarrow -\gamma(1-\phi)v(x) + \frac{q'_1(x)u(x)(a\sqrt{x(x-x)}u - dx - b\sqrt{x}\phi)}{2\sqrt{u}} = 0 $$

$$ \Rightarrow 2\gamma(1-\phi)v(x)\sqrt{u(x)} = q'_1(x)a\sqrt{x(x-x)} \quad (L.1.2) $$

$$ \Rightarrow u(x) = \left[\frac{q'_1(x)a\sqrt{x(x-x)}}{2\gamma(1-\phi)v(x)} \right]^2 $$

$$ \Rightarrow u(x) = \frac{4\delta^2 a^2 q'_1^2 (x-x)}{\gamma^2 b^4 (1-\phi)^2 \phi^2 q'_2 x} \quad (4.3) $$

Lampiran 2 : Substitusi persamaan (4.3) dan (4.4) ke dua persamaan HJB (4.2)

$$ r q_1 = \alpha x - \gamma(1-\phi)nu + q'_1(a\sqrt{x(x-x)}u - dx - b\sqrt{x}\phi) $$

$$ = \alpha x - \gamma(1-\phi)\frac{4\delta^2 a^2 q'_1^2 (x-x)}{\gamma^2 b^4 (1-\phi)^2 \phi^2 q'_2 x} + \frac{4\delta^2 a^2 q'_1^2 (x-x)}{\gamma^2 b^4 (1-\phi)^2 \phi^2 q'_2 x} - dx - b\sqrt{x}\phi q'_2 x $$

$$ = \alpha x - \frac{\delta^2 a^2 q'_1^2 (x-x)}{\gamma b^2 (1-\phi)\phi q'_2 x} + \frac{2\delta^2 a^2 q'_1 (x-x)}{\gamma b^2 (1-\phi)\phi q'_2 x} - dx - b\sqrt{x}\phi q'_2 x $$

$$ = \alpha x + \frac{\delta^2 a^2 q'_1^2 (x-x)}{\gamma b^2 (1-\phi)q'_2} - dx q'_1 - \frac{\phi b^2 q'_2 x}{2\delta} \quad (4.4) $$
\[r_1 g_2 = -\beta x - \delta v + \phi (x + \sqrt{(\bar{x} - x)}) - dx - b \sqrt{\phi v} \]

\[= -\beta x - \frac{b^3 \phi \psi t^2}{4 \delta^2} x + q_1 \left[\frac{4 \phi^2 \psi \psi t^2 (\bar{x} - x)}{\gamma \psi \phi (1 - \phi) \psi g_2} - dx - b \sqrt{\phi^2 \psi g_2^2} \right] \]

\[= -\beta x - \frac{b^3 \phi \psi t^2}{4 \delta} + q_1 \left[\frac{2 \delta^2 \phi^2 \psi t^2 (\bar{x} - x)}{\gamma \psi \phi (1 - \phi) \psi g_2} - dx - b \sqrt{\phi^2 \psi g_2^2} \right] \]

\[= -\beta x - \frac{\phi b^3 \psi t^2}{4 \delta} + 2 \delta \phi^2 \psi t^2 (\bar{x} - x) - \frac{b \phi^2 \psi g_2}{2 \delta} \]

(4.5)

- Lampiran 3
 Substitusi persamaan (4.6) ke persamaan (4.5) menghasilkan:

\[q_1(x) = r_1 + r_2 x \quad \rightarrow q_1'(x) = r_1 \]

\[q_2(x) = \omega_1 + \omega_2 x \quad \rightarrow q_2'(x) = \omega_2 \]

(1) \[r_1(x_1 + x_2) = \alpha x + \frac{a^2 \psi^2 \psi t^2 (\bar{x} - x)}{\beta \psi \phi (1 - \phi) \psi g_2} - dx r_2 + \frac{\phi b^3 \psi t^2 \omega_1 x}{2 \delta} \]

\[= \frac{a^2 \psi^2 \psi t^2 x}{\beta \psi \phi (1 - \phi) \psi g_2} - dx r_2 + \frac{\phi b^3 \psi t^2 \omega_1 x}{2 \delta} \]

(4.7)

\[r_1(x_1 + x_2) = \alpha x - \frac{a^2 \psi^2 \psi t^2 x}{\beta \psi \phi (1 - \phi) \psi g_2} - dx r_2 + \frac{\phi b^3 \psi t^2 \omega_1 x}{2 \delta} \]

(4.8)

(2) \[r_2(x_1 + x_2) = -\beta x - \frac{\phi b^3 \psi t^2}{4 \delta} x + \frac{2 \delta^2 \psi^2 \psi t^2 \bar{x} - 2 a^2 \psi^2 \psi t^2 x}{2 \delta} - dx \omega_2 + \frac{\phi b^3 \psi t^2}{2 \delta} \]

\[= -\frac{2 \delta^2 \psi^2 \psi t^2 \bar{x}}{2 \delta} - dx \omega_2 + \frac{\phi b^3 \psi t^2}{2 \delta} \]

(4.9)

\[r_2(x_1 + x_2) = -\beta x - \frac{\phi b^3 \psi t^2}{4 \delta} x + \frac{2 \delta^2 \psi^2 \psi t^2 \bar{x} - 2 a^2 \psi^2 \psi t^2 x}{2 \delta} - dx \omega_2 + \frac{\phi b^3 \psi t^2}{2 \delta} \]

(4.10)
• Lampiran 4

Dari persamaan (4.10)

\[r_2 \omega_2 = -\beta + \frac{\phi \delta^2 \omega_2^2}{4\delta} - \frac{2a^2 \delta^2 r_2}{\phi^2 (1-\phi) \omega_2} - d \omega_2 \]

\[\frac{2a^2 \delta^2 r_2}{\phi^2 (1-\phi) \omega_2} = -d \omega_2 - r_2 \omega_2 - \beta \]

\[\tau_2 = \frac{\phi^2 \delta^2 (1-\phi) \omega_2}{4\delta} - \left(\frac{\phi \delta^2 \omega_2^2}{4\delta} - (r_2 + d) \omega_2 - \beta \right) \]

\[\tau_2 = K q \frac{\omega_2}{2} \]

(4.11)

dengan \(K = \frac{\phi^2 \delta^2 (1-\phi)}{a^2 \delta^2} \)

(4.12) dan

\[q = \frac{\phi \delta^2 \omega_2^2}{4\delta} - (d + r_2) \omega_2 - \beta \]

(4.13)

• Lampiran 5: Substitusi persamaan (4.11) ke persamaan (4.8),

\[r_2 \tau_2 = \alpha - \frac{a^2 \delta^2 r_2^2}{\phi^2 (1-\phi) \omega_2^2} - d \tau_2 + \frac{\phi \delta^2 r_2 \omega_2}{2\delta} \]

\(\Rightarrow \frac{\phi \delta^2 r_2 \omega_2}{2\delta} - \frac{a^2 \delta^2 r_2^2}{\phi^2 (1-\phi) \omega_2^2} - d \tau_2 - r_2 \tau_2 + \alpha = 0 \)

\[\Rightarrow \frac{\phi \delta^2 K q \omega_2^2}{4\delta} - \frac{a^2 \delta^2 K^2 q^2 \omega_2^2}{4\delta} - dK q \frac{\omega_2}{2} - r_2 K \frac{\omega_2}{2} + \alpha = 0 \]

\[\Rightarrow q \left(\frac{\phi \delta^2 \omega_2^2 K}{4\delta} - \frac{a^2 \delta^2 K^2 q}{4\delta} - dK \frac{\omega_2}{2} - r_2 K \frac{\omega_2}{2} \right) + \alpha = 0 \text{ dengan } \omega_2 > 0 \]

\[\Rightarrow q \left(\frac{\phi \delta^2 \omega_2^2 K}{4\delta} - \frac{K \phi \delta^2 \omega_2^2}{4\delta} + \frac{K \omega_2}{4} (r_2 + d) + \frac{\beta}{4} - r_2 K \frac{\omega_2}{2} - dK \frac{\omega_2}{2} \right) + \alpha = 0 \]

\(r_2 (\omega_2) = \left(\frac{\phi \delta^2 \omega_2^2}{4\delta} - (r_2 + d) \omega_2 - \beta \right) \left(\frac{3\phi \delta^2 \omega_2^2 K}{16\delta} - \frac{K \omega_2}{4} (2r_2 - r_2 + d) + \frac{\beta}{4} \right) + \alpha = 0 \]

(4.14)

dengan \(K = \frac{\phi^2 \delta^2 (1-\phi)}{a^2 \delta^2} \) dan \(q = \frac{\phi^2 \delta^2 \omega_2^2}{4\delta} - (r_2 + d) \omega_2 - \beta \)
Lampiran 6 : Bukti eksistensi kontrol optimum \(u(x), v(x) \) positif yang admissible pada persamaan (4.3) dan (4.4)

1. Hubungan antara \(u(x), v(x) \) positif dengan \(\omega_2^* < 0 \), \(\tau_2^* > 0 \).

* Dari persamaan (L1.1) pada Lampiran 1 \(\sqrt{v(x)} = \frac{-q'_2(x) \delta \sqrt{x \phi}}{2 \delta} \)

Karena \(v(x) > 0 \) dan \(b, x, \phi, \delta > 0 \) maka \(q'_2(x) < 0 \) yang mengakibatkan \(\omega_2^* < 0 \).

* Dari persamaan (L1.2) pada Lampiran 1 \(\sqrt{u(x)} = \frac{q'_2(x) \alpha x(x - x)}{2(1 - \phi)v(x)} \)

Karena \(u(x) > 0 \) dan \(a, x, \tilde{x}, \gamma, \phi, \delta > 0 \) maka \(q'_2(x) > 0 \) yang mengakibatkan \(\tau_2^* > 0 \).

2. \((\Rightarrow)\) Jika diketahui ada solusi negatif \(\omega_2^* \) pada persamaan (4.14) dengan,

\[
p_2(\omega_2^*) = \frac{\phi b^2 \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta < 0
\]

maka akan dibuktikan ada solusi \((\tau_2^*, \omega_2^*)\) dengan \(\tau_2^* > 0 \), \(\omega_2^* < 0 \).

Misalkan ada solusi negatif \(\omega_2^* \) pada persamaan (4.14) dengan

\[
p_2(\omega_2^*) = \frac{\phi b^2 \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta < 0
\]

Diketahui dari persamaan (4.11) \(\tau_2^* = Kq \frac{\omega_2^*}{2} \) dengan

\[
k = \frac{\gamma b^2 \phi (1 - \phi)}{a^2 \delta^2}
\]

\[
q = \frac{\phi b^2 \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta.
\]

karena \(\gamma, \delta, a, b > 0 \) dan \(\phi \in (0,1) \) maka \(K > 0 \) dan

karena \(b, d, \delta, \beta, r_2 > 0 \) dan \(\beta > \frac{\phi b^2 \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* \) maka \(q < 0 \).

Sehingga terbukti ada solusi \((\tau_2^*, \omega_2^*)\) dengan \(\tau_2^* > 0 \), \(\omega_2^* < 0 \)

\((\Rightarrow)\) Jika diketahui ada solusi \((\tau_2^*, \omega_2^*)\) dengan \(\tau_2^* > 0 \), \(\omega_2^* < 0 \)

maka akan dibuktikan ada solusi negatif \(\omega_2^* \) dengan

\[
p_2(\omega_2^*) = \frac{\phi b^2 \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta < 0.
\]

Pilih \(\omega_2^* > 0 \) dan \(\omega_2^* < 0 \).

Dari persamaan (4.11) \(\tau_2^* = Kq \frac{\omega_2^*}{2} \)

\[
dengan \(k = \frac{\gamma b^2 \phi (1 - \phi)}{a^2 \delta^2} \) dan \(q = \frac{\phi b^2 \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta. \)

karena \(\gamma, \delta, a, b > 0 \) dan \(\phi \in (0,1) \) maka \(K > 0 \) dan karena \(\tau_2^* > 0 \), \(\omega_2^* < 0 \) maka \(q < 0 \).

Sehingga terbukti ada solusi negatif \(\omega_2^* \) dengan \(p_2(\omega_2^*) = \frac{\phi b^2 \omega_2^*}{4 \delta} - (d + r_2) \omega_2^* - \beta < 0. \)
Lampiran 7 : Kedinamikan variabel state x
Dengan mensubstitusi persamaan (4.3) dan (4.4) ke persamaan (3.7) :

$$\dot{x} = a \sqrt{(\bar{x} - x)u - dx - b \sqrt{xv}}$$

$$\dot{x} = a \sqrt{(\bar{x} - x)g_2^2 g_1^2 (\bar{x} - x)} - dx - b \sqrt{xv} \phi^2 \frac{x}{4\delta^2}$$

$$\dot{x} = \frac{2a^2 (\bar{x} - x) \delta^2 r^*_2}{\gamma} - dx - \frac{b^2 x \phi \alpha^*_2}{2\delta}$$

$$\dot{x} = \frac{2r^*_2 \bar{x}}{K_2} \frac{1}{\alpha^*_2} - 2r^*_2 \frac{x}{K_2} \frac{1}{\alpha^*_2} - dx - \frac{b^2 x \phi \alpha^*_2}{2\delta}$$

$$\dot{x} = \frac{2r^*_2 \bar{x}}{K_2} \frac{1}{\alpha^*_2} - \frac{2r^*_2 \bar{x}}{K_2} \frac{1}{\alpha^*_2} - dx - \frac{b^2 x \phi \alpha^*_2}{2\delta}$$

(4.17)

Lampiran 8 : Keseimbangan tunggal persamaan (4.17)
Ambil $\dot{x} = 0$

$$\Rightarrow 2r^*_2 \bar{x} - \frac{2r^*_2 \bar{x}}{K_2} \frac{1}{\alpha^*_2} - dx - \frac{b^2 x \phi \alpha^*_2}{2\delta} = 0$$

$$x^* = \frac{2r^*_2 \bar{x}}{K_2} \frac{1}{\alpha^*_2} + d + \frac{b^2 x \phi \alpha^*_2}{2\delta}$$

$$x^* = \frac{2r^*_2 \bar{x}}{K_2} \frac{1}{\alpha^*_2} + d + \frac{b^2 x \phi \alpha^*_2}{2\delta}$$

$$x^* = \frac{2r^*_2 \bar{x}}{K_2} \frac{1}{\alpha^*_2} + d + \frac{b^2 x \phi \alpha^*_2}{2\delta}$$

(4.18)

Lampiran 9 : Contoh Permasalahan
Asumsi:

$$\bar{x} = 100 \quad \tau_1 = 0.1 \quad \tau_3 = 0.1$$

$$a = 1 \quad b = 1 \quad d = 0.1$$

$$\alpha = 0.25 \quad \beta = 4 \quad \gamma = 1 \quad \delta = 0.5$$

$$\alpha < \frac{\beta^2 K}{4}$$, dengan

$$\Rightarrow \alpha < \frac{4\beta^2 \phi (1 - \phi)}{4}$$

$$K = \frac{4\beta^2 \phi (1 - \phi)}{\alpha^2 \delta^2} = 4\phi (1 - \phi)$$

$$\frac{1}{64} < \phi (1 - \phi)$$

$$\phi - \phi^3 - \frac{1}{64} > 0$$

$$\phi \in (0.2 - \sqrt{15}/8, 0.2 + \sqrt{15}/8)$$
Lampiran 10 : Mencari nilai g yang membuat nilai a_2 maksimal

Dengan menggunakan software Maple diperoleh hasil sebagai berikut:

```maple
> x_bar:=100;
x_bar := 100

> r1:=0.1;
r1 := .1

> r2:=0.1;
r2 := .1

> a := 1;
a := 1

> b := 1;
b := 1

> d := 0.1;
d := .1

> alpha:=0.25;
alpha := .25

> beta:=4;
beta := 4

> Gamma:=1;
Gamma := 1

> x0:=5;
x0 := 5

> delta:=0.5;
delta := .5

> K:=(Gamma*b^2*phi*(1-phi))/(a^2*delta^2);
K := 4.0000000000 phi (1 - phi)

> P1:=(phi*b^2*omega2^2/(4*delta)-(r2+d)*omega2-beta)*(3*b^2*phi*K*omega2^2/(16*delta)-(2*r1-r2+d)*K*omega2/4+b*delta*K/4)+alpha;
```

17
\[P_1 := (0.5000000000 \phi \omega_2^2 - 0.2 \omega_2 - 4) \]
\[2 \]
\[1.5000000000 \phi \ (1 - \phi) \omega_2^2 \]
\[- 0.2000000000 \phi \ (1 - \phi) \omega_2^2 \]
\[+ 4.0000000000 \phi \ (1 - \phi)) + .25 \]

\[P_2 := \text{maximize}(P_1, \{\text{omega2}\}); \]
\[\text{f} := \phi \rightarrow 0.2433333333 - 12.0066666666 \phi + 12 \phi^2 \]

\[f := \phi \rightarrow 0.2433333333 - 12.0066666666 \phi + 12 \phi^2 \]

\[\text{plot}(0.2433333333 - 12.0066666666 \phi + 12 \phi^2, \phi = 0 \ldots 1, \text{labels} = ['\phi', 'omega2']); \]
> phi := 0.524;

\[\phi = 0.524 \]

> omega2 := -2.753248002;

\[\omega^2 = -2.753248002 \]

> K := (Gamma*b^2*phi*(1-phi))/(a^2*delta^2);

\[K = 0.9976960000 \]

> q := (phi*omega2^2)/2 - 0.2*omega2 - 4;

\[q = -1.463292265 \]

> tau2 := K*q*omega2/2;

\[\tau_2 = 2.009762068 \]

> omega1 := (2*a^2*delta^2*x_bar*tau2)/(Gamma*b^2*phi*(1-phi)*omega2^2*r2);

\[\omega_1 = -69.65271184 \]

> q2(x0) := omega1 + (omega2*x0);

\[q_2(5) = -83.41895185 \]

> x := (4*delta*tau2*x_bar)/(4*delta*tau2+2*delta^4*K*omega2^2-b^2*phi*K*omega2^3);

\[x = 1.281177197 \]