KARAKTERISTIK KOMUNITAS MAKROZOObENTHOS DAN KETERKAITANNYA DENGAN TIPE HABITAT DI PERAIRAN PANTAI ANTARA KUALA TUNGKAL SAMPAI PANARAN BATAM

Oleh:
NURING WULANSARI
C02497031

SKRIPSI

PROGRAM STUDI MANAJEMEN SUMBERDAYA PERAIRAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
Februari 2001
Tiga perkara yang apabila ada pada diri seseorang, maka Allah akan menempatkannya pada Pemeliharaannya, dan akan melindunginya dengan rahmat serta akan memasukkannya ke dalam Kecintaannya:

1. Jika diberi bersyukur
2. Jika mampu membalas ia memaafkan
3. Jika Marah ia bersikap tenang

(H.R. al Hakim)

Karya ini ku persembahkan untuk:

Ibu, Ayah Kakak serta Adik tercinta
KARAKTERISTIK KOMUNITAS MAKOZOOBENTHOS
DAN KETERKAITANNYA DENGAN TIPE HABITAT
DI PERAIRAN PANTAI ANTARA KUALA TUNGKAL
SAMPAI PANARAN BATAM

Oleh:
NURING WULANSARI
C02497031

SKRIPSI
Sebagai Salah Satu Syarat untuk
Memperoleh Gelar Sarjana pada Fakultas Perikanan dan ILMU KELAUTAN

PROGRAM STUDI MANAJEMEN SUMBERDAYA PERAIRAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
Februari 2001

RINGKASAN

Penelitian ini bertujuan untuk melihat karakteristik komunitas makrozoobenthos berdasarkan tipe substrat dan parameter fisika-kimia perairan dengan mengkaji jenis, kepadatan, pola sebaran dan preferensi terhadap habitat di perairan pantai antara Kuala Tungkal sampai Panaran Batam.

Hasil pengamatan parameter fisika-kimia adalah suhu berkisar antara 30,19 – 31,16°C; salinitas berkisar antara 20,69 – 31,02‰; kekeruhan berkisar antara 0,3 – 16,5 NTU; padatan tersuspensi berkisar antara 10 – 56 mg/l; pH berkisar antara 6,90 – 8,10; oksigen terlarut berkisar antara 4,5 – 7,6 mg/l; BOD₅ berkisar antara 0,52 – 5,72 mg/l; COD berkisar antara 41,10 – 57,26 mg/l; nitrit berkisar antara 0,001 – 0,014 mg/l dan ammonia berkisar antara 0,111 – 0,511 mg/l. Secara umum hasil pengamatan parameter fisika-kimia perairan masih baik untuk perkembangan makrozoobenthos. Tipe substrat pada stasiun satu adalah liat berdebu, sementara itu stasiun tiga, empat, lima, tujuh dan delapan adalah pasir berlumpur, sedangkan stasiun dua dan enam merupakan substrat bertepe liat.

Pengelompokan stasiun pengamatan dengan indeks Canberra, menggunakan parameter fisika-kimia lingkungan perairan seperti: kekeruhan, salinitas, TSS, DO, BOD₅, COD dan tekstur. Pengelompokan stasiun dilakukan pada taraf kesamaan 70% sehingga didapat tiga kelompok stasiun. Kelompok stasiun I meliputi stasiun dua dan enam, kelompok stasiun II meliputi stasiun tiga, empat, lima, tujuh dan delapan, sedangkan kelompok stasiun III hanya stasiun satu.

Hasil pengamatan terhadap komunitas makrozoobenthos diperoleh 47 jenis makrozoobenthos yang berasal dari tujuh kelas yaitu: polychaeta, hirudinea, nemertina, sipunculoidea, krustasea, pelecypoda, dan ophiuroidea. Jenis benthos yang banyak ditemukan berasal dari kelas polychaeta dengan komposisi kelas sebesar 51,06%.
Nilai pola sebaran jenis makrozoobenthos di perairan pantai antara Kuala Tungkal sampai Panaran Batam berkisar antara 1,98 – 8,00. Hal ini menunjukkan bahwa pola sebaran makrozoobenthos di perairan pantai antara Kuala Tungkal sampai Panaran Batam selama pengamatan bersifat mengelompok.

Pengelompokan jenis makrozoobenthos menggunakan indeks kesamaan Sorensen dan didasarkan atas kehadiran dan ketidakhadiran makrozoobenthos. Pengelompokan jenis makrozoobenthos yang ditemukan ini menggunakan taraf kesamaan 60% sehingga dari 47 genera diperoleh 13 kelompok jenis.

Dari hasil analisa indeks Konstansi dan Fidelitas terlihat bahwa jenis-jenis dari kelas polychaeta lebih menyukai kelompok stasiun II dengan tipe substrat pasir berlempung tetapi jenis Glycera sp. dan Areanida sp. dari kelas polychaeta memiliki preferensi yang kuat terhadap kelompok stasiun III dengan tipe substrat liat berdebu. Sementara itu Tapes sp. dari kelas pelecypoda lebih menyukai kelompok stasiun I dengan tipe substrat liat.
SKRIPSI

Judul Skripsi : KARAKTERISTIK KOMUNITAS MAKROZOOBENTHOS DAN KETERKAITANNYA DENGAN TIPE HABITAT DI PERAIRAN PANTAI ANTARA KUALA TUNGKAL SAMPAI PANARAN BATAM
Nama Mahasiswa : Nuring Wulansari
Nomor Pokok : C02497031
Program Studi : Manajemen Sumberdaya Perairan

Menyetujui:
I. Komisi Pembimbing

[Signature]
Ir. Zairion, M.Sc.
Ketua

[Signature]
Dr. Ir. Etty Riani H., M.S.
Anggota

II. Fakultas Perikanan dan Ilmu Kelautan

[Signature]
Ir. Sigif Hariyadi, M.Sc.
Ketua Program Studi

[Signature]
Dr. Indra Jaya, M.Sc.
Pembantu Dekan I

Tanggal Lulus: 6 Februari 2002
KATA PENGANTAR

Puji sukur penulis panjatkan kehadirat Allah SWT atas rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi ini.

Skripsi ini merupakan salah satu syarat untuk memperoleh gelar sarjana dalam bidang keahlian Manajemen Sumberdaya Perairan pada Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor.

Skripsi ini berjudul “Karakteristik Komunitas Makrozoobenthos dan Keterkaitannya dengan Habitat di Perairan Pantai antara Kuala Tungkal sampai Panaran Batam”.

Pada kesempatan ini penulis mengucapkan terima kasih:

- Bapak Ir. Zairion M.Sc. dan Dr. Ir. Etty Riani H., MS sebagai dosen Pembimbing yang telah banyak memberikan masukkan, petunjuk, pengarahan dan bimbingannya.
- Ibu Majari ana Krisanti S.Pi. sebagai dosen Penguji Tamu atas kesediaan waktunya serta masukan dan sarannya.
- Ibu Dr. Ir. Yunizar Ernawati, M.S. sebagai wakil dari Program Studi atas kesediaan waktunya serta masukan dan saran yang telah diberikan.
- Bapak Ir. Edy Suwandi dan Ir. Sigidi Hariyadi, M.Sc. sebagai pembimbing akademik yang telah memberikan masukan dan saran.
- Dr. Ir Enan M. Adiwilaga atas informasinya mengenai data sekunder.
- Dr. Ir. Kardiyo Prap tokardiyo yang telah memberikan masukkan dan saran kepada penulis.
- Semua pihak yang telah memberikan doanya.

Namun penulis menyadari masih banyak kekurangan, untuk itu masukan dan saran yang sifatnya membangun sangat penulis harapkan. Semoga tulisan ini dapat memberikan manfaat bagi para pembaca.

Bogor, Januari 2002

Penulis
UCAPAN TERIMA KASIH

Penulis juga ingin mengucapkan terima kasih kepada:

Allah SWT atas rahmat dan hidayahnya sehingga penulis dapat menyelesaikan skripsi ini

Ibunda Sri Sugiyanti dan Ayahanda Djumono atas bimbingan, cinta dan kasih sayangnya kepada penulis, Kakakku Sigit Sri Wibisono dan Adjikku Niken Woro Sukses atas doa dan bantuannya.

Temanku yang baik Triwik Hastuti atas saran, semangat dorongan dan kebersamaannya selama ini.

Rekan seperjuangan Elis Rahmawati dan Nur El atas segala kebaikannya

Crew Cibanteng Yusnita, Amalia, Dessy dan Riri atas kebersamaannya selama ini

Indra SL, Aa Firman, Iskandar, Indra Husada, dan Akbar atas sumbangsihnya

Dan Rekan Rekan MSP 34 atas suka dukanya selama beberapa semester

Dan Semua pihak yang telah memberikan doanya untuk keberhasilanku....
DAFTAR ISI

Halaman

DAFTAR TABEL .. v
DAFTAR GAMBAR .. vi
DAFTAR LAMPIRAN .. vii

I. PENDAHULUAN .. 1
 A. Latar belakang .. 1
 B. Tujuan .. 2

II. TINJAUAN PUSTAKA ... 3
 A. Makrozoobenthos ... 3
 B. Karakteristik dan struktur komunitas makrozoobenthos 4
 C. Parameter fisika-kimia perairan .. 5
 1. Suhu .. 6
 2. Salinitas .. 6
 3. Arus ... 7
 4. Kekeruhan .. 7
 5. Padatan tersuspensi ... 8
 6. pH .. 8
 7. Oksigen terlarut .. 9
 8. Biochemical oxygen demand-BOD₅ 10
 9. Chemical oxygen demand-COD 11
 10. Nitrit (NO₂⁻N) ... 11
 11. Ammonia (NH₃⁻N) ... 12
 D. Substrat .. 12
 1. Tekstur .. 13
 2. Logam berat dalam substrat 13

III. METODE .. 16
 A. Tempat dan waktu penelitian ... 16
 B. Metode kerja ... 16
 1. Lokasi pengambilan contoh ... 16
 2. Pengambilan contoh kualitas air 18
 3. Pengambilan contoh makrozoobenthos dan substrat 19
 C. Analisa data .. 21
 1. Kepadatan makrozoobenthos 21
 2. Pola sebaran makrozoobenthos 21
 D. Analisa Nodul ... 22
 1. Pengelompokan stasiun pengamatan 22
 2. Pengelompokan komunitas makrozoobenthos 22
3. Indeks Konstansi .. 23
4. Indeks Fidelitas .. 23

IV. HASIL DAN PEMBAHASAN .. 25
A. Parameter fisika-kimia perairan 25
 1. Suhu ... 25
 2. Salinitas ... 26
 3. Kekeruhan .. 26
 4. Padatan tersuspensi .. 27
 5. Arus ... 27
 6. pH ... 28
 7. Oksigen terlarut .. 28
 8. BOD₅ ... 29
 9. COD ... 29
 10. Nitrit(NO₂-N) ... 30
 11. Ammonia (NH₃-N) .. 30
B. Substrat ... 30
 1. Tekstur dan tipe substrat .. 31
 2. Logam berat dalam substrat 32
C. Pengelompokan stasiun ... 33
D. Komunitas makrozoobenthos 35
 1. Komposisi dan kepadatan jenis makrozoobenthos 35
 2. Pola sebaran jenis makrozoobenthos 37
 3. Pengelompokan jenis makrozoobenthos 38
E. Preferensi makrozoobenthos terhadap habitatnya 41

V. KESIMPULAN DAN SARAN .. 51
DAFTAR PUSTAKA .. 53
LAMPIRAN ... 56
RIWAYAT HIDUP .. 69
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kualitas air laut ditinjau dari kandungan oksigen terlarut</td>
<td>10</td>
</tr>
<tr>
<td>2. Klasifikasi ukuran partikel substrat</td>
<td>13</td>
</tr>
<tr>
<td>3. Koordinat lokasi pengukuran kualitas air/ sedimen dan biota air</td>
<td>18</td>
</tr>
<tr>
<td>4. Metode dan alat pengukuran parameter fisika-kimia perairan</td>
<td>18</td>
</tr>
<tr>
<td>5. Metode dan alat pengukuran parameter fisika-kimia substrat dasar perairan</td>
<td>19</td>
</tr>
<tr>
<td>7. Tekstur dan tipe substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>31</td>
</tr>
<tr>
<td>8. Kisaran nilai kandungan logam berat dalam substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>32</td>
</tr>
<tr>
<td>10. Jumlah taks dan kepadatan di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>37</td>
</tr>
<tr>
<td>11. Pengelompokan jenis makrozoobenthos berdasarkan kehadiran dan ketidakhadirannya di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>38</td>
</tr>
<tr>
<td>Gambar</td>
<td>Halaman</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1. Lokasi pengambilan contoh</td>
<td>17</td>
</tr>
<tr>
<td>2. Tipe substrat dasar menurut presentase liat, debu dan pasir berdasarkan segitiga Millar</td>
<td>20</td>
</tr>
<tr>
<td>3. Dendrogram pengelompokan stasiun pengamatan berdasarkan parameter fisika-kimia perairan</td>
<td>34</td>
</tr>
<tr>
<td>4. Dendrogram pengelompokan jenis berdasarkan kehadiran dan ketidakhadiran makrozoobenthos</td>
<td>40</td>
</tr>
<tr>
<td>5. Matriks data binari yang menghubungkan kelompok jenis dengan kelompok stasiun pengamatan</td>
<td>42</td>
</tr>
<tr>
<td>6. Analisa nodul berdasarkan indeks Konstansi</td>
<td>44</td>
</tr>
<tr>
<td>7. Analisa nodul berdasarkan indeks Fidelitas</td>
<td>45</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kepadatan, pola penyebaran makrozoobenthos, indeks keanekaragaman, keseragaman dan dominansi di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>56</td>
</tr>
<tr>
<td>2. Hasil pengukuran nilai parameter fisika-kimia di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>59</td>
</tr>
<tr>
<td>3. Kedalaman, kecepatan arus dan arah arus di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>60</td>
</tr>
<tr>
<td>4. Tipe substrat dasar dan kandungan logam berat dalam substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam</td>
<td>61</td>
</tr>
<tr>
<td>5. Perhitungan sistem pengelompokan stasiun berdasarkan parameter fisika-kimia</td>
<td>62</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. Latar belakang

Perairan pantai antara Kuala Tungkal sampai Panaran Batam memiliki kondisi perairan yang berbeda, di perairan pantai sekitar Kuala Tungkal dipengaruhi oleh adanya masukan Sungai Tungkal sehingga perairan sekitar Kuala Tungkal memiliki perairan yang cenderung payau, sedangkan perairan sekitar Panaran Batam di pengaruhi oleh adanya kegiatan penambangan pasir yang berlokasi di perairan dari Selat Durian sampai Selat Combol di sebelah Barat Pulau Batam (PT. Perusahaan Gas Negara, 2000).

Makrozoobenthos merupakan salah satu komponen penting dalam perairan karena berperan dalam membantu proses penguraian bahan-bahan organik serta menduduki beberapa posisi penting dalam rantai makanan. Sebagai organisme yang hidup di dasar, makrozoobenthos memiliki beberapa sifat yang tidak dimiliki oleh organisme lainnya seperti: hidupnya relatif menetap, dan mempunyai daya adaptasi yang bervariasi terhadap perubahan lingkungan sehingga organisme makrozoobenthos dapat digunakan dalam pendugaan kualitas lingkungan perairan.

Karena organisme makrozoobenthos mempunyai sifat penting dalam lingkungan perairan sehingga respon komunitas benthos terhadap perubahan lingkungan dapat digunakan untuk menduga pengaruh dari berbagai kegiatan seperti industri, pertanian, masukan bahan organik, perubahan substrat dan bahan kimia beracun dapat mempengaruhi komunitas makrozoobenthos.

Untuk memperoleh gambaran yang jelas mengenai kondisi perairan pantai antara Kuala Tungkal sampai Panaran Batam perlu dilakukan penelitian mengenai komunitas makrozoobenthos di perairan tersebut.
B. Tujuan

Penelitian ini bertujuan untuk melihat karakteristik komunitas makrozoobenthos di perairan pantai antara Kuala Tungkal sampai Panaran Batam berdasarkan tipe substrat dan parameter fisika-kimia perairan dengan mengkaji jenis makrozoobenthos, komposisi dan kepadatan jenis makrozoobenthos, pola sebaran makrozoobenthos, dan preferensi terhadap karakteristik habitat tertentu. Hasil penelitian ini diharapkan dapat memberikan manfaat terhadap pengelolaan di bidang perikanan.
II. DINJAUAN PUSTAKA

A. Makrozoobenthos

Menurut Nybakken (1997), berdasarkan ukurannya organisme benthos dibagi menjadi tiga bagian yaitu: (1) makrofauna yaitu organisme benthos yang berukuran lebih besar dari 0,5 mm (2) meiofauna yaitu organisme benthos yang berukuran antara 0,062 mm – 0,5 mm dan (3) mikrofauna yaitu organisme benthos yang berukuran lebih kecil dari 0,062 mm.

Woodin in Nybakken (1997), mengklasifikasikan organisme infauna menjadi penggali pemakan deposit (burrowing deposit feeders), pembuat saluran (tube builders) dan pemakan deposit (deposit feeders). Penggali pemakan deposit melimpah pada sedimen lumpir, sedimen lunak yang merupakan daerah dengan konsentrasi bahan organik yang tinggi sedangkan organisme pemakan suspensi lebih melimpah pada substrat yang berbentuk pasir, bahan organik lebih sedikit.
Organisme pembentuk tabung dapat menstabilkan substrat dengan tabung-tabungnya, organisme pembentuk tabung dapat berupa pemakan suspensi atau deposit. Pembuat tabung dapat dijumpai di substrat lumpur atau pasir. Wood (1987) melaporkan bahwa kebanyakan spesies infauna penggali adalah krustasea (Upogebia sp.), bivalva (Nucula sp. dan Venus sp.), dan gastropoda (Turritella sp. dan Gibbula sp.).

Benthos hidup relatif menetap, berumur panjang, tidak sulit dalam pengambilan sampel di alam, distribusi secara vertikal terbatas, dapat diidentifikasi sampai tingkat spesies meskipun diawetkan cukup lama (Leppakoski in Martudi, 1998). Peranan hewan benthos di perairan meliputi kemampuan untuk mendorong ulang bahan-bahan organik, membantu proses mineralisasi dan kedudukan dalam berbagai
posisi penting dalam rantai makanan, sehingga dapat juga digunakan sebagai indikator pencemaran (Lind in Effendi, 2000).

B. Karakteristik dan struktur komunitas makrozoobenthos

Menurut Odum (1971), komunitas biotik adalah kumpulan populasi yang hidup pada area tertentu atau habitat fisik tertentu dengan satuan yang terorganisir. Komunitas yang mengalami kondisi fisik yang terus-menerus menurun cenderung terdiri dari beberapa spesies berlimpah, sedangkan kondisi yang menyenangkan jumlah spesiesnya besar tetapi tidak ada satupun spesies yang berlimpah (Michael, 1995).

Keanekaragaman spesies menanggambarkan keberadaan sejumlah spesies dalam suatu daerah tertentu (Michael, 1995). Keanekaragaman menunjukkan keberadaan spesies dalam ekosistem, tingginya keanekaragaman menunjukkan ekosistem seimbang dan memberikan peranan yang besar untuk menjaga keseimbangan terhadap kejadian yang merusak ekosistem (Krebs, 1989).

Suatu komunitas dikatakan mempunyai nilai keseragaman yang tinggi apabila spesies yang ada mempunyai jumlah individu yang relatif sama, tetapi sebaliknya komunitas yang dibentuk oleh beberapa spesies yang melimpah maka nilai keseragaman spesies rendah (Brower et al., 1990).

substrat dasarnya didominasi oleh liat dengan persentase liat sebesar 54,86% sehingga kebanyakan organisme yang menempati daerah ini menunjukkan adaptasi dalam menggali dan melewati substrat lunak atau menempati saluran permanen dalam substrat (Nybakken, 1997).

Nilai keseragaman di perairan pantai antara Kuala Tungkal sampai Panaran Batam berkisar antara 0,87 – 0,98 (Lampiran 1). Menurut Odum (1971), nilai keseragaman di perairan pantai antara Kuala Tungkal sampai Panaran Batam hampir seragam, kecuali pada stasiun lima nilai keseragamannya 0,87 hal ini diduga karena pada stasiun tersebut ditemukan Notomastus sp. yang memiliki kepadatan yang tinggi (114 ind/m²) dibandingkan dengan spesies lainnya.

Nilai indeks dominansi di perairan pantai antara Kuala Tungkal sampai Panaran Batam berkisar antara 0,05 – 0,36 (Lampiran 1). Menurut Odum (1971), nilai dominansi ini menunjukkan bahwa di perairan pantai antara Kuala Tungkal sampai Panaran Batam memiliki sebaran individu yang merata sehingga dominansinya rendah.

Berdasarkan penelitian PT. Bumi Samudera Argomegah (1999), disekitar perairan Selat Combol diperoleh nilai indeks keanekaragaman 0,69 – 1,64. Hal ini berarti keanekaragaman di sekitar perairan Selat Combol rendah sampai tinggi, sedangkan hasil penelitian PT. Equator Reka Citra (2000), nilai indeks keanekaragaman di perairan Selat Combol 1,386 yang berarti keanekaragamannya sedang. Untuk perairan Pantai Panaran Batam menurut PT. Perusahaan Gas Negara (1997), nilai indeks keanekaragamannya 1,5 yang berarti nilai keanekaragamannya sedang, dan untuk indeks keseragamannya 0,95 yang berarti sebaran individu di daerah tersebut merata, dan nilai indeks dominansinya 0,38 yang berarti tidak ada jenis atau kelompok jenis yang dominan.

C. Parameter fisika-kimia perairan

Secara umum kondisi fisika kimia perairan sangat menentukan pola distribusi bagi kehidupan makrozoobenthos di perairan sehingga parameter fisika-kimia dapat digunakan untuk menduga kualitas suatu lingkungan perairan (Odum, 1971).
1. Suhu

Menurut Nybakken (1997), suhu merupakan salah satu faktor yang sangat penting dalam mengatur proses kehidupan dan penyebaran organisme. Sverdrup et al. (1942) mengemukakan bahwa suhu air laut mempunyai peranan penting dalam proses fisika, kimia dan biologi. Semakin tinggi suhu semakin tinggi pula derajat kelarutan unsur kimia antara unsur yang satu dengan unsur yang lainnya, sedangkan Pescod (1973) melaporkan bahwa kenaikan suhu perairan dapat menurunkan kelarutan oksigen dan menyebabkan meningkatnya kebutuhan oksigen, selain itu suhu juga mempengaruhi keaktifan zat-zat dalam air sehingga membahayakan kehidupan.

2. Salinitas

Menurut Boyd (1990), salinitas adalah total konsentrasi dari seluruh ion terlarut dalam perairan. Salinitas dinyatakan dalam satuan gr/kg atau promil (%o). Nilai salinitas perairan laut berkisar antara 30 – 40 %o (Effendi, 2000). Salinitas
mempunyai peranan penting dalam distribusi organisme dan merupakan salah satu besaran yang berperan dalam lingkungan ekologi laut (Nybakken, 1997).

3. Arus

Pergerakan arus akan berpengaruh terhadap ukuran partikel yang mengendap. Jika arus lemah maka partikel yang mengendap berukuran kecil, tetapi jika arus kuat maka partikel yang mengendap berukuran besar dan membentuk deposit kerikil (Nybakken, 1997). Kecepatan arus 100 cm/det akan mengakibatkan sedimen terangkat sehingga terjadi peningkatan kekeruhan (Reidl dan Hiscock in Wood, 1987).

4. Kekeruhan

Perairan estuari umumnya lebih keruh daripada laut lepas, hal ini di karenakan banyak partikel tanah yang tersuspensi, dan fitoplankton (Clark in Suprianto, 1988). Perairan yang keruh tidak disukai oleh organisme benthos karena partikel-partikel

5. Padatan tersuspensi

Padatan tersuspensi adalah bahan-bahan tersuspensi dan tidak terlarut dalam air. Bahan-bahan ini tertahan pada kertas saring millipore dengan ukuran pori-pori 0,45 μm (APHA, 1989).

Connel dan Gregory (1995) mengemukakan bahwa keadaan air yang keruh dapat lebih cepat menimbulkan stratifikasi panas dibandingkan air yang jernih sehingga dapat menyebabkan pengurangan oksigen melalui proses respirasi organisme.

6. pH

Pescod (1973) mengatakan bahwa derajat keasaman atau pH menunjukkan suatu proses reaksi yang berbeda dalam perairan seperti kondisi asam atau basa.
Batas toleransi organisme sangat bervariasi tergantung dari suhu, oksigen terlarut, alkalinitas, berbagai anion dan kation serta jenis dan stadia organisme.

Perubahan pH di suatu perairan pantai tidak hanya diakibatkan secara langsung oleh buangan atau substansi dari dasar sungai, tetapi juga dari perubahan-perubahan tidak langsung akibat aktivitas metabolisme dari biota dalam perairan (Berwick in Suprianto, 1988). Kandungan pH sangat berpengaruh terhadap tingkat toksisitas bahan beracun, nilai pH di bawah lima atau pH di atas sembilan sangat tidak menguntungkan bagi kehidupan makrozoobenthos (Hynes, 1978).

7. Oksigen terlarut

Oksigen terlarut adalah konsentrasi gas oksigen yang terlarut dalam air yang berasal dari hasil fotosintesis oleh fitoplankton atau tumbuhan air dan difusi dari udara (APHA, 1989).

Lee et al. in Yusuf (1994), membagi kualitas perairan ditinjau dari kandungan oksigen terlarut yang dapat dilihat pada Tabel 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kandungan oksigen</th>
<th>Kualitas air</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>>6,5</td>
<td>Tidak tercemar</td>
</tr>
<tr>
<td>2.</td>
<td>4,5 – 6,4</td>
<td>Tercemar ringan</td>
</tr>
<tr>
<td>3.</td>
<td>2,0 – 4,4</td>
<td>Tercemar sedang</td>
</tr>
<tr>
<td>4.</td>
<td>< 2</td>
<td>Tercemar berat</td>
</tr>
</tbody>
</table>

(Sumber: Lee et al. in Yusuf, 1994)

Di perairan sekitar Selat Combol mempunyai kisaran oksigen terlarut antara 4,56 – 5,86 mg/l (PT. Bumi Samudera Argomegah, 1999), sedangkan hasil penelitian PT. Equator Reka Citra (2000), kisaran oksigen terlarut di daerah tersebut antara 4,56 – 5,86 mg/l. Untuk perairan Panaran Batam mempunyai kisaran oksigen terlarut 5,6 – 5,8 mg/l (PT. Perusahaan Gas Negara, 1997).

8. Biochemical oxygen demand-BOD₅

Biochemical Oxygen Demand (BOD₅) adalah ukuran banyaknya oksigen yang digunakan oleh mikroorganisme untuk menguraikan bahan-bahan organik yang terdapat dalam air dalam waktu lima hari (APHA, 1989). Nilai BOD hanya menggambarkan bahan organik yang dapat didekomposisi secara biologis/biodegradable (Effendi, 2000).

Nilai BOD₅ biasanya digunakan sebagai indikator dalam menentukan kelimpahan bahan organik dalam air dengan asumsi oksigen dikonsumsi oleh mikroorganisme selama berlangsung metabolisme bahan organik. Nilai BOD₅ yang besar menunjukkan penurunan kualitas perairan (APHA, 1989).

Panaran Batam nilai kandungan BOD₅ nya 10 mg/l (PT. Perusahaan gas Negara, 1997).

9. **Chemical Oxygen Demand-COD**

Chemical Oxygen Demand (COD) merupakan jumlah total oksigen yang dibutuhkan untuk mengoksidasi secara kimiai bahan organik, baik yang bisa didegradasi secara biologi (biodegradable) maupun yang sukar didegradasi secara biologis (non biodegradable) menjadi CO₂ dan H₂O (Effendi, 2000).

Nilai COD dapat dijadikan sebagai ukuran tingkat pencemaran di perairan oleh bahan organik yang secara alamiah dapat dioksidi dalam proses microbiologi dan akan menyebabkan berkurangnya konsentrasi oksigen di dalam perairan (APHA, 1989).

Berdasarkan hasil penelitian PT. Bumi Samudra Argomegah (1999), nilai COD di perairan sekitar Selat Combol berkisar antara 56,04 - 64,00 mg/l sedangkan hasil penelitian PT. Equator Reka Citra (2000) nilai COD berkisar antara 56,04 - 64,00 mg/l. Untuk perairan Panaran Batam nilai COD berkisar antara 44 - 50 mg/l (PT. Perusahaan Gas Negara, 1997).

10. **Nitrit (NO₂⁻-N)**

Nitrit menunjukkan jumlah zat nitrogen yang hanya sebagian saja mengalami oksidasi dan merupakan salah suatu peralihan dalam memproses perubahan zat organik menjadi bentuk yang tetap (Sachomer dan Aliyah, 1996).

Goldman dan Horne (1983) mengemukakan bahwa nitrit akan diubah menjadi ammonia dalam perairan anoksik. Pada perairan yang banyak mengandung bahan organik menyebabkan pencemaran nitrit.

Berdasarkan hasil penelitian PT. Bumi Samudera Argomegah (1999), di sekitar Selat Combol kandungan nitritnya berkisar antara 0,18 - 0,20 mg/l, sedangkan hasil penelitian PT. Equator Reka Citra (2000), kandungan nitritnya berkisar antara 0,18 - 0,20 mg/l. Hal ini menunjukkan bahwa kandungan nitrit di sekitar Selat Combol tidak mengalami perubahan dari tahun ke tahun. Kandungan nitrit di sekitar
perairan Panaran Batam berkisar antara 0,007 – 0,018 mg/l (PT. Perusahaan Gas Negara, 1997).

11. Ammonia (NH₃-N)

Konsentrasi ammonia di perairan tropis sebaiknya tidak lebih dari satu mg/l. Dalam keadaan tidak terurai ammonia relatif lebih toksik terhadap organisme perairan dibandingkan dalam bentuk ammonium dan toksisitas ammonia akan meningkatkan pH dan menurunkan oksigen terlarut (Pescod, 1973).

Canter dan Hill in Suprianto (1988) mengemukakan bahwa konsentrasi ammonia di perairan adalah 0,1 ppm sedangkan konsentrasi di atas 0,1 ppm akan menghambat proses biologis atau mengakibatkan kematian.

Berdasarkan hasil penelitian PT. Perusahaan Gas Negara (1997), kandungan ammonia di sekitar perairan Panaran Batam berkisar 0,38 mg/l.

D. Substrat

1. Tekstur

Tekstur pasir berada di daerah dengan pergerakan air besar dan kandungan organik rendah karena partikel halus tidak menetap (Wood, 1987). Adaptasi organisme yang hidup pada substrat pasir dengan jalan menggali substrat sampai kedalaman yang tidak lagi dipengaruhi oleh gelombang yang lewat. Tipe substrat
pasir didominasi oleh tiga kelas invertebrata yaitu cacing polychaeta, bivalva, dan krustasea (Nybakken, 1997)

Kebanyakan organisme yang menempati daerah berlumpur menunjukkan adaptasi dalam menggali dan melewati substrat yang lunak atau menempati saluran yang permanen dalam substrat. Kelompok makrofauna yang dominan di daerah berlumpur sama dengan di daerah berpasir, tetapi dengan jenis yang berbeda. Klasifikasi ukuran partikel substrat dapat dilihat pada Tabel 2.

Tabel 2. Klasifikasi ukuran partikel substrat

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Diameter Partikel (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liat (Clay)</td>
<td>< 0,002</td>
</tr>
<tr>
<td>Debu (Silt)</td>
<td>0,002 – 0,050</td>
</tr>
<tr>
<td>Pasir sangat halus (Very kind sand)</td>
<td>0,050 – 0,100</td>
</tr>
<tr>
<td>Pasir halus (Fine sand)</td>
<td>0,100 – 0,250</td>
</tr>
<tr>
<td>Pasir sedang (Medium sand)</td>
<td>0,250 – 0,500</td>
</tr>
<tr>
<td>Pasir kasar (Coarse sand)</td>
<td>0,500 – 1,000</td>
</tr>
<tr>
<td>Pasir sangat kasar (Very coarse sand)</td>
<td>1,000 – 2,000</td>
</tr>
</tbody>
</table>

(Sumber: Soil Survey Staff in Brower et al., 1990)

2. Logam berat dalam substrat

Menurut Laws (1993), organisme bentos kemungkinan menerima efek langsung oleh konsentrasi logam di sedimen karena bentos merupakan tempat penyimpanan terakhir partikel-partikel yang tercuci di perairan. Razak (1980) melaporkan bahwa dalam perairan logam-logam ditemukan dalam bentuk (1) terlarut yaitu ion logam bebas air dan logam yang membentuk komplek dengan senyawa organik dan an-
organik (2) tidak terlarut terdiri dari partikel yang berbentuk koloid dan senyawa metal yang terabsorpsi pada zat tersuspensi.

Menurut Bryan in Darmono (1995) beberapa faktor yang mempengaruhi toksisitas logam berat terhadap ikan dan organisme air lainnya yaitu (1) pengaruh lingkungan seperti temperatur, kadar garam, pH dan kadar oksigen air, (2) pengaruh interaksi antara logam dan jenis racun lainnya. Menurut Novotny dan Olem in Effendi (2000), toksisitas logam memperlihatkan peningkatan pada pH rendah.

Merkuri (Hg) adalah unsur renik pada kerak bumi hanya sekitar 0,08 mg/kg (Moore in Effendi, 2000). Hamidah (1980) melaporkan kadar air raksa (Hg) yang tinggi pada perairan umum diakibatkan karena buangan industri dan akibat sampingan dari penggunaan senyawa-senyawa air raksa di bidang pertanian. Menurut Moore in Effendi (2000), pada dasar perairan anaerobik merkuri berikatan dengan sulfur, kandungan merkuri pada perairan laut berkisar antara 10 – 30 nanogram/l.

Kadmium (Cd) dihasilkan sebagai produk sampingan dari pabrik seng (Zn) maupun timbal (Pb). Di alam kadmium terdapat sebagai mineral sulfida dan sering bersama-sama dengan Zn dan Pb. Akumulasi dalam air tanah diperoleh dari hasil pengerjaan bahan-bahan dengan menggunakan pigmen atau zat warna lainnya, tekstil, dan industri kimia (Razak, 1980). Keberadaan Cd dalam air sangat sedikit dan bersifat tidak larut dalam air (Moore in Effendi, 2000). Pada perairan laut kandungan Cd sekitar 0,0001 mg/l (McNeely et al. in Effendi, 2000).

Timah hitam/Timbal/Lead (Pb) masuk ke dalam perairan melalui pengendapan, jatuhkan debu yang mengandung Pb yaitu dari pembakaran bensin, dan limbah industri (Razak, 1980). Kadar dan toksisitas timbal dipengaruhi oleh kesadahan, pH, alkalinitas dan kadar oksigen. Pada perairan laut nilai kandungan timbal sekitar 0,025 mg/l (Moore in Effendi, 2000).

Tembaga (Cu) terdapat dalam air laut dengan konsentrasi 1 - 25 μg/l. Tingkat keracunan logam seng (Zn) dipengaruhi oleh kesadahan perairan (Razak, 1980).

Pada kerang Mytilus edulis yang mengabsorpsi Pb terlihat bahwa ginjalnya mengandung 50 -70% dari total Pb yang diserap (Darmono, 1995). Akumulasi
logam dalam jaringan krustasea juga sangat tergantung pada jenis logam dan spesies hewan. Peneliti lain melaporkan bahwa 90% dari Cd diabsorpsi dan tertimbun dalam hepatopankreas udang kecil, sehingga akumulasi dalam jaringan meningkat sesuai lama waktu ekspose dalam air yang tercemar (Darmono, 1995).
III. METODE

A. Tempat dan waktu penelitian

B. Metode kerja
1. Lokasi pengambilan contoh
Penentuan lokasi pengambilan contoh oleh Tim Studi dalam mengambil data yang digunakan didasarkan pada prinsip keterwakilan serta aksesibilitas (kemudahan) lokasi. Stasiun pengambilan contoh meliputi pengambilan contoh makrozoobenthos, parameter kualitas air dan pengambilan contoh substrat. Peta lokasi pengambilan contoh dapat dilihat pada Gambar 1 dan koordinat pengambilan contoh dapat dilihat pada Tabel 3.
Gambar 1. Lokasi pengambilan contoh (24)
Tabel 3. Koordinat lokasi pengukuran kualitas air/ sedimen dan biota air

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Koordinat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LU</td>
<td>LS</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>00°47’03,6″</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>00°35’02,9″</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>00°50’03,0″</td>
</tr>
<tr>
<td>4</td>
<td>00°19’22,6″</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>00°46’09,0″</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>00°52’00,0″</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>00°56’22,8″</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>00°58’16,7″</td>
<td>-</td>
</tr>
</tbody>
</table>

(Sumber: PT. Perusahaan Gas Negara, 2000)

2. Pengambilan contoh kualitas air

Contoh air diambil dengan jarak 1 m dari dasar kolom perairan pada ke delapan stasiun yang telah ditentukan. Contoh air kemudian dimasukkan ke dalam botol contoh dan kemudian dianalisis di Laboratorium Fisika-Kimia-Biologi Perairan, Fakultas Perikanan dan Ilmu Kelautan, IPB kecuali yang diukur secara in situ. Metode dan alat pengukuran parameter fisika-kimia perairan dapat dilihat pada Tabel 4.

Tabel 4. Metode dan alat pengukuran parameter fisika-kimia perairan

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satuan</th>
<th>Metode</th>
<th>Alat</th>
<th>Ket.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisika</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Suhu</td>
<td>°C</td>
<td>Pemuaian</td>
<td>Termometer</td>
<td>in situ</td>
</tr>
<tr>
<td>2. Salinitas</td>
<td>%</td>
<td>Refraktometrik</td>
<td>Salinometer</td>
<td>in situ</td>
</tr>
<tr>
<td>3. Arus</td>
<td>m/det</td>
<td>Pengukuran</td>
<td>Current meter</td>
<td>in situ</td>
</tr>
<tr>
<td>4. Kekeruhan</td>
<td>NTU</td>
<td>Absorpsi cahaya</td>
<td>Turbidimeter</td>
<td>Lab.</td>
</tr>
<tr>
<td>5. TSS</td>
<td>Mg/l</td>
<td>Gravimetrik</td>
<td>Timbangan Analisis</td>
<td>Lab.</td>
</tr>
<tr>
<td>Kimia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. pH</td>
<td>-</td>
<td>Potensiometrik</td>
<td>pH-meter</td>
<td>in situ</td>
</tr>
<tr>
<td>7. DO</td>
<td>Mg/l</td>
<td>Potensiometrik</td>
<td>DO-meter</td>
<td>in situ</td>
</tr>
<tr>
<td>8. BOD₅</td>
<td>Mg/l</td>
<td>Titrimetrik Winkler</td>
<td>Glassware</td>
<td>Lab.</td>
</tr>
<tr>
<td>9. COD</td>
<td>Mg/l</td>
<td>Titrimetrik K₂Cr₂O₇</td>
<td>Refluks</td>
<td>Lab.</td>
</tr>
<tr>
<td>10. Nitrit</td>
<td>Mg/l</td>
<td>Spektrofotometrik</td>
<td>Spektrofotometer</td>
<td>Lab.</td>
</tr>
<tr>
<td>11. Ammonia</td>
<td>Mg/l</td>
<td>Spektrofotometrik</td>
<td>Spektrofotometer</td>
<td>Lab.</td>
</tr>
</tbody>
</table>

(Sumber: APHA, 1989)
3. Pengambilan contoh makrozoobenthos dan substrat

Contoh makrozoobenthos diambil dengan menggunakan *Ekman Dredge* dengan luas bukaan mulut 30 cm x 30 cm pada ke delapan stasiun pengamatan. Kemudian dilakukan penyaringan dengan menggunakan saringan beringkat (*sieve set*). Sampel benthos yang diperoleh diawetkan dengan menggunakan larutan formalin 4% dan selanjutnya diidentifikasi di Laboratorium fisika-Kimia-Biologi Perairan Fakultas Perikanan dan Ilmu Kelautan, IPB.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satuan</th>
<th>Metode</th>
<th>Alat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Tekstur</td>
<td>%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kimia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Tembaga (Cu)</td>
<td>mg/kg</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
</tr>
<tr>
<td>3. Seng (Zn)</td>
<td>mg/kg</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
</tr>
<tr>
<td>4. Kadmium (Cd)</td>
<td>mg/kg</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
</tr>
<tr>
<td>5. Air raksa (Hg)</td>
<td>mg/kg</td>
<td>Spektrofotometrik</td>
<td>AAS</td>
</tr>
</tbody>
</table>

Sumber: APHA, 1989
Gambar 2. Tipe substrat dasar menurut presentase liat, debu dan pasir berdasarkan segitiga Millar (Brower et al., 1990)
C. Analisis data

1. Kepadatan makrozoobenthos

Kepadatan adalah jumlah individu persatuan luas atau volume (Brower et al., 1990). Rumus kepadatan adalah sebagai berikut:

\[
K = \frac{10.000 \times a}{b}
\]

Keterangan:
- \(K \) = Kepadatan makrozoobenthos (ind/m\(^2\))
- \(a \) = Jumlah makrozoobenthos yang dihitung (ind)
- \(b \) = Luas bukaan Ekman Dredge (cm\(^2\))
 (Nilai 10.000 merupakan konversi dari cm\(^2\) ke m\(^2\))

2. Pola sebaran makrozoobenthos

Untuk mengetahui pola sebaran makrozoobenthos digunakan Indeks Sebaran Morisita (Morisita in Brower et al., 1990) dengan rumus sebagai berikut:

\[
Id = \frac{n \sum_{i=0}^{n} X^2 - N}{N(N - 1)}
\]

Keterangan:
- \(Id \) = Indeks Sebaran Morisita
- \(n \) = jumlah plot pengambilan contoh
- \(X \) = jumlah individu pada tiap-tiap plot pengambilan contoh
- \(N \) = jumlah total individu dalam n plot

Hasil Indeks Morisita dikelompokan sebagai berikut:
- \(Id < 1 \), pola sebaran individu seragam
- \(Id = 1 \), pola sebaran individu acak
- \(Id > 1 \), pola sebaran individu mengelompok
D. Analisa Nodul
Analisa Nodul digunakan untuk memperoleh gambaran mengenai preferensi makrozoobenthos terhadap habitatnya (Murphy dan Edward, 1982) dengan tahapan sebagai berikut.

1. Pengelompokan stasiun
Pengelompokan stasiun menggunakan Indeks Canberra untuk melihat kesamaan antar stasiun berdasarkan parameter fisika-kimia (Legendre dan Legendre, 1983) dengan rumus sebagai berikut:

\[
C = \frac{1}{N} \sum_{j=1}^{n} \frac{|X_{ij} - X_{ij}|}{X_{ij} + X_{ij}}
\]

Keterangan:
- \(C\) = Indeks Ketidaksamaan Canberra
- \(X_{ij}, X_{ij}\) = Nilai parameter ke-\(j\) pada stasiun yang dibandingkan
- \(n\) = jumlah parameter yang dibandingkan
- \(N\) = jumlah total stasiun pengambilan contoh

Selanjutnya untuk melihat kesamaan antar stasiun berdasarkan parameter fisika-kimia digunakan rumus:

\[S = 1 - C\]

Keterangan:
- \(S\) = Indeks Kesamaan
- \(C\) = Indeks Ketidaksamaan Canberra

2. Pengelompokan komunitas makrozoobenthos
Pengelompokan makrozoobenthos dibuat dengan analisis cluster berdasarkan Indeks Similaritas Sorensen (Sorensen in Legendre dan Legendre, 1983). Dalam Indeks Sorensen data numerik individu makrozoobenthos ditransformasikan menjadi bentuk "ada-tidak ada", dengan rumus sebagai berikut:
\[
S_o = \frac{2a}{2a + b + c}
\]

Keterangan:
- \(S_o\) = Indeks Similaritas Sorensen
- \(a\) = jumlah contoh dimana terdapat kedua spesies
- \(b\) = jumlah contoh dimana terdapat spesies A
- \(c\) = jumlah contoh dimana terdapat spesies B

3. **Indeks Konstansi**

Indeks Konstansi menunjukkan keterkaitan antar jenis makrozoobenthos terhadap habitatnya berdasarkan frekuensi keberadaannya (Murphy dan Edwards, 1982). Rumus Indeks Konstansi adalah:

\[
C_{ij} = \frac{a_{ij}}{n_i \cdot n_j}
\]

Keterangan:
- \(C_{ij}\) = Indeks Konstansi (nilai 0-1)
- \(a_{ij}\) = banyaknya elemen pada kelompok jenis ke-\(i\) pada kelompok stasiun ke-\(j\)
- \(n_i\) = banyaknya elemen pada kelompok jenis ke-\(i\)
- \(n_j\) = banyaknya elemen pada kelompok stasiun ke-\(j\)

4. **Indeks Fidelitas**

Indeks Fidelitas menunjukkan keterkaitan antara jenis makrozoobenthos terhadap habitatnya berdasarkan tingkat kekhasan jenis makrozoobenthos yang hidup pada habitatnya (Murphy dan Edwards, 1982), dengan rumus sebagai berikut:

\[
F_{ij} = \frac{C_{ij} \times \sum_{j=1}^{n} n_j}{\sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}}
\]
Keterangan:

\[F_{ij} = \text{Indeks Fidelitas} \]
\[C_{ij} = \text{Indeks Konstansi} \]
\[a_{ij} = \text{banyaknya elemen pada kelompok jenis ke-}i \text{ pada kelompok stasiun ke-}j \]
\[n_i = \text{banyaknya elemen pada kelompok jenis ke-}i \]
\[n_j = \text{banyaknya elemen pada kelompok stasiun ke-}j \]

Bila indeks Fidelitas > 2 berarti kelompok anggota jenis ke-i mempunyai kekhasan yang kuat terhadap stasiun j atau jenis ke-i sangat menyukai kondisi kelompok stasiun ke-j.

Bila indeks Fidelitas < 1 berarti kelompok anggota jenis ke-i tidak menyukai kondisi kelompok stasiun ke-j atau jenis ke-i mempunyai kekhasan yang lemah terhadap stasiun ke-j.
A. Parameter fisika-kimia perairan

Keterangan lebih lanjut dapat dilihat pada Lampiran 2.

Tabel 6. Kisaran nilai hasil pengukuran parameter fisika-kimia di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satuan</th>
<th>Kisaran nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISIKA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Suhu</td>
<td>°C</td>
<td>30,19 – 31,16</td>
</tr>
<tr>
<td>2. Salinitas</td>
<td>‰</td>
<td>20,69 – 31,02</td>
</tr>
<tr>
<td>3. Kekeruhan</td>
<td>NTU</td>
<td>0,3 – 16,5</td>
</tr>
<tr>
<td>4. Padatan tersuspensi</td>
<td>mg/l</td>
<td>10 – 56</td>
</tr>
<tr>
<td>5. Arus</td>
<td>m/det</td>
<td>0,00 – 0,45</td>
</tr>
<tr>
<td>KIMIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. pH</td>
<td></td>
<td>6,90 – 8,10</td>
</tr>
<tr>
<td>7. Oksigen terlarut</td>
<td>mg/l</td>
<td>4,50 – 7,60</td>
</tr>
<tr>
<td>8. BOD₂</td>
<td>mg/l</td>
<td>0,52 – 5,72</td>
</tr>
<tr>
<td>9. COD</td>
<td>mg/l</td>
<td>41,10 – 57,26</td>
</tr>
<tr>
<td>10. Nitrit (NO₂-N)</td>
<td>mg/l</td>
<td>0,001 – 0,014</td>
</tr>
<tr>
<td>11. Ammonia (NH₃-N)</td>
<td>mg/l</td>
<td>0,111 – 0,511</td>
</tr>
</tbody>
</table>

(Sumber: PT. Perusahaan Gas Negara, 2000)

1. Suhu

Kisaran suhu yang diperoleh di perairan pantai antara Kuala Tungkal sampai Panaran Batam 30,19 – 31,16 °C (Tabel 6). Kisaran suhu di perairan pantai antara Kuala Tungkal sampai Panaran Batam tidak mengalami fluktuasi sehingga dapat dikatakan bahwa suhu perairan di setiap stasiun pengamatan ada dalam kisaran toleransi makrozoobenthos dan dilihat dari kisarannya yang pendek, memperlihatkan bahwa kisaran suhu di perairan ini tidak berpengaruh secara drastis terhadap kehidupan makrozoobenthos. Hal ini berarti suhu di perairan pantai antara Kuala Tungkal sampai Panaran Batam cukup mendukung kehidupan makrozoobenthos, hal

2. Salinitas

3. Kekeruhan

Nilai kekeruhan di perairan pantai antara Kuala Tungkal sampai Panaran Batam berkisar antara 0,3 – 16,5 NTU. Nilai kekeruhan tertinggi sebesar 16,5 NTU terdapat di stasiun satu (Lampiran 2).

Tingginya nilai kekeruhan ini disebabkan karena posisi dekat muara Sungai Tungkal yang membawa partikel-partikel tersuspensi seperti lumpur, bahan-bahan organik dan anorganik, plankton serta organisme mikroskopsik lainnya. Hal ini juga diduga karena pada stasiun satu memiliki arus yang kuat sebesar 0,22 m/det serta memiliki kedalaman yang relatif dangkal yaitu 4,3 m sehingga memungkinkan terjadinya proses pengadukan dari dasar perairan yang mengakibatkan air yang terdapat di sini banyak mengandung partikel-partikel tersuspensi perairannya keruh, dengan nilai kekeruhan 0,3 – 16,5 NTU. Padahal menurut Mason (1981) perairan
yang keruh kurang disukai organisme benthos karena partikel-partikel tersuspensinya dapat menghambat sistem pernafasan sehingga akan menghambat pertumbuhan dan perkembangannya. Hal ini mengakibatkan rendahnya makrozoobenthos di stasiun satu.

4. Padatan tersuspensi

Nilai padatan tersuspensi yang terkurur pada setiap stasiun pengamatan berkisar antara 10 – 56 mg/l (Tabel 6). Nilai padatan tersuspensi tertinggi terdapat pada stasiun satu (Lampiran 2). Tingginya nilai padatan tersuspensi di stasiun satu diduga karena pada stasiun tersebut memiliki arus yang cukup kuat yaitu 0,22 m/detik dan kedalaman perairan yang relatif dangkal yaitu 4,3 m menyebabkan partikel-partikel tersuspensi tidak memiliki kesempatan untuk mengendap, selain hal tersebut pada stasiun satu juga terdapat masukan dari Sungai Tungkal yang airnya membawa partikel-partikel tersuspensi. Kedua faktor inilah yang dapat menyebabkan nilai padatan tersuspensi meningkat.

5. Arus

Pergerakan arus yang cukup kuat terdapat pada stasiun satu yaitu 0,22 m/det dengan kedalaman 4,3 m. Dengan kondisi arus yang cukup kuat memungkinkan terjadinya pengadukan dari dasar perairan sehingga perairan memiliki kekeruhan yang tinggi dan padatan tersuspensi yang tinggi pula. Padahal menurut Mac Ginitie dan Mac Ginitie (1949) arus yang kuat dapat menyebarkan bahan makanan, membawa dan menyebarkan larva hewan ke tempat.
6. **pH**

Nilai pH yang terukur pada setiap stasiun pengamatan berkisar antara 6,90 – 8,10 (Tabel 6). Hasil pengukuran menunjukkan bahwa kisaran pH di perairan pantai antara Kuala Tungkal sampai Batam bersifat basa. Hal ini sesuai dengan yang dikemukakan oleh Nybakken (1997), bahwa pH air laut berkisar antara 7,5 – 8,4.

Nilai pH tertinggi (8,1) terdapat pada stasiun lima, hal ini diduga karena daerah ini substrat dasarnya didominasi oleh pasir dan kondisi arus yang kuat (0,45 m/det) sehingga kondisi yang menyebabkan ke arah asam dapat dihindari.

Menurut Gonzales *et al.* in Yusuf (1994) kerang *Mytilus* sp. mempunyai kisaran toleransi terhadap pH antara 7,0 – 7,5 sedangkan kerang *Tellina* sp. mempunyai kisaran pH antara 6,0 – 8,0.

7. **Oksigen terlarut**

Kandungan oksigen terlarut pada stasiun satu sampai delapan berkisar antara 4,5 – 7,6 mg/l (Tabel 6). Kandungan oksigen terlarut terendah 4,5 mg/l terdapat pada stasiun delapan, sedangkan kandungan oksigen terlarut tertinggi 7,6 mg/l terdapat pada stasiun lima. Tingginya kandungan oksigen terlarut di stasiun lima disebabkan karena perairan tersebut merupakan perairan terbuka sehingga difusi oksigen meningkat karena gelombang yang tidak pernah berhenti bergerak.

mengurangi jumlah hewan invertebrate yang lebih besar, tetapi menurut Pearson dan Rosenberg in Basmi dan Setyobudiandi (1996) ada beberapa benthos yang memiliki daya toleransi yang cukup tinggi terhadap kondisi tercemar yaitu dari jenis oligochaeta, *Tubificoides benedeni*, siput pulmonata dan *Capitella capitata*.

8. BOD$_5$

Nilai BOD$_5$ menggambarkan ukuran dari banyaknya oksigen yang digunakan oleh mikroorganisme untuk menguraikan 75% bahan-bahan organik yang terdapat dalam air dalam waktu lima hari. Nilai kandungan BOD$_5$ dapat digunakan untuk menduga kelimpahan bahan organik dalam perairan semakin tinggi nilai BOD$_5$ maka semakin tinggi pula aktivitas mikroorganisme untuk menguraikan bahan organik (APHA, 1989).

Nilai kandungan BOD$_5$ di perairan pantai antara Kuala Tungkal sampai Panaran Batam antara 0,52 – 5,72 mg/l. Nilai BOD$_5$ terendah (0,52 mg/l) terdapat pada stasiun enam, sedangkan nilai BOD$_5$ tertinggi terdapat pada stasiun satu dan tujuh dengan nilai BOD$_5$ masing-masing sebesar 5,32 mg/l dan 5,72 mg/l (Lampiran 2).

Tingginya nilai BOD$_5$ pada stasiun satu diduga dari hasil penguraian bahan-bahan organik, keadaan ini disebabkan pada stasiun satu terletak dekat dengan muara Sungai Tungkal, sedangkan tingginya kandungan BOD$_5$ dan di stasiun tujuh diduga karena adanya kegiatan penambangan pasir.

9. COD

Nilai COD mengambarkan jumlah total oksigen yang dibutuhkan untuk mengoksidasi secara kimia bahan organik yang bisa didegradasi secara biologi maupun yang sukarela didegradasi secara biologi menjadi CO$_2$ dan H$_2$O (Effendi, 2000). Nilai COD pada stasiun satu sampai delapan berkisar 33,02 – 52,76 mg/l (Tabel 6). Nilai COD terendah 33,02 mg/l pada stasiun delapan dan nilai COD tertinggi 57,26 mg/l pada stasiun satu (Lampiran 2).

Besarnya nilai COD 57,26 mg/l pada stasiun satu diduga karena adanya masukan dari daratan yang terbawa aliran Sungai Tungkal yang menuju perairan seperti
bahan organik dan anorganik yang sukar diuraikan bisa berupa logam berat, deterjen dan minyak yang akan meningkatkan nilai COD.

10. Nitrit (NO₂⁻-N)
Nitrit menunjukkan jumlah nitrogen yang hanya sebagian saja yang mengalami oksidasi dan merupakan salah satu peralihan dalam memproses perubahan zat organik menjadi bentuk yang tetap (Sachomer dan Aliyah, 1996). Kisaran nilai nitrit (NO₂⁻-N) pada stasiun satu sampai delapan selama pengukuran berkisar antara 0,001 – 0,014 mg/l (Tabel 6). Kandungan nitrit di perairan pantai antara Kuala Tungkal sampai Panaran Batam masih cukup baik untuk kehidupan makrozoobenthos, karena menurut Moore in Effendi (2000), kadar nitrit melebihi 0,05 mg/l dapat bersifat toksik bagi organisme perairan.

11. Ammonia (NH₃⁻-N)
Kisaran nilai ammonia di perairan pantai antara Kuala Tungkal sampai Panaran Batam selama pengukuran adalah 0,111 – 0,511 mg/l (Tabel 6). Nilai ammonia terendah 0,111 mg/l pada stasiun enam dan nilai ammonia tertinggi 0,511 mg/l terdapat pada stasiun tiga (Lampiran 2). Tingginya nilai ammonia pada stasiun tiga diduga karena proses oksidasi nitrogen yang tidak berjalan dengan baik. Hal ini sesuai dengan pendapat Yusuf (1994) yang menyatakan bahwa jika proses oksidasi nitrogen tidak berjalan dengan baik akan menghasilkan nilai ammonia yang besar, padahal nilai ammonia yang tinggi dapat menyebabkan kematian pada organisme perairan karena akan merusak dan menyumbat jaringan kapiler darah pada pernafasan (APHA, 1989).

B. Substrat
Hasil analisis substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam dapat dilihat pada Tabel 7 dan Lampiran 2. Tipe substrat dasar di tentukan berdasarkan presentase liat, pasir dan debu menurut segitiga Millar (Brower et al., 1990) dapat dilihat pada Gambar 2.
Tabel 7. Tekstur dan tipe substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Tekstur (%)</th>
<th>Tipe substrat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liat</td>
<td>Pasir</td>
</tr>
<tr>
<td>1</td>
<td>49,55</td>
<td>8,35</td>
</tr>
<tr>
<td>2</td>
<td>62,54</td>
<td>25,99</td>
</tr>
<tr>
<td>3</td>
<td>1,15</td>
<td>83,70</td>
</tr>
<tr>
<td>4</td>
<td>13,90</td>
<td>70,34</td>
</tr>
<tr>
<td>5</td>
<td>16,05</td>
<td>68,79</td>
</tr>
<tr>
<td>6</td>
<td>64,86</td>
<td>20,55</td>
</tr>
<tr>
<td>7</td>
<td>9,31</td>
<td>75,62</td>
</tr>
<tr>
<td>8</td>
<td>6,46</td>
<td>73,49</td>
</tr>
</tbody>
</table>

1. Tekstur dan tipe substrat

Berdasarkan pada Tabel 7 terlihat bahwa pada stasiun satu memiliki tipe substrat liat berdebu dengan presentase liat (49,55%) dan debu (42,10%). Hal ini disebabkan karena pada stasiun satu terdapat masukan dari Sungai Tungkal sehingga membawa partikel-partikel halus ke arah muara.

Tipe substrat liat terdapat pada stasiun dua dan enam dengan presentase liat berkisar antara 62,54 – 64,86%, hal ini diduga terkait dengan kedalaman dan kecepatan arus dasar. Kedalaman perairan pada stasiun dua dan enam berkisar antara 6,7 – 18,1 m dengan kecepatan arus dasar lebih lemah berkisar antara 0,0 – 0,17 m/det (PT. Perusahaan Gas Negara, 2000), sehingga menurut Nybakken (1997), jika arus lemah maka partikel yang mengendap adalah partikel-partikel debu dan liat.

Pada stasiun tiga, empat, lima, tujuh, dan delapan memiliki tipe substrat pasir berlempung dengan presentase pasir berkisar antara 68,79 – 83,70%. Hal ini terkait dengan kedalaman dan kecepatan arus dasar di mana pada stasiun tiga, empat, lima, tujuh, dan delapan memiliki kedalaman yang berkisar antara 11,9 – 32,3 m sedangkan kecepatan arus dasar berkisar antara 0,0 – 0,45 m/det, hal ini sesuai dengan menurut Nybakken (1997), jika arus kuat maka partikel-partikel yang mengendap adalah partikel-partikel yang berukuran besar.
2. Logam berat dalam substrat

Kisaran nilai kandungan logam berat dalam substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam dapat dilihat pada Tabel 8 dan data lebih lengkap dapat dilihat pada Lampiran 4.

Tabel 8. Kisaran nilai kandungan logam berat dalam substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>Logam berat</th>
<th>Satuan</th>
<th>Stasiun 1-8</th>
<th>Standar aman (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadmium (Cd)</td>
<td>mg/kg</td>
<td>0,452 - 1,067</td>
<td>0,8 – 1,7</td>
</tr>
<tr>
<td>Tembaga (Cu)</td>
<td>mg/kg</td>
<td>1,994 – 11,176</td>
<td>13 – 39</td>
</tr>
<tr>
<td>Raksa (Hg)</td>
<td>mg/kgx10^{-3}</td>
<td>2,260 – 5,660</td>
<td>-</td>
</tr>
<tr>
<td>Timah Hitam (Pb)</td>
<td>mg/kg</td>
<td>10,204 – 24,286</td>
<td>47 – 177</td>
</tr>
</tbody>
</table>

(Sumber : Belanda, Everaarts in Edward and Pulumahuny, 1992)
Keterangan : - tidak ada data

Pada Tabel 8 dapat dilihat bahwa kandungan logam berat dalam substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam untuk kadmium berkisar antara 0,452 – 1,067 mg/kg. Konsentrasi Cd dalam sedimen untuk seluruh stasiun masih berada dalam kondisi aman menurut Everaarts in Edward dan Pulumahuny (1992) yaitu berkisar antara 0,8 – 1,7 ppm. Oleh karena itu kandungan kadmium di perairan pantai antara Kuala Tungkal sampai Panaran Batam diduga tidak membahayakan makrozoobenthos tinggal di dasar.

Konsentrasi logam berat raksa berkisar antara 2,260 – 5,660 mg/kg x 10^{-3}. Konsentrasi raksa tertinggi terdapat pada stasiun tiga. Tidak terdapat data untuk menentukan standar aman raksa menurut everaarts in Edward dan Pulumahuny (1992).

Tingginya kandungan logam berat seperti kadmium, tembaga dan timah hitam pada stasiun empat dan raksa pada stasiun tiga disebabkan karena karakteristik wilayah baik wilayah daratan yang ada di sekitar perairan tersebut dicirikan dengan kandungan fenol yang tinggi, juga kondisi sedimen perairan yang telah menjadi karakter fisik alami dari perairan tersebut yang dicirikan dengan kandungan logam berat yang tinggi (PT. Perusahaan Gas Negara, 2000).

C. Pengelompokan stasiun

Gambar 3. Dendrogram pengelompokan stasiun pengamatan berdasarkan parameter fisika-kimia perairan

Pengelompokan stasiun pengamatan dilakukan pada taraf kesamaan 70%, oleh karena itu didapat tiga kelompok stasiun. Kelompok I terdiri dari stasiun dua dan enam. Kelompok II terdiri dari stasiun tiga, empat, lima, tujuh dan delapan, sedangkan Kelompok III hanya ada stasiun satu.

Kelompok stasiun I memiliki tingkat kesamaan yang tinggi yaitu 85,7% hal ini menunjukkan bahwa nilai parameter kualitas perairan di stasiun dua dan enam memiliki perbedaan yang tak terlalu besar. Parameter yang relatif memperlihatkan
perbedaan hanya nilai COD. Kisaran nilai COD di stasiun dua dan enam yaitu 41,10 – 57,26 mg/l.

Kelompok stasiun II terdiri dari stasiun tiga, empat, lima, tujuh dan delapan dengan tingkat kesamaan 74,5%. Tingkat kesamaan yang sedang menunjukkan bahwa nilai parameter perairan di stasiun tiga, empat, lima, tujuh dan delapan hanya sebagian parameter saja yang memperlihatkan perbedaan yang terlalu besar. Parameter yang relatif memperlihatkan perbedaan seperti: padatan tersuspensi, tekstur liat, oksigen terlarut, BOD$_5$ dan COD. Kisaran nilai padatan tersuspensi di stasiun tiga, empat, lima, tujuh dan delapan berkisar antara 10 – 51 mg/l; tekstur liat berkisar antara 1,15 – 64,86%; oksigen terlarut berkisar antara 4,5 – 7,6 mg/l; BOD$_5$ berkisar antara 0,52 – 5,72 mg/l; dan COD berkisar antara 33,02 – 49,18 mg/l.

Kelompok stasiun I membentuk kelompok baru dengan kelompok stasiun II yaitu kelompok stasiun III dengan tingkat kesamaan 58,9%. Rendahnya tingkat kesamaan di kelompok stasiun III menunjukkan bahwa nilai parameter perairan di kelompok stasiun III dengan kelompok stasiun I dan kelompok stasiun II memperlihatkan perbedaan yang besar. Perbedaan nilai parameter perairan disebabkan karena kelompok stasiun I dipengaruhi oleh adanya masukan Sungai Tungkal sehingga perairannya cenderung payau. Kisaran nilai salinitas di kelompok stasiun I yaitu 20,69 %; tekstur liat menunjukkan nilai 49,55% sedangkan tekstur debu 42,10%.

D. Komunitas Makrozoobenthos

1. **Komposisi dan kepadatan jenis makrozoobenthos**

Tabel 9. Jumlah taksa dan komposisi kelas dari kelompok organisme makrozoobenthos yang ditemukan di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>No</th>
<th>Kelompok Organisme (Filum/Kelas)</th>
<th>Jumlah taksa Stasiun 1 – 8</th>
<th>Komposisi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filum Annelida</td>
<td>24</td>
<td>51,06%</td>
</tr>
<tr>
<td>2</td>
<td>Polychaeta</td>
<td>1</td>
<td>2,13%</td>
</tr>
<tr>
<td>3</td>
<td>Hirudinea</td>
<td>1</td>
<td>2,13%</td>
</tr>
<tr>
<td>4</td>
<td>Filum Nemertina</td>
<td>1</td>
<td>2,13%</td>
</tr>
<tr>
<td>5</td>
<td>Filum Sipunculoidea</td>
<td>2</td>
<td>4,26%</td>
</tr>
<tr>
<td>6</td>
<td>Filum Arthropoda</td>
<td>11</td>
<td>23,40%</td>
</tr>
<tr>
<td>7</td>
<td>Filum Echinodermata</td>
<td>7</td>
<td>14,89%</td>
</tr>
<tr>
<td></td>
<td>Ophiuroidea</td>
<td>1</td>
<td>2,13%</td>
</tr>
<tr>
<td></td>
<td>Jumlah taksa</td>
<td>47</td>
<td>100%</td>
</tr>
</tbody>
</table>

Pada Tabel 9 terlihat bahwa dari tujuh kelompok organisme yang ditemukan pada lokasi pengamatan di perairan pantai antara Kuala Tungkal sampai Panaran Batam jenis benthos yang banyak ditemukan berasal dari kelas polychaeta 24 genera dengan komposisi kelas sebesar 51,06% berdasarkan komposisinya maka kelas polychaeta memiliki kepadatan sedang. Kelas krustasea terdiri dari 11 genera dan komposisi kelas sebesar 23,40%, berdasarkan komposisinya maka kelas krustasea memiliki kepadatan kurang. Kelas hirudinea, Filum Nemertina, kelas sipunculoidea, kelas pelecypoda dan kelas ophiuroidea memiliki komposisi kelas sebesar 2,13% berdasarkan komposisinya memiliki kepadatan sangat kurang.

Kepadatan jenis benthos tertinggi berasal dari kelas polychaeta yaitu jenis *Notomastus* sp. dengan kepadatan jenis sebesar 114 ind/m² yang terdapat pada stasiun lima. Jenis ini hampir ditemukan di setiap stasiun kecuali pada stasiun dua, tiga dan enam (Lampiran 1). Kepadatan jenis benthos tertinggi dari kelas krustasea yaitu jenis *Alpheus* sp. dengan kepadatan jenis 76 ind/m² yang terdapat hampir di semua stasiun kecuali stasiun satu, dua, dan enam. Kepadatan jenis tertinggi diduga terkait dengan ketersediaan makanan yang berupa bahan organik yang dipasok.
Berdasarkan Tabel 10 terlihat bahwa kepadatan individu benthos tertinggi (854 ind/m²) ditemukan pada stasiun tujuh dengan jumlah 28 taksa. Hal ini diduga karena pada stasiun tujuh mempunyai kondisi parameter fisika dan kimia yang sesuai dengan makrozoobenthos seperti oksigen terlarut 5,0 mg/l menurut Lee et al. in Yusuf (1994) keadaan ini menunjukkan bahwa stasiun tujuh merupakan perairan yang tercemar ringan sehingga jenis makrozoobenthos dapat beradaptasi.

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Jumlah Taksas</th>
<th>Kepadatan (ind/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>342</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>470</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>854</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>557</td>
</tr>
</tbody>
</table>

2. Pola sebaran jenis makrozoobenthos

Pola sebaran jenis dapat dikelompokan menjadi tiga kriteria yaitu pola sebaran merata (Id < 1), pola sebaran acak (Id = 1) dan pola sebaran mengelompok (Id > 1). Pola sebaran makrozoobenthos di perairan pantai antara Kuala Tungkal sampai Panaran Batam berkisar antara 1,98 – 8,00 (Lampiran 1). Hal ini menunjukkan bahwa pola sebarannya bersifat mengelompok. Pola sebaran mengelompok berarti spesies tertentu bisa ditemukan di mana saja tetapi keberadaannya tidak berketeraturan, hal ini terkait dengan kondisi lingkungan, ketersedian makanan serta karena keistimewaan dari spesies itu sendiri.

Pola sebaran makrozoobenthos yang rendah 1,98 terjadi pada spesies *Pinnotheres* sp. Hal ini diduga karena spesies *Pinnotheres* sp. ditemukan hampir merata pada setiap stasiun. Hal ini berarti *Pinnotheres* sp. diduga tidak memiliki preferensi atau kesukaan terhadap habitat tertentu tetapi dapat beradaptasi dengan baik pada substrat yang berbeda, sedangkan *Notomastus* sp. walaupun memiliki
3. Pengelompokan jenis makrozoobenthos

Pengelompokan jenis makrozoobenthos dilakukan dengan menggunakan indeks similaritas Sorensen. Pengelompokan makrozoobenthos didasarkan pada keeratan hubungan antar jenis makrozoobenthos berdasarkan kehadiran dan ketidakhadirannya, kemudian dibuat dalam bentuk dendrogram.

Pengelompokan jenis yang didapat menggunakan taraf kesamaan 60% sehingga dari 47 genera didapat 13 kelompok jenis makrozoobenthos. Pengelompokan jenis makrozoobenthos dapat dilihat pada Tabel 11 dan lebih lengkapnya dapat dilihat pada Gambar 4.

Tabel 11. Pengelompokan jenis makrozoobenthos berdasarkan kehadiran dan ketidakhadirannya di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>Kelompok Jenis</th>
<th>Organisme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dodececaria sp., Nichomache sp., dan Nucula sp.</td>
</tr>
<tr>
<td>2</td>
<td>Glyceria sp.</td>
</tr>
<tr>
<td>3</td>
<td>Arecnida sp.</td>
</tr>
<tr>
<td>5</td>
<td>Thelepus sp., Modiulus sp., Scorleps sp., Pinnotheres sp., Argissa sp., Heteronaias sp., Cirolana sp., dan Nuculana sp.</td>
</tr>
<tr>
<td>6</td>
<td>Notomastus sp., Maldane sp., Alpheus sp., Sylis sp., Eunicia sp., Terrebellidae, dan Paraonella sp.</td>
</tr>
<tr>
<td>7</td>
<td>Trichomache sp. dan Atylus sp.</td>
</tr>
<tr>
<td>8</td>
<td>Magelona sp. dan Phascolion sp.</td>
</tr>
<tr>
<td>9</td>
<td>Pectinaria sp., Nephtys sp., dan Paraonis sp.</td>
</tr>
<tr>
<td>10</td>
<td>Potamilla sp., Upogebia sp., Nereis sp., Euplax sp. dan Amphiura sp.</td>
</tr>
<tr>
<td>11</td>
<td>Tellina sp.</td>
</tr>
<tr>
<td>12</td>
<td>Aphroditia sp. dan Goflingia sp.</td>
</tr>
<tr>
<td>13</td>
<td>Tapes sp.</td>
</tr>
</tbody>
</table>
Tingkat kesamaan jenis makrozoobenthos tertinggi adalah 100%, hal ini berarti pada stasiun pengamatan ditemukan jenis makrozoobenthos pada suatu stasiun yang sama misalnya *Dodececaria* sp., *Nichomache* sp., dan *Nuculana* sp. yang hanya ditemukan pada stasiun lima saja, sedangkan tingkat kesamaan terendah adalah 3%. Dilihat dari kelompok jenisnya maka kelompok jenis dua, tiga, tujuh berasal dari kelas polychaeta. Cacing polychaeta terutama hidup di laut, beberapa terdapat di air tawar. Kelas polychaeta dibagi menjadi dua subkelas yaitu Errantia yang berkelarisan bebas, dan Sedentaria yang menetap. Penyaring makanan atau filter feeder pada kebanyakan jenis sedentaria yang menghuni lubang yang dilengkapi radiole untuk menyaring detritus dan plankton (Suwigny et al., 1998).

Kelompok jenis empat, lima, enam terdiri dari kelas polychaeta, hirudinea, krustasea, nemertina. Kelas hirudinea biasa disebut lintah, terdapat dia air laut, air tawar dan darat. Kelas nemertina kebanyakan hidup di laut, di bawah batu, beberapa komensal dengan coelenterata dan moluska (Suwigny et al., 1998).

Kelompok sembilan terdiri dari kelas polychaeta dan sipunculoidea. Filum Sipuncula merupakan hewan sedentari, artinya menetap tidak berkelarisan. Terdapat di substrat lumpur dan pasir, dalam lubang permanen, beberapa spesies tinggal di dalam cangkangspit atau lubang cacing polychaeta dan celah batu. Filum Sipuncula kebanyakan *deposit feeder* memakan segala butir-butir makanan yang mengendap di dasar perairan dengan menggunakan tentakel (Suwigny et al., 1998).

Gambar 4. Dendrogram pengelompokan jenis berdasarkan kehadiran dan ketidakhadiran makrozoobenthos
E. Preferensi makrozoobenthos terhadap habitatnya

Untuk melihat preferensi makrozoobenthos terhadap habitatnya maka dendrogram pengelompokan stasiun dan dendrogram pengelompokan jenis digabungkan menjadi bentuk matriks binari (Gambar 5) dan kemudian dihitung indeks konstansi dan indeks fidelitasnya (Gambar 6 dan 7).

Indeks konstansi menunjukkan keterkaitan antara jenis makrozoobenthos terhadap habitatnya berdasarkan frekuensi keberadaannya, nilai indeks konstansi berkisar antara nol sampai satu. Nilai indeks konstansi nol berarti tidak ada jenis makrozoobenthos yang menempati stasiun tertentu, sedangkan indeks konstansi satu berarti bahwa semua jenis makrozoobenthos tertentu ditemukan pada stasiun tertentu.

Indeks fidelitas menunjukkan preferensi atau kesukaan makrozoobenthos terhadap habitatnya. Nilai indeks fidelitas lebih dari dua berarti kelompok anggota makrozoobenthos tertentu mempunyai preferensi yang kuat terhadap kelompok stasiun tertentu, sedangkan nilai indeks fidelitas kurang dari satu berarti kelompok jenis makrozoobenthos tertentu mempunyai preferensi yang lemah terhadap kelompok stasiun tertentu.

Berdasarkan Gambar 5 terlihat bahwa kelompok jenis satu terdiri dari tiga genera kelas polychaeta dan pelecypoda. Kelompok jenis satu memiliki nilai indeks konstansi 0,200 pada kelompok stasiun II, sedangkan pada kelompok stasiun I dan III nilai indeks konstansinya 0,000. Hal ini menunjukkan bahwa kelompok jenis satu lebih menyukai kondisi kelompok stasiun II yang memiliki tipe substrat pasir berlempung, ini didukung oleh nilai indeks fidelitas kelompok untuk kelompok stasiun II sebesar 1,600 sedangkan pada kelompok stasiun I dan III nilai indeks fidelitasnya 0,00 yang menunjukkan preferensi yang lemah. Dilihat dari jenisnya Nucula sp. dari kelas pelecypoda merupakan deposit fedeer yang mendapatkan makanannya dengan menggunakan probosis (Suwignyo et al., 1998). Dari Gambar 5 terlihat bahwa pada kelompok stasiun II kelompok jenis satu hanya menyebar pada stasiun lima. Hal ini disebabkan ketiga jenis ini dapat hidup pada substrat pasir dengan jalan menggali substrat sampai kedalaman yang tidak lagi dipengaruhi oleh gelombang yang lewat (Nybakken, 1997).
<table>
<thead>
<tr>
<th>Kelompok Jenis</th>
<th>I</th>
<th></th>
<th>II</th>
<th></th>
<th></th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dodececaria sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Nichomache sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucula sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Glycera sp.</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Arenmida sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Flabelligera sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ophelina sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paralacydonia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirratulus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubulanus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cythura sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebalia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fimbria sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mactra sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piscicolidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Thelepus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multilepsis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scoloplos sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnotheres sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argissa sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteroianais sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirotana sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuculana sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Notomastus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maldane sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpheus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunice sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terebellidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraonella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 5. Matriks data binari yang menghubungkan kelompok jenis dengan kelompok stasiun pengamatan
Kelompok Jenis

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 5. (Lanjutan)
<table>
<thead>
<tr>
<th>Kelompok Jenis</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,000</td>
<td>0,200</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>0,000</td>
<td>0,400</td>
<td>1,000</td>
</tr>
<tr>
<td>3</td>
<td>0,000</td>
<td>0,000</td>
<td>1,000</td>
</tr>
<tr>
<td>4</td>
<td>0,045</td>
<td>0,200</td>
<td>0,000</td>
</tr>
<tr>
<td>5</td>
<td>0,063</td>
<td>0,500</td>
<td>0,125</td>
</tr>
<tr>
<td>6</td>
<td>0,143</td>
<td>0,714</td>
<td>0,286</td>
</tr>
<tr>
<td>7</td>
<td>0,000</td>
<td>0,600</td>
<td>0,000</td>
</tr>
<tr>
<td>8</td>
<td>0,000</td>
<td>0,200</td>
<td>0,000</td>
</tr>
<tr>
<td>9</td>
<td>0,500</td>
<td>0,133</td>
<td>0,000</td>
</tr>
<tr>
<td>10</td>
<td>0,000</td>
<td>0,360</td>
<td>0,000</td>
</tr>
<tr>
<td>11</td>
<td>0,500</td>
<td>0,400</td>
<td>0,000</td>
</tr>
<tr>
<td>12</td>
<td>0,250</td>
<td>0,200</td>
<td>0,000</td>
</tr>
<tr>
<td>13</td>
<td>0,500</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Gambar 5. Analisa nodul berdasarkan indeks Konstansi
<table>
<thead>
<tr>
<th>Kelompok Jenis</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,000</td>
<td>1,600</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>0,000</td>
<td>1,067</td>
<td>2,667</td>
</tr>
<tr>
<td>3</td>
<td>0,000</td>
<td>0,000</td>
<td>8,000</td>
</tr>
<tr>
<td>4</td>
<td>0,330</td>
<td>1,467</td>
<td>0,000</td>
</tr>
<tr>
<td>5</td>
<td>0,183</td>
<td>1,455</td>
<td>0,364</td>
</tr>
<tr>
<td>6</td>
<td>0,267</td>
<td>1,379</td>
<td>0,552</td>
</tr>
<tr>
<td>7</td>
<td>0,000</td>
<td>1,600</td>
<td>0,000</td>
</tr>
<tr>
<td>8</td>
<td>0,000</td>
<td>1,600</td>
<td>0,000</td>
</tr>
<tr>
<td>9</td>
<td>2,400</td>
<td>0,683</td>
<td>0,000</td>
</tr>
<tr>
<td>10</td>
<td>0,000</td>
<td>1,600</td>
<td>0,000</td>
</tr>
<tr>
<td>11</td>
<td>1,333</td>
<td>1,067</td>
<td>0,000</td>
</tr>
<tr>
<td>12</td>
<td>1,333</td>
<td>1,067</td>
<td>0,000</td>
</tr>
<tr>
<td>13</td>
<td>4,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Gambar 7. Analisa nodul berdasarkan indeks Fidelitas
Kelompok jenis dua terdiri dari satu genus yaitu *Glycera* sp. dari kelas polychaeta. Kelompok jenis dua memiliki nilai indeks konstansi 0,400 pada kelompok stasiun II dan 1,000 pada kelompok stasiun III, sedangkan pada kelompok stasiun I nilai indeks konstansinya 0,000. Hal ini menunjukkan bahwa *Glycera* sp. lebih menyukai kondisi kelompok stasiun III yang memiliki tipe substrat liat berdebu, ini diperkuat dengan nilai indeks fidelitas untuk kelompok stasiun III sebesar 2,667 sedangkan pada kelompok stasiun II indeks fidelitasnya 1,067 yang menunjukkan preferensi yang sedang, dan kelompok stasiun I nilai indeks fidelitasnya 0,000 yang menunjukkan preferensi yang rendah. Pada kelompok stasiun III *Glycera* sp. memiliki preferensi yang kuat dengan tipe substrat liat berdebu, hal ini diduga karena *Glycera* sp. merupakan pemakan debritus (*detritus feeders*) yang suka membuat lubang atau lorong dalam substrat lumpur (Suwignyo et al., 1998), sedangkan jenis *Glycera* sp. pada kelompok stasiun II dengan tipe substrat pasir berlempung memiliki preferensi yang sedang, hal ini diduga karena *Glycera* sp. merupakan *deposit feeder* yang suka menggali lubang pada substrat pasir (Silaen, 1999) sehingga *Glycera* sp. diduga dapat menyesuaikan diri dengan kondisi lingkungan yang berbeda.

Kelompok jenis tiga terdiri dari satu genus yaitu *Arecaida* sp. Kelompok jenis ini memiliki nilai indeks konstansi sebesar 1,000 pada kelompok stasiun III, sedangkan pada kelompok jenis I dan II nilai indeks konstansinya 0,000 (Gambar 6). Hal ini menunjukkan bahwa *Arecaida* sp. memiliki preferensi yang kuat terhadap kelompok stasiun III yang memiliki tipe substrat liat berdebu, ini ditunjukkan dengan nilai indeks fidelitas pada kelompok stasiun-III sebesar 8,000 sedangkan pada kelompok stasiun I dan II nilai indeks fidelitasnya 0,000 yang menunjukkan preferensi yang lemah (Gambar 7).

Kelompok jenis empat terdiri dari 11 genera yang berasal dari kelas polychaeta, krustasea, hirudinea, dan pelecypoda. Kelompok jenis empat memiliki nilai indeks konstansi sebesar 0,045 pada kelompok stasiun I dan pada kelompok stasiun II sebesar 0,200 sedangkan pada kelompok stasiun III nilai indeks
konstansinya 0,000 (Gambar 6). Hal ini menunjukkan bahwa kelompok jenis empat lebih menyukai kondisi kelompok stasiun II yang memiliki tipe substrat pasir berlempung dibandingkan kelompok stasiun I dan III yang memiliki tipe substrat liat dan liat berdebu, ini didukung oleh nilai indeks fidelitas pada kelompok stasiun II sebesar 0,200 sedangkan pada kelompok stasiun I dan III nilai indeks fidelitasnya masing-masing sebesar 0,045 dan 0,000. Pada kelompok stasiun II nilai indeks fidelitas lebih tinggi dibanding kelompok stasiun I, hal ini disebabkan karena kelompok jenis empat hanya ditemukan pada stasiun tujuh. Dilihat dari jenisnya Tubulanus sp. dari Filum Nemertina merupakan hewan yang hidup pada lumpur atau pasir dengan memakan hewan yang telah mati atau yang masih hidup (Suwignyo, 1998).

Kelompok jenis lima terdiri dari delapan genera. Kelompok ini memiliki nilai indeks konstansi sebesar 0,063 pada kelompok stasiun I dan 0,500 pada kelompok stasiun II, sedangkan pada kelompok stasiun III nilai indeks konstansinya 0,125 (Gambar 6). Hal ini menunjukkan bahwa kelompok jenis lima lebih menyukai kondisi kelompok stasiun II yang memiliki tipe substrat pasir berlempung dibandingkan dengan kelompok stasiun I dan III yang memiliki tipe substrat liat dan liat berdebu, ini didukung dengan nilai indeks fidelitas untuk kelompok stasiun II sebesar 1,455 dan untuk kelompok stasiun I sebesar 0,183 sedangkan untuk kelompok stasiun III sebesar 0,364 yang memiliki preferensi yang lemah (Gambar 7). Dari Gambar 5 terlihat bahwa kelompok jenis lima terlihat menyebar pada stasiun tujuh dan delapan, sedangkan pada kelompok stasiun I jenis Nuculana sp. saja yang ditemukan pada stasiun enam dan pada kelompok stasiun III jenis Pinnootheres sp. saja yang ditemukan pada stasiun satu.

Kelompok jenis enam terdiri dari tujuh genera dari kelas polychaeta dan krustasea. Kelompok jenis ini memiliki nilai indeks konstansi pada kelompok stasiun I, II dan III masing-masing sebesar 0,143; 0,714; 0,286 (Gambar 6), sedangkan nilai indeks fidelitas untuk kelompok stasiun I, II dan III masing-masing sebesar 0,267; 1,379; 0,552 (Gambar 7). Hal ini menunjukkan bahwa kelompok jenis enam memiliki preferensi yang kuat terhadap kelompok stasiun II yang memiliki tipe substrat pasir berlempung, sedangkan pada kelompok stasiun I dan III dengan tipe
substrat liat dan liat berdebu kelompok jenis enam memiliki preferensi yang lemah. Dilihat dari jenisnya *Notomastus* sp. merupakan *deposit feeder* yang menelan pasir dan lumpur dalam lubangnya (Suwignyo *et al*., 1998) sehingga *Notomastus* sp. menyebar pada kelompok stasiun II dan III.

Kelompok jenis tujuh terdiri dari dua genera dari kelas polychaeta dan krustasea. Nilai indeks konstansi pada kelompok stasiun I, II dan III masing-masing 0,000; 0,600 dan 0,000. Hal ini menunjukkan bahwa kelompok jenis tujuh lebih menyukai kondisi kelompok stasiun II dengan tipe substrat pasir berlempung, ini ditunjukkan dengan nilai indeks fidelitas pada kelompok stasiun II sebesar 1,600 yang menunjukkan preferensi yang kuat.

Kelompok jenis delapan terdiri dari dua genera yaitu *Magelona* sp. dan *Phascolion* sp. Nilai indeks konstansi pada kelompok stasiun I dan III masing-masing sebesar 0,000 karena pada keomok stasiun I dan III tidak ditemukan jenis organisme, sedangkan pada kelompok stasiun II nilai indeks konstansi sebesar 0,200 (Gambar 6), karena pada kelompok stasiun II ditemukan jenis *Magelona* sp. dan *Phascolion* sp. pada stasiun tiga. Nilai indeks fidelitas pada kelompok stasiun I dan II sebesar 0,000 sedangkan pada kelompok stasiun II sebesar 1,600 dengan tipe substrat pasir berlempung menunjukkan preferensi yang kuat (Gambar 7). Dilihat dari jenisnya *Phascolion* sp. dari Filum Sipunculioda merupakan hewan yang hidup menetap, tidak berkeliiaraian dan terdapat pada substrat pasir dalam lubang non permanen. Jenis *Phascolion* sp. merupakan *deposit feeder* yang memakan segala butir-butir makanan yang mengendap di dasar perairan dengan menggunakan tentakelnya atau menelan substrat pada waktu membuat liang (Suwignyo *et al*., 1998)

Kelompok jenis sembilan terdiri dari tiga genera dari kelas polychaeta. Kelompok jenis sembilan memiliki nilai indeks konstansi pada kelompok stasiun I, II dan III masing-masing sebesar 0,500; 0,133; 0,000 (Gambar 6). Pada kelompok stasiun I ketiga jenis organisme ini ditemukan pada stasiun dua, sedangkan pada kelompok stasiun II hanya jenis *Nephtys* sp. saja yang ditemukan pada stasiun delapan dan pada kelompok stasiun III tidak ada satupun jenis organisme yang ditemukan. Nilai indeks fidelitas pada kelompok stasiun I, II dan III masing-masing sebesar 2,400;
0,638; 0,000 (Gambar 7). Kelompok jenis sembilan (Pectinaria sp., Nephtys sp. dan Paraoonis sp.) memiliki preferensi yang kuat pada kelompok stasiun I yang memiliki tipe substrat liat sedangkan pada kelompok stasiun II dan III memiliki preferensi yang lemah. Di lihat dari jenisnya Nephtys sp. merupakan hewan penggali yang menggali substrat lunak atau menempati saluran yang permanen dalam substrat (Wood, 1987).

Kelompok jenis 10 terdiri dari lima genera dari kelas polychaeta, krustasea, dan ophiuroidea. Kelompok jenis ini memiliki nilai indeks konstansi pada kelompok stasiun I dan III masing-masing sebesar 0,000 sedangkan pada kelompok stasiun II sebesar 0,360 (Gambar 6). Hal ini menunjukkan bahwa kelompok jenis 10 tidak ditemukan pada kelompok stasiun I dan III. Nilai indeks fidelitas pada kelompok stasiun I dan III masing-masing sebesar 0,000 sedangkan pada kelompok stasiun II sebesar 1,600 (Gambar 7). Hal ini menunjukkan bahwa kelompok jenis 10 memiliki preferensi yang kuat pada kelompok stasiun II dengan tipe substrat pasir berlempung. Dilihat dari jenisnya Nereis sp. merupakan penggali lubang pada substrat lunak, tetapi jenis ini juga dapat hidup di substrat pasir, hal ini terlihat oleh Caroko in Silaen (1999) pada penelitiannya melaporkan bahwa Nereis sp. ditemukan pada substrat liat dan substrat lempung berpasir dengan presentase pasir sebesar 77,26%.

Kelompok jenis 11 terdiri dari satu genus yaitu Tellina sp. dari kelas pelecypoda. Kelompok jenis 11 memiliki nilai indeks konstansi pada kelompok stasiun I, II dan III masing-masing sebesar 0,500; 0,400; 0,000 (Gambar 6). Hal ini menunjukkan bahwa pada kelompok stasiun III jenis Tellina sp. tidak ditemukan. Nilai indeks fidelitas pada kelompok stasiun I, II dan III masing-masing sebesar 1,333; 1,067; 0,000 (Gambar 7). Hal ini menunjukkan bahwa jenis Tellina sp. memiliki preferensi yang kuat terhadap kelompok stasiun I dan II dengan tipe substrat liat dan pasir berlempung, sedangkan pada kelompok stasiun III jenis Tellina sp. memiliki preferensi yang rendah. Menurut Barnes and Hughes in Suprianto (1988), jenis Tellina sp. hidup pada substrat pasir. Keberadaannya pada kelompok stasiun I karena jenis ini merupakan pemakan deposit yang menyukai substrat liat (Silaen, 1999).
Kelompok jenis 12 terdiri dari dua genera organisme dari kelas polychaeta dan sipunculoidea. Kelompok jenis ini memiliki nilai indeks konstansi pada kelompok stasiun I, II dan III masing-masing sebesar 0,250; 0,200; 0,000 (Gambar 6). Hal ini menunjukkan bahwa jenis Aphrodita sp. dan Golfingia sp. tidak ditemukan pada kelompok stasiun III yang memiliki nilai indeks konstansi 0,000. Nilai indeks fidelitas pada kelompok stasiun I, II dan III masing-masing sebesar 1,333; 1,607; 0,000 (Gambar 7). Hal ini menunjukkan bahwa jenis Aphrodita sp. dan Golfingia sp. memiliki preferensi yang kuat pada kelompok stasiun I dan II dengan tipe substrat liat dan pasir berlempung, sedangkan pada kelompok stasiun III jenis Aproditha sp. dan Golfingia sp. memiliki preferensi yang lemah. Hal ini dikarenakan Aphrodita sp. dapat hidup pada substrat pasir dengan menggali lubang dan dengan cara yang sama dapat melakukannya pada substrat lumpur (Silanen, 1999).

Kelompok 13 terdiri dari satu genus yaitu Tapes sp. dari kelas pelecypoda. Nilai indeks konstansi pada kelompok stasiun I, II dan III masing-masing sebesar 0,500; 0,000; 0,000 (Gambar 6). Hal ini menunjukkan bahwa organisme Tapes sp. tidak ditemukan pada kelompok stasiun II dan III. Nilai indeks fidelitas pada kelompok stasiun I, II dan III masing-masing sebesar 4,000; 0,000; 0,000 (Gambar 7). Hal ini menunjukkan bahwa organisme Tapes sp. memiliki preferensi yang kuat pada kelompok stasiun I dengan tipe substrat liat.
V. KESIMPULAN DAN SARAN

A. Kesimpulan

Hasil pengelompokan stasiun pengamatan dengan menggunakan indeks Canbera diperoleh tiga kelompok stasiun yaitu kelompok stasiun I terdiri dari stasiun dua dan enam, kelompok stasiun II terdiri dari stasiun tiga, empat, lima, tujuh dan delapan, sedangkan kelompok stasiun III hanya terdiri dari stasiun satu

Hasil pengamatan makrozoobenthos diperoleh tujuh kelompok organisme dengan jumlah taksa sebanyak 47 generas. Jenis makrozoobenthos yang banyak ditemukan berasal dari kelas polychaeta 24 genera dan krustasea 11 genera.

Kepadatan jenis makrozoobenthos tertinggi dari kelas polychaeta yaitu organisme Notomastus sp. 114 ind/l, sedangkan dari kelas krustasea yaitu organisme Alpheus sp. 76 ind/l.

Pola sebaran jenis makrozoobenthos di perairan pantai antara Kuala Tungkal sampai Panaran Batam berkisar antara 1,98 – 8,00. Hal ini menunjukkan bahwa pola sebaran di perairan pantai antara Kuala Tungkal sampai Panaran Batam bersifat mengelompok, hal ini berkaitan dengan kondisi lingkungan, ketersediaan makanan serta karenanya kestabilan spesies itu sendiri.

Dari hasil pengelompokan jenis makrozoobenthos dengan menggunakan indeks Sorensen dari 47 genera diperoleh 13 kelompok jenis. Pada umumnya makrozoobenthos yang hanya ditemukan pada satu stasiun memiliki preferensi yang kuat terhadap habitatnya misalnya jenis Tapes sp. hanya ditemukan pada stasiun enam, sedangkan jenis makrozoobenthos yang memiliki kelimpahan tinggi yaitu

51
hampir ditemukan di setiap stasiun memiliki preferensi yang lemah terhadap habitatnya, misalnya jenis Notomastus sp. ditemukan pada lima stasiun dari delapan stasiun pengamatan. Berdasarkan indeks Konstansi dan Fidelitas diperoleh bahwa kelompok jenis satu, empat sampai delapan, dan sepuluh lebih menyukai kelompok stasiun II, kelompok jenis dua dan tiga lebih menyukai kelompok stasiun III, sedangkan kelompok jenis sembilan, 11 – 13 lebih menyukai kelompok stasiun I.

B. Saran

Untuk memperoleh gambaran lebih lengkap mengenai makrozoobenthos di perairan pantai antara Kuala Tungkal sampai Panaran Batam perlu adanya penelitian lebih lanjut dengan pengambilan contoh berulang (replication).
DAFTAR PUSTAKA

Darmono. 1995. Logam dalam sistem biologi makhluk hidup. UI-Press. 140 hal.

LAMPIRAN
Lampiran 1. Kepadatan, pola penyebaran makrozoobenthos, indeks keanekaragaman, keseragaman dan dominansi di pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>No</th>
<th>Organisme</th>
<th>Stasiun</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Id</th>
<th>Ket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POLYCHAETA</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8,00</td>
</tr>
<tr>
<td>2</td>
<td>Aphrodita sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>3</td>
<td>Areonida sp.</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>4</td>
<td>Cirratulus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>5</td>
<td>Dodececaria sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>6</td>
<td>Eunicus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>67</td>
<td>57</td>
<td>3,13</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>7</td>
<td>Flabelligera sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>8</td>
<td>Glyceria sp.</td>
<td>19</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>9</td>
<td>Magelona sp.</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>10</td>
<td>Maldane sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>10</td>
<td>0</td>
<td>67</td>
<td>10</td>
<td>3,10</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>11</td>
<td>Nephtys sp.</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>4,87</td>
</tr>
<tr>
<td>12</td>
<td>Neris sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,89</td>
</tr>
<tr>
<td>13</td>
<td>Nichomache sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>14</td>
<td>Notomastus sp.</td>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>114</td>
<td>0</td>
<td>76</td>
<td>19</td>
<td>2,35</td>
</tr>
<tr>
<td>15</td>
<td>Ophelia sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>16</td>
<td>Paracydonia sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>17</td>
<td>Paraonella sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>0</td>
<td>76</td>
<td>10</td>
<td>3,20</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>18</td>
<td>Paraonis sp.</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>19</td>
<td>Pectinaria sp.</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,26</td>
</tr>
<tr>
<td>20</td>
<td>Potamilla sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,96</td>
</tr>
<tr>
<td>21</td>
<td>Scoloplos sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>4,26</td>
</tr>
<tr>
<td>22</td>
<td>Syllis sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>23</td>
<td>Terebellidae</td>
<td>19</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>57</td>
<td>19</td>
<td>2,12</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>24</td>
<td>Thelepus sp.</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>95</td>
<td>4,41</td>
<td>Mengelompok</td>
</tr>
<tr>
<td>25</td>
<td>Trichomache sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>48</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>2,96</td>
<td>Mengelompok</td>
</tr>
<tr>
<td></td>
<td>NEMERTINA</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Tubulanus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
</tr>
<tr>
<td>No.</td>
<td>Organisme</td>
<td>Stasiun</td>
<td>Id</td>
<td>Ket.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>---------</td>
<td>-----</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Golfingia sp.</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Phascolion sp.</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRUSTACEA</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Alpheus sp.</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>76</td>
<td>29</td>
<td>0</td>
<td>19</td>
<td>19</td>
<td>2,31</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Ampelisca sp.</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>3,79</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Argissa sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>3,79</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Atylus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>19</td>
<td>3,96</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Cirrolana sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>10</td>
<td>4,26</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Cythura sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Euplax sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>4,26</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Heteroionais sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>67</td>
<td>4,27</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Nebalia sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Pinotheres sp.</td>
<td>19</td>
<td>0</td>
<td>10</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>29</td>
<td>1,98</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Upogebia sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PELECYPODA</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Fimbria sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Mactra sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Modiolus sp.</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>48</td>
<td>3,67</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Nucula sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Nuculana sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>10</td>
<td>2,74</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Tapes sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Tellina sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>19</td>
<td>0</td>
<td>10</td>
<td>2,87</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 1. (lanjutan)

<table>
<thead>
<tr>
<th>No</th>
<th>Organisme</th>
<th>Stasiun</th>
<th>Id</th>
<th>Ket.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>46</td>
<td>OPHIUCIOIDEA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Amphiura sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>HIRUDINEA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Khirudinea sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jumlah Individu	114	89	98	342	40	48	854	567
Jumlah Taksa	5	7	8	11	14	3	28	23
H’	2,25	2,65	2,93	3,17	3,33	1,53	4,43	4,11
E	0,97	0,94	0,98	0,92	0,87	0,97	0,92	0,91
C	0,22	0,18	0,14	0,14	0,13	0,36	0,05	0,07

(Sumber: PT. Perusahaan Gas Negara, 2000)
Lampiran 2. Hasil pengukuran nilai parameter fisika-kimia di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stasiun</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fisika</td>
<td></td>
</tr>
<tr>
<td>1. Suhu (°C)</td>
<td>30,31</td>
</tr>
<tr>
<td>2. Salinitas (%)</td>
<td>20,69</td>
</tr>
<tr>
<td>3. Kekeruhan (NTU)</td>
<td>16,5</td>
</tr>
<tr>
<td>4. TSS (mg/l)</td>
<td>56</td>
</tr>
<tr>
<td>Kimia</td>
<td></td>
</tr>
<tr>
<td>5. PH</td>
<td>7,40</td>
</tr>
<tr>
<td>6. DO (mg/l)</td>
<td>5,8</td>
</tr>
<tr>
<td>7. BOD₅</td>
<td>5,32</td>
</tr>
<tr>
<td>8. COD (mg/l)</td>
<td>57,26</td>
</tr>
<tr>
<td>9. NO₃-N (mg/l)</td>
<td>0,006</td>
</tr>
<tr>
<td>10. NH₃-N (mg/l)</td>
<td>0,388</td>
</tr>
</tbody>
</table>
Lampiran 3. Kedalaman, kecepatan arus dan arah arus di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kedalaman max (m)</th>
<th>Dalam (m)</th>
<th>Kecepatan arus (m/det)</th>
<th>Arah arus (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,3</td>
<td>2</td>
<td>0,19</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0,23</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0,22</td>
<td>290</td>
</tr>
<tr>
<td>2</td>
<td>18,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>2</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>32,3</td>
<td>2</td>
<td>0,25</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0,37</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0,47</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>0,50</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>0,51</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>0,48</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0,45</td>
<td>192</td>
</tr>
<tr>
<td>5</td>
<td>11,9</td>
<td>2</td>
<td>0,03</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0,03</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0,07</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0,10</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0,05</td>
<td>288</td>
</tr>
<tr>
<td>6</td>
<td>6,7</td>
<td>2</td>
<td>0,02</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0,19</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0,17</td>
<td>198</td>
</tr>
<tr>
<td>7</td>
<td>14,0</td>
<td>2</td>
<td>0,04</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0,04</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0,03</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>0,03</td>
<td>342</td>
</tr>
<tr>
<td>8</td>
<td>18,8</td>
<td>2</td>
<td>0,03</td>
<td>042</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0,03</td>
<td>025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0,03</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>0,03</td>
<td>355</td>
</tr>
</tbody>
</table>

(Sumber: PT. Perusahaan Gas Negara, 2000)
Lampiran 4. Tipe substrat dasar dan kandungan logam berat dalam substrat di perairan pantai antara Kuala Tungkal sampai Panaran Batam

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Tekstur (%)</th>
<th>Logam berat (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liat</td>
<td>Pasir</td>
</tr>
<tr>
<td>1</td>
<td>49,55</td>
<td>8,35</td>
</tr>
<tr>
<td>2</td>
<td>62,54</td>
<td>25,99</td>
</tr>
<tr>
<td>3</td>
<td>1,15</td>
<td>83,70</td>
</tr>
<tr>
<td>4</td>
<td>13,90</td>
<td>70,34</td>
</tr>
<tr>
<td>5</td>
<td>16,05</td>
<td>68,79</td>
</tr>
<tr>
<td>6</td>
<td>64,86</td>
<td>20,55</td>
</tr>
<tr>
<td>7</td>
<td>9,31</td>
<td>75,62</td>
</tr>
<tr>
<td>8</td>
<td>6,46</td>
<td>73,49</td>
</tr>
</tbody>
</table>
Lampiran 5. Perhitungan sistem pengelompokan stasiun berdasarkan parameter fisika-kimia perairan

Langkah I: Menentukan tingkat kesamaan dua stasiun dengan menggunakan “Indeks Canberra”

Antara Stasiun 1-2

\[C = 1 - \frac{1}{8} \left(15,4 + 36 + 9,17 + 1 + 3,59 + 0 + 12,99 + 17,64 + 30,63 \right) \]
\[= 0,583 \times 100\% \]
\[= 58,3\% \]

Antara Stasiun 7 – 8

\[C = 1 - \frac{1}{8} \left(0,5 + 39 + 0,07 + 0,5 + 2,62 + 2,85 + 2,13 + 2,98 \right) \]
\[= 0,786 \times 100\% \]
\[= 78,6\% \]
Langkah II: Membuat matriks dari hasil perhitungan

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>58,3</td>
<td>47,1</td>
<td>47,7</td>
<td>47,6</td>
<td>54,3</td>
<td>51,8</td>
<td>52,7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>63,4</td>
<td>68,6</td>
<td>70,4</td>
<td>85,7</td>
<td>71,1</td>
<td>65,3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68,9</td>
<td>81,9</td>
<td>60,0</td>
<td>81,4</td>
<td>73,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>81,8</td>
<td>71,0</td>
<td>73,5</td>
<td>74,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>68,0</td>
<td>82,9</td>
<td>77,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>66,2</td>
<td>60,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>78,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Langkah III: Membuat dendrogram dari nilai kesamaan tertinggi

Selanjutnya dengan menggunakan teknik keterkaitan dari Vollan Connelly in Zairion (1990), dicari nilai indeks kesamaan gabungan kelompok stasiun yang baru. Nilai tersebut dimasukkan ke dalam matriks:

\[
1 - 2 - 6 = \frac{1 - 2 (+) 1 - 6}{2} = \frac{58,3 (+) 54,3}{2} = 56,3
\]
3 ---- 2 − 6 = 61,7
4 ---- 2 − 6 = 69,8
5 ---- 2 − 6 = 69,2
7 ---- 2 − 6 = 68,7
8 ---- 2 − 6 = 68,2

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>1</th>
<th>2 - 6</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>56,3</td>
<td>47,1</td>
<td>47,7</td>
<td>47,6</td>
<td>51,8</td>
<td>52,7</td>
</tr>
<tr>
<td>2 - 6</td>
<td>1</td>
<td>61,7</td>
<td>69,8</td>
<td>69,2</td>
<td>68,7</td>
<td>68,2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68,9</td>
<td>81,9</td>
<td>81,4</td>
<td>73,7</td>
<td>74,3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>81,8</td>
<td>73,5</td>
<td>74,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>82,9</td>
<td>77,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>78,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Selanjutnya penentuan kelompok stasiun yang baru dilakukan seperti langkah III di atas:

3 ---- 7 − 5 = 81,7
4 ---- 7 − 5 = 77,7
8 ---- 7 − 5 = 78,0
2 − 6 ---- 7 − 5 = 69,0
<table>
<thead>
<tr>
<th>Stasiun</th>
<th>1</th>
<th>2 - 6</th>
<th>3</th>
<th>4</th>
<th>7 - 5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>56,3</td>
<td>47,1</td>
<td>47,1</td>
<td>49,7</td>
<td>52,7</td>
</tr>
<tr>
<td>2 - 6</td>
<td>1</td>
<td>61,7</td>
<td>69,8</td>
<td>69,0</td>
<td>68,2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68,9</td>
<td>81,7</td>
<td>73,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>77,7</td>
<td>74,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 - 5</td>
<td>1</td>
<td>78,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 ---- 7 - 5 - 3 = 48,9
4 ---- 7 - 5 - 3 = 74,7
8 ---- 7 - 5 - 3 = 76,6
2 - 6 ---- 7 - 5 - 3 = 66,5
<table>
<thead>
<tr>
<th>Stasiun</th>
<th>1</th>
<th>2 - 6</th>
<th>4</th>
<th>7 - 5 - 3</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>56,3</td>
<td>47,7</td>
<td>48,9</td>
<td>52,7</td>
</tr>
<tr>
<td>2 - 6</td>
<td>1</td>
<td>69,8</td>
<td>66,5</td>
<td>68,2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>74,7</td>
<td>74,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 - 5 - 3</td>
<td></td>
<td></td>
<td>1</td>
<td>76,6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
1 \rightarrow 7 - 5 - 3 - 8 &= \frac{1 - 7 - 5 - 3 (+) 8}{2} \\
&= 50,8 \\
2 - 6 \rightarrow 7 - 5 - 3 - 8 &= \frac{2 - 6 \rightarrow 7 - 5 - 3 (+) 2 - 6 \rightarrow 8}{2} \\
&= 67,4 \\
4 \rightarrow 7 - 5 - 3 - 8 &= \frac{4 \rightarrow 7 - 5 - 3 (+) 4 \rightarrow 8}{2}
\end{align*}
\]
<table>
<thead>
<tr>
<th>Stasiun</th>
<th>1</th>
<th>2 - 6</th>
<th>4</th>
<th>7 - 5 - 3 - 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>56,3</td>
<td>47,7</td>
<td>50,8</td>
</tr>
<tr>
<td>2 - 6</td>
<td></td>
<td>69,8</td>
<td></td>
<td>67,4</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1</td>
<td>74,5</td>
</tr>
<tr>
<td>7 - 5 - 3 - 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
1 & \quad \rightarrow \quad 7 - 5 - 3 - 8 - 4 \\
2 - 6 & \quad \rightarrow \quad 7 - 5 - 3 - 8 - 4 \\
\end{align*}
\]

\[
\begin{align*}
1 & \quad \rightarrow \quad 7 - 5 - 3 - 8 - 4 & = & \quad \frac{1 \rightarrow 7 - 5 - 3 - 8 \quad (+) \quad 1 \rightarrow 4}{2} \\
& & = & \quad 49,3 \\
2 - 6 & \quad \rightarrow \quad 7 - 5 - 3 - 8 - 4 & = & \quad \frac{2 - 6 \rightarrow 7 - 5 - 3 - 8 \quad (+) \quad 2 - 6 \rightarrow 4}{2} \\
& & = & \quad 68,6
\end{align*}
\]
1 ---- 2 - 6 - 7 - 5 - 8 - 4 = \frac{1 ---- 2 - 6 (+) 1 ---- 7 - 5 - 8 - 4}{2} = 58,9
RIWAYAT HIDUP

Penulis dilahirkan di Jakarta pada tanggal 29 Maret 1979, anak ke dua dari tiga bersaudara dari ayahanda Djumono dan ibunda Sri Sugiyanti.

Sebagai salah satu syarat untuk memperoleh gelar sarjana bidang perikanan, penulis telah melaksanakan skripsi. Penulis dinyatakan lulus pada tanggal 6 Februari 2002 dengan skripsi berjudul "Karakteristik Komunitas Makrozoobenthos dan Keterkaitannya dengan tipe habitat di perairan pantai antara Kuala Tungkal sampai Panaran Batam"