WAKTU PERENDAMAN DAN PERIODE BULAN: PENGARUHNYA TERHADAP KEPITING BAKAU HASIL TANGKAPAN BUBU DI MUARA SUNGAI RADAH, PONTIANAK

CAROLINA CATUR RAKHMADEVI

SKRIPSI

INSTITUT PERTANIAN
BOGOR

PROGRAM STUDI PEMANFAATAN SUMBERDAYA PERIKANAN
DEPARTEMEN PEMANFAATAN SUMBERDAYA PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2004
WAKTU PERENDAMAN DAN PERIODE BULAN: PENGARUHNYA TERHADAP KEPITING BAKAU HASIL TANGKAPAN BUBU DI MUARA SUNGAI RADAK, PONTIANAK

Oleh:
CAROLINA CATUR RAKHMADEVI
C05400046

Skripsi
sebagai salah satu syarat untuk memperoleh gelar Sarjana Perikanan pada Program Studi Pemanfaatan Sumberdaya Perikanan

PROGRAM STUDI PEMANFAATAN SUMBERDAYA PERIKANAN DEPARTEMEN PEMANFAATAN SUMBERDAYA PERIKANAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN INSTITUT PERTANIAN BOGOR
2004
Judul skripsi: Waktu Perendaman dan Periode Bulan: Pengaruhnya terhadap Kepiting Bakau Hasil Tangkapan Bubu di Muara Sungai Radak, Pontianak
Nama: Carolina Catur Rakhmadevi
NRP: C05400046
Program studi: Pemanfaatan Sumberdaya Perikanan

Disetujui:

1. Pembimbing

[Signature]
Prof. Dr. Daniel R. Monintja
Ketua

[Signature]
Dr. Ir. Ari Purbayanto, M. Sc
Anggota

2. Fakultas Perikanan dan Ilmu Kelautan

[Signature]
Dr. Ir. Gondo Puspito, M. Sc
Ketua Program Studi PSP

[Stamp]
Agus Oman Sudrajat, M. Sc
Wakil Dekan

Tanggal Lulus: 25 Mei 2004
RINGKASAN

Sungai Radak, Kecamatan Kubu, Kabupaten Pontianak menimpaan potensi sumberdaya kepiting bakau yang besar. Kondisi tersebut mendorong nelayan untuk melakukan kegiatan penangkapan, namun kegiatan penangkapan yang ada belum mampu memanfaatkan sumberdaya kepiting secara optimal karena alat tangkap yang digunakan masih bersifat tradisional.

Alat tangkap yang digunakan oleh nelayan di daerah Sungai Radak adalah pintur atau rakkang (*stick dipnet*). Alat tersebut efektif untuk menangkap kepiting namun tidak efisien bila ditinjau dari kuantitas per unit alat tangkap, karena satu unit rakkang hanya dapat menangkap kepiting sebanyak 1-2 ekor.

Penulis mengadakan penelitian yang mengkaji pengaruh waktu perendaman bubu (*soaking time*) dan periode umur bulan terhadap kepiting bakau hasil tangkapan bubu lipat tiga pintu. Hal ini dilakukan agar nelayan dapat menentukan waktu yang tepat dalam kegiatan penangkapan kepiting dengan hasil yang optimal.

Adapun tujuan penelitian ini adalah (1) mengidentifikasi kepiting bakau hasil tangkapan bubu lipat tiga pintu yang meliputi jumlah, panjang dan lebar karapas, jenis kelamin, berat serta TKG kepiting betina; dan (2) mengkaji ada atau tidaknya pengaruh waktu perendaman (*soaking time*) dan periode bulan terhadap kepiting bakau hasil tangkapan bubu lipat tiga pintu.

Dari hasil penelitian diperoleh total kepiting tertangkap sebanyak 52 ekor yang terdiri atas 29 jantan dan 23 betina, dengan rata-rata tangkapan per trip sebanyak 4 ekor. Rata-rata panjang dan lebar karapas adalah 7,32 cm dan 10,54 cm dengan berat rata-rata per trip 227,4 g.
Kepiting bakau yang tertangkap dengan menggunakan bubu lipat tiga pintu lebih banyak berjenis kelamin jantan daripada betina. Hal ini diduga karena kepiting jantan lebih aktif mencari makan sementara kepiting betina menyimpan energinya untuk pertumbuhan dan perkembangan gonad.

Ukuran karapas rata-rata kepiting jantan lebih besar daripada kepiting betina. Kebanyakan kepiting betina yang tertangkap adalah kepiting yang belum matang gonad (TKG 1 dan TKG 2). Jumlah kepiting betina yang tertangkap dan telah siap memijah relatif sedikit.

Hasil uji statistika non parametrik Mann-Whitney dan Kolmogorov Smirnov menunjukkan bahwa waktu perendaman siang dan malam tidak berpengaruh signifikan terhadap: (1) jumlah total ($\alpha_{hitung} = 0,505$ dan $0,893 > \alpha_{table} = 0,05$); (2) jumlah jantan ($\alpha_{hitung} = 0,404$ dan $0,893 > \alpha_{table} = 0,05$); (3) jumlah betina ($\alpha_{hitung} = 0,715$ dan $0,289 > \alpha_{table} = 0,05$); (4) panjang karapas ($\alpha_{hitung} = 0,054$ dan $0,139 > \alpha_{table} = 0,05$); (5) lebar karapas ($\alpha_{hitung} = 0,078$ dan $0,866 > \alpha_{table} = 0,05$); dan (6) berat ($\alpha_{hitung} = 0,262$ dan $0,866 > \alpha_{table} = 0,05$) kepiting bakau hasil tangkapan.

Uji statistika Kruskall-Wallis dan Median menunjukkan bahwa periode bulan (kuadrant 1, full moon, kuadrant 2, dan new moon) tidak berpengaruh signifikan terhadap: (1) jumlah total ($X^2_{hitung} = 2,417$ dan $1,071 < X^2_{table} = 7,815$); (2) jumlah jantan ($X^2_{hitung} = 0,874$ dan $0,833 < X^2_{table} = 7,815$); (3) jumlah betina ($X^2_{hitung} = 5,014$ dan $5,455 < X^2_{table} = 7,815$); (4) panjang karapas ($X^2_{hitung} = 5,657$ dan $6,286 < X^2_{table} = 7,815$); (5) lebar karapas ($X^2_{hitung} = 4,038$ dan $3,143 < X^2_{table} = 7,815$); dan (6) berat ($X^2_{hitung} = 5,637$ dan $6,286 < X^2_{table} = 7,815$) kepiting bakau hasil tangkapan.

Kesimpulan dari penelitian ini adalah (1) kepiting bakau hasil tangkapan bubu lipat tiga pintu meliputi: jumlah sebanyak 52 ekor, panjang dan lebar karapas rata-rata sebesar 7,32 cm dan 10,54 cm, berat kepiting rata-rata sebesar 227,40 g, kepiting yang tertangkap lebih banyak berjenis kelamin jantan daripada betina. Kepiting betina yang tertangkap belum matang gonad (TKG 1 dan 2); dan (2) waktu perendaman (soaking time) dan periode bulan tidak berpengaruh nyata terhadap kepiting bakau hasil tangkapan bubu lipat tiga pintu.
RIWAYAT HIDUP

KATA PENGANTAR

Skripsi ini merupakan salah satu syarat untuk memperoleh gelar Sarjana Perikanan pada Program Studi Pemanfaatan Sumberdaya Perikanan, Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor.

Pada kesempatan ini, penulis ingin menyampaikan terimakasih kepada Prof. Dr. Daniel R. Monintja dan Dr. Ir. Ari Purbayanto, M.Sc. selaku pembimbing, serta Mathius Tiku S.Pi., M.Si. yang telah berbaik hati memberikan kesempatan penulis untuk berpartisipasi melakukan kegiatan penelitian. Ungkapan terimakasih juga penulis sampaikan kepada ayah, ibu, kakak dan adik, serta seluruh mahasiswa PSP angkatan 37 yang telah mendukung penulis dalam doa dan kasih.

Penulis menyadari sepenuhnya bahwa skripsi ini masih terdapat banyak kekurangan, namun penulis berharap kiranya skripsi ini dapat memberikan informasi yang berguna bagi pihak yang membutuhkan.

Bogor, Juni 2004

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR GAMBAR</td>
<td>i</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>ii</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>iii</td>
</tr>
<tr>
<td>1. PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Tujuan Penelitian</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Manfaat Penelitian</td>
<td>2</td>
</tr>
<tr>
<td>2. TINJAUAN PUSTAKA</td>
<td>3</td>
</tr>
<tr>
<td>2.1. Deskripsi Kepiting Bakau</td>
<td>3</td>
</tr>
<tr>
<td>2.2. Biologi Kepiting Bakau</td>
<td>5</td>
</tr>
<tr>
<td>2.2.1. Makanan dan kebiasaan makan</td>
<td>5</td>
</tr>
<tr>
<td>2.2.2. Reproduksi</td>
<td>5</td>
</tr>
<tr>
<td>2.3. Habitat</td>
<td>6</td>
</tr>
<tr>
<td>2.4. Deskripsi Bubu</td>
<td>7</td>
</tr>
<tr>
<td>2.5. Hari Bulan</td>
<td>9</td>
</tr>
<tr>
<td>3. METODOLOGI PENELITIAN</td>
<td>11</td>
</tr>
<tr>
<td>3.1. Waktu dan Tempat</td>
<td>11</td>
</tr>
<tr>
<td>3.2. Bahan dan Alat</td>
<td>11</td>
</tr>
<tr>
<td>3.3. Metode</td>
<td>11</td>
</tr>
<tr>
<td>3.4. Analisis Data</td>
<td>13</td>
</tr>
<tr>
<td>3.4.1. Pengaruh waktu perendaman dan periode bulan terhadap kepiting bakau</td>
<td>13</td>
</tr>
<tr>
<td>3.4.2. Nisbah kelamin (sex ratio)</td>
<td>17</td>
</tr>
<tr>
<td>3.5. Kapal dan Perahu</td>
<td>17</td>
</tr>
<tr>
<td>3.6. Alat Tangkap Bubu Lipat Tiga Pintu</td>
<td>18</td>
</tr>
<tr>
<td>3.7. Metode Pengoperasian</td>
<td>20</td>
</tr>
<tr>
<td>4. KEADAAN UMUM DAERAH PENELITIAN</td>
<td>22</td>
</tr>
<tr>
<td>4.1. Keadaan Geografis dan Topografis</td>
<td>22</td>
</tr>
<tr>
<td>4.2. Keadaan Hutan Mangrove dan Kawasan Perairan</td>
<td>23</td>
</tr>
</tbody>
</table>
4.3. Unit Penangkapan ... 24
 4.3.1. Alat tangkap ... 24
 4.3.2. Armada penangkapan .. 25
 4.3.3. Nelayan ... 26
4.4. Potensi Perikanan ... 27
4.5. Produksi ... 29

5. HASIL DAN PEMBAHASAN .. 33
 5.1. Hasil Tangkapan .. 33
 5.2. Pengaruh Waktu Perendaman dan Periode Bulan terhadap Kepiting Bakau Hasil Tangkapan Bubu .. 37
 5.2.1. Pengaruh waktu perendaman terhadap kepiting bakau hasil tangkapan bubu .. 37
 5.2.2. Pengaruh periode bulan terhadap kepiting bakau hasil tangkapan bubu .. 41
 5.3. Nisbah Kelamin (sex ratio) Kepiting Bakau .. 44
 5.3.1. Nisbah kelamin berdasarkan waktu perendaman 44
 5.3.2. Nisbah kelamin berdasarkan periode bulan 45
 5.4. Distribusi Frekuensi Panjang Karapas .. 46
 5.5. Distribusi Frekuensi Lebar Karapas .. 48
 5.6. Distribusi Frekuensi Berat Kepiting Bakau 49
 5.7. Tingkat Kematangan Gonad (TKG) Kepiting Betina 50
 5.7.1. TKG kepiting betina pada waktu perendaman berbeda 50
 5.7.2. TKG kepiting betina pada periode bulan yang berbeda 51

6. KESIMPULAN DAN SARAN .. 53
 6.1. Kesimpulan .. 53
 6.2. Saran .. 53

DAFTAR PUSTAKA .. 54

LAMPIRAN .. 56
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Perbedaan ruas abdomen kepiting jantan dan kepiting betina</td>
<td>4</td>
</tr>
<tr>
<td>2. Keterangan panjang dan lebar kepiting bakau</td>
<td>12</td>
</tr>
<tr>
<td>3. Posisi bubu dalam keadaan terlipat</td>
<td>19</td>
</tr>
<tr>
<td>4. Posisi bubu setelah dibuka (siap untuk dioperasikan)</td>
<td>19</td>
</tr>
<tr>
<td>5. Keadaan hutan mangrove di muara Sungai Radak</td>
<td>23</td>
</tr>
<tr>
<td>6. Kelompok ukuran panjang karapas kepiting bakau (cm)</td>
<td>46</td>
</tr>
<tr>
<td>7. Kelompok ukuran lebar karapas kepiting bakau (cm)</td>
<td>48</td>
</tr>
<tr>
<td>8. Kelompok ukuran berat kepiting bakau (cm)</td>
<td>49</td>
</tr>
<tr>
<td>9. TKG kepiting betina pada waktu perendaman 06.00-17.00 WIB dan 18.00-05.00 WIB</td>
<td>51</td>
</tr>
<tr>
<td>10. TKG kepiting betina pada kuadran 1, full moon, kuadran 2, dan new moon</td>
<td>52</td>
</tr>
<tr>
<td>Tabel</td>
<td>Halaman</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1. Kapal motor dan perahu yang digunakan selama penelitian</td>
<td>18</td>
</tr>
<tr>
<td>2. Jumlah alat tangkap (unit) di Kabupaten Pontianak tahun 2000</td>
<td>25</td>
</tr>
<tr>
<td>3. Jumlah armada penangkapan ikan (unit) di Kabupaten Pontianak tahun 2000</td>
<td>26</td>
</tr>
<tr>
<td>4. Potensi kolam ikan (ha) Kabupaten Pontianak tahun 2001</td>
<td>27</td>
</tr>
<tr>
<td>5. Potensi karamba (unit) Kabupaten Pontianak tahun 2001</td>
<td>28</td>
</tr>
<tr>
<td>6. Potensi tambak air payau (ha) Kabupaten Pontianak tahun 2001</td>
<td>29</td>
</tr>
<tr>
<td>7. Potensi karamba apung air laut (ha) Kabupaten Pontianak tahun 2001</td>
<td>29</td>
</tr>
<tr>
<td>8. Jumlah produksi perikanan (ton) hasil penangkapan di laut dan sungai Kabupaten Pontianak tahun 2002</td>
<td>30</td>
</tr>
<tr>
<td>11. Jumlah dan jenis organisme yang tertangkap selama penelitian</td>
<td>33</td>
</tr>
<tr>
<td>12. Rata-rata jumlah (ekor), panjang dan lebar karapas (cm) serta berat (gram) kepiting bakau yang tertangkap selama 12 trip</td>
<td>34</td>
</tr>
<tr>
<td>13. Rata-rata jumlah (ekor), berat (gram) dan ukuran (cm) kepiting bakau yang tertangkap berdasarkan waktu perendaman</td>
<td>35</td>
</tr>
<tr>
<td>14. Rata-rata jumlah (ekor), berat (gram) dan ukuran (cm) kepiting bakau yang tertangkap berdasarkan periode bulan</td>
<td>36</td>
</tr>
<tr>
<td>15. Nisbah kelamin jantan dan betina berdasarkan waktu perendaman</td>
<td>45</td>
</tr>
<tr>
<td>16. Nisbah kelamin jantan dan betina berdasarkan periode bulan</td>
<td>46</td>
</tr>
<tr>
<td>Lampiran</td>
<td>Halaman</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1. Peta lokasi penelitian</td>
<td>56</td>
</tr>
<tr>
<td>2. Desain bubu lipat tiga pintu</td>
<td>57</td>
</tr>
<tr>
<td>3. Spesifikasi alat tangkap bubu lipat tiga pintu</td>
<td>58</td>
</tr>
<tr>
<td>4. Konstruksi bubu lipat tiga pintu</td>
<td>59</td>
</tr>
<tr>
<td>5. Metode pengoperasian bubu lipat tiga pintu</td>
<td>60</td>
</tr>
<tr>
<td>6. Penanganan pasca penangkapan</td>
<td>62</td>
</tr>
<tr>
<td>7. Fase bulan pada saat penelitian</td>
<td>63</td>
</tr>
<tr>
<td>8. Data hasil tangkapan kepiting selama penelitian</td>
<td>64</td>
</tr>
<tr>
<td>9. Data hasil Uji Mann-Whitney dan Kolmogorov-Smirnov Dua Sampel</td>
<td>66</td>
</tr>
<tr>
<td>10. Data hasil Uji Kruskall-Wallis dan Median</td>
<td>68</td>
</tr>
</tbody>
</table>
1. PENDAHULUAN

1.1. Latar Belakang

Kepiting bakau (Scylla serrata) atau mangrove crab adalah salah satu spesies khas yang hidup di kawasan bakau. Spesies ini merupakan komoditi perikanan yang dapat dijumpai di seluruh pantai Indonesia. Umumnya spesies tersebut hidup di daerah perairan payau walaupun pada daur hidupnya kepiting betina melakukan ruaya ke perairan laut dalam untuk melakukan kegiatan pemijahan.

Sungai Radak, Kecamatan Kubu, Kabupaten Pontianak menyimpan potensi sumberdaya kepiting bakau yang besar. Kondisi tersebut mendorong nelayan untuk melakukan kegiatan penangkapan, namun kegiatan penangkapan yang ada belum mampu memanfaatkan sumberdaya kepiting secara optimal karena alat tangkap yang digunakan masih bersifat tradisional.

Alat tangkap yang digunakan oleh nelayan di daerah Sungai Radak adalah pintur atau rakkang (stick dipnet). Alat tersebut efektif untuk menangkap kepiting namun tidak efisien bila ditinjau dari kuantitas per unit alat tangkap. Ini dikarenakan satu unit rakkang hanya dapat menangkap kepiting sebanyak 1-2 ekor.

Bubu lipat tiga pintu sebelumnya pernah dioperasikan di daerah Peniti, Kabupaten Pontianak dan langsung menggantikan posisi rakkang sebagai alat penangkap

Untuk mencegah hal tersebut terulang di daerah Sungai Radak, maka penulis mengadakan penelitian tentang pengaruh waktu perendaman bubu (soaking time) dan periode umur bulan terhadap karakteristik biologi kepiting bakau hasil tangkapan bubu. Hal ini dilakukan agar nelayan dapat menentukan waktu yang tepat dalam kegiatan penangkapan kepiting dengan hasil yang optimal.

1.2. Tujuan Penelitian

Penelitian ini bertujuan untuk:

1). Mengidentifikasi kepiting bakau hasil tangkapan bubu lipat tiga pintu yang meliputi jumlah, panjang dan lebar karapas, jenis kelamin, berat serta TKG kepiting betina; dan

2). Mengkaji ada atau tidaknya pengaruh waktu perendaman (soaking time) dan periode bulan terhadap kepiting bakau hasil tangkapan bubu lipat tiga pintu.

1.3. Manfaat Penelitian

Memberikan gambaran tentang kepiting bakau hasil tangkapan bubu lipat tiga pintu dalam periode bulan dan waktu perendaman yang berbeda di Muara Sungai Radak, Pontianak.
2. TINJAUAN PUSTAKA

2.1. Deskripsi Kepiting Bakau

Klasifikasi kepiting bakau adalah sebagai berikut (Kasry, 1996):

Filum : Arthropoda
Kelas : Crustacea
Ordo : Decapoda
Sub Ordo : Branchyura
Famili : Portunidae
Sub Famili : Lipulinae
Genus : *Scylla* de Haan
Spesies : *Scylla serrata* (Forskal, 1775)

Jenis kelamin kepiting dapat diketahui dengan melihat ruas-ruas abdonennya. Pada kepiting jantan, ruas-ruas abdonennya sempit, sedangkan kepiting betina lebih lebar (Gambar 1). Abdomen kepiting betina yang lebar dan membulat berfungsi sebagai tempat penyimpanan telur yang telah dibuahi dan siap untuk dipijahkan.

Gambar 1. Perbedaan ruas abdon men kepiting jantan dan betina

Kepiting bakau mempunyai bentuk badan agak bulat dan tebal, karapas berwarna coklat kehijauan dengan permukaan yang licin dan mempunyai panjang kurang lebih dua per tiga lebar. Menurut Kanna (2002), spesies Scylla serrata memiliki warna relatif sama dengan warna lumpur, yaitu coklat kehitaman pada karapas dan putih kekuningan pada abdonmen. Pada propudus bagian atas terdapat sepasang duri yang runcing dan satu buah duri pada propudus bagian bawah.

2.2. Biologi Kepiting Bakau

2.2.1. Makanan dan kebiasaan makan

Kepiting bakau adalah pemakan segala jenis makanan dan pemakan bangkai (*omnivorous scavenger*). Makanan hewan ini antara lain adalah tumbuh-tumbuhan, bangkai hewan, bangunan-bangunan kayu, bambu dan hewan kecil. Waktu makan kepiting bakau tidak beraturan, tetapi lebih aktif pada saat air pasang atau bersamaan dengan arus air baru, dimana matahari hendak terbenam (Kordi, 1997).

Menurut Moosa *et al.* (1985) kepiting bakau adalah pemakan bangkai (*scavenger*) dan memakan sesama jenisnya (kanibal), sedangkan larva kepiting biasa memakan plankton. Makanan larva kepiting di alam terdiri atas berbagai organisme planktonik, seperti diatom, larva *echinodermata*, moluska dan cacing.

Kepiting bakau merupakan hewan nokturnal yang mencari makan dan keluar dari tempat persembunyian beberapa saat setelah matahari terbenam, ketika matahari terbit kepiting bakau akan kembali membenamkan diri. Kepiting menggunakan capitnya yang besar untuk memasukkan makanan ke mulutnya (Soim, 1997).

2.2.2. Reproduksi

Setelah lima hari atau lebih, kepiting betina akan berganti karapas (*molting*) disertai dengan pengeluaran hormon yang menarik kepiting jantan pasangannya, kepiting jantan lain, bahkan kepiting betina. Pada saat itu sering terjadi pertarungan
antara pasangan jantannya dengan jantan-jantan lain atau dengan kepiting betina lain yang memungkinkan kepiting betina yang sedang *molt*ing tersebut mati.

Kepiting jantan yang menang akan mendekati kepiting betina yang kulitnya mulai mengeras secara perlahan dan berusaha membalikannya. Dalam keadaan saling beradu abdomen kopulasi akan berlangsung. Kopulasi berlangsung selama 7-12 jam, mereka berpisah pada saat karapas betina sudah kembali mengeras (Kasry, 1996).

Kepiting betina dewasa perjalanan hidupnya beruaya dari perairan pantai ke laut. Ia kemudian berusaha kembali ke perairan pantai, muara sungai, atau perairan berhutan bakau. Hal ini dilakukan kepiting untuk berlindung, mencari makan atau membesarkan diri (Kanna, 2002).

2.3. Habitat

2.4. Deskripsi Bubu

Menurut von Brandt (1984), perangkap adalah alat tangkap yang umumnya berbentuk kurungan. Ikan dapat masuk dengan mudah tanpa adanya paksaan, tetapi ikan tersebut akan sukar keluar karena terhalang pintu masuknya yang berbentuk corong (non-return device).

Alat penangkap ini bersifat pasif, dapat terbuat dari anyaman bambu (bamboos netting), anyaman rotan (rattan netting), anyaman kawat (wire netting, chicken wire) atau kere bambu (bamboos screen). Bahan yang digunakan dalam pembuatan bubu
bergantung pada jenis ikan target, kondisi perairan, ketersediaan bahan serta tipe bubu yang akan dioperasikan (Subani dan Barus, 1988).

Dilihat dari cara pengoperasian, bubu dapat dibagi menjadi 3 golongan, yaitu: bubu dasar (stationary fish pots), bubu apung (floating fish pots), dan bubu hanyut (drifting fish pots). Masing-masing jenis bubu tersebut memiliki ciri khas sendiri. Ketiga jenis bubu itu bertujuan untuk menangkap jenis ikan yang berbeda.

Bubu dasar biasanya dioperasikan di perairan karang atau diantara karang dan bebatuan. Agar lokasi pemasangan bubu mudah diketahui, bubu dilengkapi pelampung yang dihubungkan dengan tali panjang. Pengambilan hasil tangkapan dilakukan 2-3 hari setelah pemasangan atau lebih.

Hasil tangkapan bubu dasar terdiri atas jenis-jenis ikan, antara lain kwe (Caranx spp), bronang (Siganus spp), kerapu (Epinephelus spp), kakap (Lutjanus spp), kakatua (Scarus spp), ekor kuning (Caesio spp), ikan kaji (Diagramma spp) dan lencam (Letrinus spp), serta jenis-jenis crustacea yaitu udang peneid, udang barong, kepiting, rajungan dan lain-lain.

Bubu hanyut adalah jenis bubu yang cara pengoperasiannya dengan dianyutkan. Bubu hanyut dikenal dengan nama pakaja, luka atau patorani. Bubu hanyut biasa dioperasikan untuk menangkap ikan terbang (flying fish).

Jenis bubu yang digunakan dalam penangkapan kepiting di sekitar perairan pantai adalah bubu pintur atau di Sulawesi dikenal dengan nama bubu rakkang. Alat tangkap ini umumnya memakai kerangka dari bambu meskipun ada juga yang terbuat dari

2.5. Hari Bulan

Hari bulan adalah usia bulan yang dihitung sejak bulan gelap hingga bulan gelap periode berikutnya. Usia bulan dibagi menjadi empat fase. Fase bulan baru atau bulan gelap (*new moon*), fase bulan kuadran 1 (sabit pertama), fase bulan purnama (*full moon*) dan fase bulan kuadran 2 (sabit terakhir). Lama periode tiap fase rata-rata tujuh hari, sehingga satu bulan terdiri dari 29 hari atau lebih tepatnya 29,531 hari.

Kordi (1997) menyebutkan bahwa gaya tarik bulan adalah faktor yang paling menentukan pasang surut. Adapun menurut Dronkers (1964), pasang surut atau pasut merupakan suatu fenomena pergerakan naik turunnya permukaan air laut secara berkala yang diakibatkan oleh kombinasi gaya sentrifugal dan gaya tarik menarik dari benda-benda astronomi terutama oleh matahari, bumi dan bulan.

Pasang surut dapat bersifat *diurnal*, *semi diurnal* atau campuran antara keduanya. Pasang surut dikatakan diurnal bila dalam satu hari terjadi satu siklus pasang surut atau terjadi sekali pasang tinggi dan surut rendah. Bila dalam sehari terjadi dua siklus pasang surut, maka dikatakan *semi diurnal*. Pada umumnya pasang surut yang terjadi adalah pasut campuran yang merupakan gabungan antara pasut *diurnal* dan *semi diurnal* (Kordi, 1997).
Pasang yang mempunyai tinggi maksimum dikenal dengan nama *spring tide* (pasang perbani), sedangkan pasang dengan tinggi minimum dikenal dengan nama *neap tide*. Biasanya terjadi dua siklus lengkap setiap bulan yang berhubungan dengan fase bulan. *Spring tide* terjadi pada waktu bulan baru (*new moon*) dan bulan penuh (*full moon*). Sementara *neap tide* terjadi pada kuadran 1 dan kuadran 2 (Kordi, 1997).
3. METODOLOGI PENELITIAN

3.1. Waktu dan Tempat

3.2. Bahan dan Alat
Bahan yang digunakan selama penelitian adalah umpan berupa ikan remang (Muraenox talabon). Sedangkan alat yang digunakan adalah :

1). Alat tangkap bubu lipat tiga pintu 8 (delapan) unit;
2). 1 (satu) unit kapal penangkapan;
3). 1 (satu) unit sampan;
4). Meteran (panjang maksimum 150 cm);
5). Timbangan meja (kapasitas maksimum 5 kg);
6). pH meter, termometer dan salinometer;
7). Kamera;
8). GPS;
9). Alat tulis; dan
10). Kalkulator.

3.3. Metode
Penelitian ini dilakukan dengan menggunakan metode percobaan. Data yang dikumpulkan dikelompokkan atas data primer dan data sekunder.
Data primer meliputi :
1). Jumlah kepiting bakau yang tertangkap;
2). Panjang karapas;
3). Lebar karapas;
4). Berat,
5). Jenis kelamin kepiting; dan
6). Tingkat Kematangan Gonad (TKG) kepiting betina.

Sementara data sekunder diperoleh melalui data statistik perikanan Dinas Perikanan Kabupaten Pontianak, Kalimantan Barat.

![Gambar 2. Keterangan panjang dan lebar kepiting bakau](image)

Menurut Kanna (2002), TKG kepiting betina dapat dilihat secara morfologi dan dibagi menjadi empat tingkatan yaitu :

1). TKG 1 : Belum matang (*immature*), yaitu belum ada tanda-tanda perkembangan telur pada calon induk;
2). TKG 2 : Sedang dalam proses pematangan (*maturing*), yaitu perkembangan telur sudah mulai terlihat penuh dan masih berada didalam tubuh kepiting. Telur ini akan terlihat berada di bawah karapas;
3). TKG 3 : Matang (ripe) telur kepiting telah dibuahi dan diletakkan pada abdomen (telah dikeluarkan). Pada saat baru dikeluarkan, telur berwarna kuning muda. Telur ini akan mengalami perkembangan menjadi kuning tua, keabu-abuan, kehitam-hitaman, kemudian menetas; dan
4). TKG 4 : Salin (spent), yaitu tingkat terakhir dimana seluruh telur menetas sehingga ruang dibawah abdomen terlihat kosong.

TKG menunjukkan kematangan individu kepiting bakau. Kematangan TKG secara morfologi dilihat penampakan gonad secara visual, berupa bentuk, panjang, warna dan perkembangan isi gonad (Effendie, 1979).

3.4. Analisis Data

3.4.1. Pengaruh waktu perendaman dan periode bulan terhadap kepiting bakau

Jumlah, panjang dan lebar karapas serta berat kepiting bakau yang tertangkap oleh bubu diduga dipengaruhi oleh 2 faktor, yaitu waktu perendaman dan periode bulan. Pengaruh waktu perendaman terdiri atas 2 taraf, yaitu:

1). Waktu perendaman siang (06.00 - 17.00 WIB); dan
2). Waktu perendaman malam (18.00 - 05.00 WIB).

Waktu perendaman bubu (soaking time) dihitung sejak bubu mulai direndam di air sampai pada proses pengangkatan.

Analisis data diolah menggunakan program Statistical Product and Service Solutions (SPSS) versi 11.01 dengan metode statistik non parametrik. Uji Mann-Whitney dan Kolmogorov–Smirnov digunakan untuk menguji data dua sampel yang tidak berhubungan (independent), dalam hal ini pengaruh waktu perendaman siang (06.00-17.00 WIB) dan waktu perendaman malam (18.00-05.00 WIB) terhadap kepiting bakau hasil tangkapan bubu. Uji Kruskall-Wallis dan Median digunakan untuk menguji data tiga sampel atau lebih yang tidak berhubungan (independent) dalam hal ini pengaruh periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) terhadap kepiting bakau hasil tangkapan bubu.
Menurut Sugiyono (1999), rumus dari keempat uji tersebut adalah:

1). Uji Mann-Whitney

\[U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1 \] \hspace{1cm} (3-1)

\[U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2 \] \hspace{1cm} (3-2)

Keterangan:

\(n_1 \) : Jumlah sampel 1;
\(n_2 \) : Jumlah sampel 2;
\(U_1 \) : Jumlah peringkat 1;
\(U_2 \) : Jumlah peringkat 2;
\(R_1 \) : Jumlah ranking pada sampel \(n_1 \); dan
\(R_2 \) : Jumlah ranking pada sampel \(n_2 \).

2). Uji Kolmogorov-Smirnov

\[D = \text{maksimum} \left[S_{n1} (X) - S_{n2} (X) \right] \] \hspace{1cm} (3-3)

Keterangan:

\(D \) : Distribusi sampling;
\(S_{n1}(X) \) : Fungsi jenjang kumulatif observasi salah satu sampel; dan
\(S_{n2}(X) \) : Fungsi jenjang kumulatif observasi sampel yang lain.

3). Uji Kruskall-Wallis

\[H = \frac{12}{N(N + 1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(N + 1) \] \hspace{1cm} (3-4)

Keterangan:

\(N \) : Banyak baris dalam tabel;
\(k \) : Banyak kolom; dan
\(R_j \) : Jumlah ranking dalam kolom.

4). Uji Median

\[X^2 = \sum \frac{(f_{0j} - f_{kj})^2}{f_{kj}} \] \hspace{1cm} (3-5)

Keterangan:

\(f_0 \) : Banyak kasus pada baris ke-\(i \) kolom ke-\(j \);
\(f_h \) : Banyak kasus yang diharapkan pada baris ke-\(i \) dan kolom ke-\(j \); dan
\[\Sigma \] : Penjumlahan semua sel.

Hipotesis yang diuji dangan uji Mann-Whitney dan Kolmogorov-Smirnov adalah:

1). Waktu perendaman terhadap jumlah total kepiting bakau
 \[H_0 : \text{Waktu perendaman siang dan malam tidak berbeda secara signifikan terhadap jumlah total kepiting bakau} \]
 \[H_1 : \text{Waktu perendaman siang dan malam berbeda secara signifikan terhadap jumlah total kepiting bakau} \]

2). Waktu perendaman terhadap jumlah kepiting bakau jantan
 \[H_0 : \text{Waktu perendaman siang dan malam tidak berbeda secara signifikan terhadap jumlah kepiting bakau jantan} \]
 \[H_1 : \text{Waktu perendaman siang dan malam berbeda secara signifikan terhadap jumlah kepiting bakau jantan} \]

3). Waktu perendaman terhadap jumlah kepiting bakau betina
 \[H_0 : \text{Waktu perendaman siang dan malam tidak berbeda secara signifikan terhadap jumlah kepiting bakau betina} \]
 \[H_1 : \text{Waktu perendaman siang dan malam berbeda secara signifikan terhadap jumlah kepiting bakau betina} \]

4). Waktu perendaman terhadap panjang karapas kepiting bakau
 \[H_0 : \text{Waktu perendaman siang dan malam tidak berbeda secara signifikan terhadap panjang karapas kepiting bakau} \]
 \[H_1 : \text{Waktu perendaman siang dan malam berbeda secara signifikan terhadap panjang karapas kepiting bakau} \]

5). Waktu perendaman terhadap lebar karapas kepiting bakau
 \[H_0 : \text{Waktu perendaman siang dan malam tidak berbeda secara signifikan terhadap lebar karapas kepiting bakau} \]
 \[H_1 : \text{Waktu perendaman siang dan malam berbeda secara signifikan terhadap lebar karapas kepiting bakau} \]

6). Waktu perendaman terhadap berat kepiting bakau
 \[H_0 : \text{Waktu perendaman siang dan malam tidak berbeda secara signifikan terhadap berat kepiting bakau} \]
 \[H_1 : \text{Waktu perendaman siang dan malam berbeda secara signifikan terhadap berat kepiting bakau} \]

Pengambilan keputusan dengan menggunakan uji Mann-Whitney dan Kolmogorov Smirnov dilakukan dengan melihat nilai probabilitas hitung. Apabila nilai probabilitas hitung > 0,05 maka hipotesis \(H_0 \) diterima. Demikian sebaliknya bila nilai probabilitas hitung < 0,05 maka hipotesis \(H_0 \) ditolak.
Uji Kruskall-Wallis dan Median digunakan untuk melakukan pengujian terhadap:

1). Periode bulan terhadap jumlah total kepiting bakau
 H_0: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) tidak berbeda secara signifikan terhadap jumlah total kepiting bakau
 H_1: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) berbeda secara signifikan terhadap jumlah total kepiting bakau

2). Periode bulan terhadap jumlah kepiting bakau jantan
 H_0: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) tidak berbeda secara signifikan terhadap jumlah kepiting bakau jantan
 H_1: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) berbeda secara signifikan terhadap jumlah kepiting bakau jantan

3). Periode bulan terhadap jumlah kepiting bakau betina
 H_0: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) tidak berbeda secara signifikan terhadap jumlah kepiting bakau betina
 H_1: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) berbeda secara signifikan terhadap jumlah kepiting bakau betina

4). Periode bulan terhadap panjang karapas kepiting bakau
 H_0: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) tidak berbeda secara signifikan terhadap panjang karapas kepiting bakau
 H_1: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) berbeda secara signifikan terhadap panjang karapas kepiting bakau

5). Periode bulan terhadap lebar karapas kepiting bakau
 H_0: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) tidak berbeda secara signifikan terhadap lebar karapas kepiting bakau
 H_1: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) berbeda secara signifikan terhadap lebar karapas kepiting bakau

6). Periode bulan terhadap berat kepiting bakau
 H_0: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) tidak berbeda secara signifikan terhadap berat kepiting bakau
 H_1: Periode bulan (kuadran 1, full moon, kuadran 2 dan new moon) berbeda secara signifikan terhadap berat kepiting bakau

Pengambilan keputusan dengan uji Kruskall-Wallis dan Median dilakukan dengan membandingkan nilai Chi Kuadrat hitung dengan Chi Kuadrat tabel. Apabila nilai Chi Kuadrat hitung < Chi Kuadrat tabel maka H_0 diterima. Sebaliknya bila nilai Chi Kuadrat hitung > Chi Kuadrat tabel maka H_0 ditolak. Nilai Chi Kuadrat tabel yang digunakan untuk $df = 3$ adalah 7,815.
3.4.2. Nisbah kelamin (sex ratio)

Nisbah kelamin kepiting bakau adalah perbandingan proporsi kepiting jantan dan betina. Kepiting yang hendak dicari nilai proporsinya adalah kepiting bakau hasil tangkapan bubu yang tertangkap pada waktu perendaman dan periode bulan yang berbeda. Nisbah kelamin kepiting dapat dihitung dengan menggunakan yang rumus proporsi dari Effendie (1979) yaitu:

\[P_j = \left(\frac{A}{B} \right) \times 100\% \] \hspace{1cm} (3-6)

Keterangan :
- \(P_j \) : Proporsi jenis (jantan atau betina);
- \(A \) : Jumlah kepiting (jantan atau betina) (ekor); dan
- \(B \) : Jumlah total individu kepiting secara keseluruhan (ekor).

3.5. Kapal dan Perahu

Kapal motor yang digunakan selama penelitian yaitu *KM.SUPM 04*. Kapal tersebut dipergunakan sebagai alat transportasi ke lokasi penelitian, penyimpanan alat tangkap, tempat persiapan kegiatan operasi serta proses penanganan hasil tangkapan (Lampiran 6). *KM. SUPM 04* merupakan salah satu kapal motor yang dimiliki oleh SUPM Negeri Pontianak.

Tabel 1. Kapal motor dan perahu yang digunakan selama penelitian

<table>
<thead>
<tr>
<th>No.</th>
<th>Kapal / perahu</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>KM. SUPM 04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Pembuatan</td>
<td>Juli 1995</td>
</tr>
<tr>
<td></td>
<td>b. Ukuran (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Panjang</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>- Lebar</td>
<td>2,7</td>
</tr>
<tr>
<td></td>
<td>- Dalam</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>c. Mesin</td>
<td>Isuzu Panther, 6 silinder, 135 PK</td>
</tr>
<tr>
<td>2.</td>
<td>Sampan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ukuran (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Panjang</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>- Lebar</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>- Dalam</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Sumber: Identifikasi langsung di lapangan

3.6. Alat Tangkap Bubu Lipat Tiga Pintu

Bubu lipat tiga pintu adalah modifikasi dari jenis bubu yang umum digunakan dalam penangkapan kepiting bakau. Alat tangkap ini didapat sebanyak 300 unit dan merupakan hasil hibah dari Kerjasama Operasi (KSO) antara salah seorang pengusaha Korea Selatan dengan Sekolah Usaha Perikanan Menengah (SUPM) Negeri Pontianak, Kalimantan Barat sebagai salah satu Lembaga Pendidikan Tingkat Menengah dibawah Pusat Pendidikan dan Pelatihan Perikanan, Departemen Kelautan dan Perikanan. Kerjasama yang dilakukan berupa pengoperasian sementara Kapal Latih **KM. Jalajana 02** milik SUPM Negeri Pontianak oleh pengusaha Korea tersebut.

Alat tangkap ini memiliki ciri khas khusus yang kemudian digunakan oleh SUPM Negeri Pontianak sebagai dasar penamaan. Bubu ini dilipat saat tidak dioperasikan (Gambar 3) dan dibuka bila akan dioperasikan (Gambar 4), sehingga menghemat penggunaan ruang di bagian dek kapal atau tempat penyimpanan alat tangkap. Bubu memiliki tiga buah pintu masuk perangkap bagi kepiting atau hewan air lain.
Gambar 3. Posisi bubu dalam keadaan terlipat

Gambar 4. Posisi bubu setelah dibuka (siap dioperasikan)

Pada bubu, kerangka berfungsi sekaligus sebagai pemberat dan terbuat dari besi. Besi tersebut dilapisi oleh plastik transparan yang mirip dengan selang air untuk mencegah besi cepat berkarat. Pelampung tanda terbuat dari bahan styrofoam yang dihubungkan dengan tali pelampung berbahan PE sepanjang 2-3 m.

Bubu memiliki lima buah penyangga yang terbuat dari bambu. Penyangga tersebut tergantung pada bagian bawah kerangka besi. Penyangga bambu akan ditegakkan bila bubu hendak dioperasikan.

3.7. Metode Pengoperasian

Pengoperasian bubu lipat tiga pintu dilakukan pada tanggal 5-25 September 2003 di muara Sungai Radak, Kecamatan Kubu, Kabupaten Pontianak, Kalimantan Barat. Daerah pengoperasian berada pada posisi 00°13’55” - 00°38’7” LS dan 109°14’37”- 109°23’47,9”BT (Lampiran 1).

Metode pengoperasian bubu lipat tiga pintu di muara Sungai Radak adalah sebagai berikut:

1). Setelah sampai di lokasi penangkapan, bubu dikeluarkan dari tempat penyimpanan alat tangkap. Bubu diatur diatas dek dan dilakukan pengecekan apakah bubu tersebut dalam kondisi baik dan layak untuk dioperasikan (Lampiran 5);

2). Bubu diberi umpan ikan remang (Muraenesox talabon) dalam keadaan segar, dipotong melintang dengan panjang 8-9 cm, lebar 5-6 cm dan tebal 1,5-2 cm. Umpan diikatkan pada tali umpan yang terdapat ditengah-tengah bubu. Tali umpan tersebut kedua ujungnya diikatkan pada bagian tengah kerangka atas dan bawah bubu (Lampiran 5);

3). Bubu-bubu yang telah diberi umpan selanjutnya diberi pelampung tanda dari bahan styrofoam berukuran 10 x 10 x 3 cm dengan panjang tali pelampung 2-3 m. Fungsi pelampung tersebut adalah sebagai pelampung tanda sehingga memudahkan kita mengawasi bubu-bubu tersebut (Lampiran 5);

4). Bubu diangkut dengan menggunakan sampan untuk kemudian direndam di daerah tepi perairan dekat dengan akar-akar pohon bakau. Penggunaan sampan
tersebut sangat bermanfaat karena kedalaman perairan pada saat pasang cukup dangkal (Lampiran 5); dan
5). Setelah direndam selama kurang lebih 11 jam, bubu kemudian diangkat dari perairan satu persatu dengan menggunakan sampan.
4. KEADAAN UMUM DAERAH PENELITIAN

4.1. Keadaan Geografis dan Topografis

Daerah perairan Sungai Radak Kecamatan Kubu termasuk dalam wilayah Selat Padang Tikar dan terletak di sebelah utara Kabupaten Pontianak. Secara geografis terletak antara 0°50,28′ LU - 0°52,06′ LS dan 109°39,05′ - 109°41,12′ BT. Batas wilayah geografis hutan mangrove Selat Padang Tikar pada bagian utara berbatasan dengan Desa Teluk Nibung, bagian selatan Kabupaten Ketapang, bagian barat Laut Cina Selatan dan bagian timur berbatasan dengan Desa Tanjung Beringin (Tiku, 2004).

Menurut Aprilwati (2001), wilayah Sungai Radak dipengaruhi oleh dua musim, yaitu musim penghujan (antara bulan Agustus sampai bulan Februari) dan musim kemarau (antara bulan Maret sampai bulan Juli). Penangkapan biota perairan dikelompokkan menjadi 3 musim, yaitu:

1. Periode bulan Januari – April (musim timur) dikenal sebagai musim melaut. Penangkapan ikan dilakukan selama 25 hari/bulan, penangkapan udang 21 hari/bulan dan penangkapan kepiting 24 hari/bulan;

2. Periode bulan Mei – September (musim selatan) penangkapan ikan dilakukan selama 15 hari/bulan, penangkapan udang 21 hari/bulan dan penangkapan kepiting 14 hari/bulan; dan

pada malam hari dan menangkap kepiting pada siang hari. Penangkapan ikan jarang dilakukan karena pada saat tersebut ombak dan angin cukup besar.

4.2. Keadaan Hutan Mangrove dan Kawasan Perairan

![Gambar 5. Keadaan hutan mangrove di muara Sungai Radak](image)

Keadaan perairan di muara Sungai Radak cukup tenang dengan pola pasang surut yang bersifat *diurnal*, yaitu dalam satu hari terjadi satu siklus pasang surut. Pada saat keadaan pasang seluruh areal hutan mangrove terendam air. Ini memungkinkan
kepiting bakau aktif mencari makan. Pada saat surut kepiting akan kembali ke tempat persembunyiannya disekitar akar-akar pohon mangrove.

Kualitas air di muara Sungai Radak tergolong baik dan alami. Hal ini ditunjukkan dengan nilai salinitas yang diperoleh selama penelitian berkisar antara 28%o – 32%o, pH berkisar antara 7 – 7,8 dan suhu berada pada kisaran 27°-29° C. Kondisi substrat di muara Sungai Radak didominasi oleh substrat berlumpur dengan kedalaman perairan berkisar 2,5 – 4 m.

4.3. Unit Penangkapan

4.3.1. Alat tangkap

Tabel 2. Jumlah alat tangkap (unit) di Kabupaten Pontianak tahun 2000

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Gillnet</th>
<th>Pukat</th>
<th>Togo</th>
<th>Pukat pantai</th>
<th>Trammel net</th>
<th>Rawai</th>
<th>Jala</th>
<th>Ambai</th>
<th>Jermal</th>
<th>Lainnya</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sungai Kunyit</td>
<td>55</td>
<td>-</td>
<td>285</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>Mempawah Hilir</td>
<td>245</td>
<td>-</td>
<td>42</td>
<td>6</td>
<td>21</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Sungai Pinyuh</td>
<td>120</td>
<td>214</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Siantan</td>
<td>33</td>
<td>103</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Sungai Kakap</td>
<td>203</td>
<td>18</td>
<td>152</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Teluk Pakedai</td>
<td>113</td>
<td>-</td>
<td>70</td>
<td>72</td>
<td>7</td>
<td>74</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>102</td>
</tr>
<tr>
<td>7</td>
<td>Batu Ampar</td>
<td>161</td>
<td>-</td>
<td>5</td>
<td>69</td>
<td>5</td>
<td>26</td>
<td>85</td>
<td>42</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Kubu</td>
<td>4</td>
<td>61</td>
<td>-</td>
<td>7</td>
<td>41</td>
<td>4</td>
<td>-</td>
<td>24</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>934</td>
<td>396</td>
<td>327</td>
<td>227</td>
<td>154</td>
<td>150</td>
<td>122</td>
<td>91</td>
<td>71</td>
<td>290</td>
</tr>
</tbody>
</table>

Sumber: Dinas Perikanan Kabupaten Pontianak, tahun 2003

Berdasarkan hasil wawancara dengan pihak Dinas Perikanan Kabupaten Pontianak, perkembangan alat tangkap di Kabupaten Pontianak selama lima tahun terakhir tidak mengalami perbedaan yang berarti. Alat tangkap kepiting yang umum digunakan nelayan setempat adalah rakkang dengan jumlah total sebanyak 19 unit, dan penggunaan terbesar di Kecamatan Teluk Pakedai, yaitu sebanyak 12 unit.

4.3.2. Armada penangkapan

Dari jenis armada yang digunakan dan jumlahnya, dapat diperkirakan bahwa nelayan di Kabupaten Pontianak adalah nelayan berskala kecil dan menengah. Kebanyakan nelayan masih mengandalkan perahu kayu atau papan dan perahu motor tempel dalam kegiatan operasi penangkapan ikan. Walaupun telah digunakan kapal motor, tetapi ukurannya relatif kecil berkisar 0-5 GT.

Tabel 3. Jumlah armada penangkapan ikan (unit) Kabupaten Pontianak tahun 2000

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Perahu tanpa motor</th>
<th>Perahu papan</th>
<th>Perahu motor tempel</th>
<th>Kapal motor (GT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jukung</td>
<td>Kecil</td>
<td>Sedang</td>
<td>Besar</td>
</tr>
<tr>
<td>1</td>
<td>Sungai Kunyat</td>
<td>-</td>
<td>10</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>2</td>
<td>Mempawah Hilir</td>
<td>-</td>
<td>30</td>
<td>73</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Sungai Pinyuh</td>
<td>-</td>
<td>55</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>Siantan</td>
<td>-</td>
<td>28</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>Sungai Kakap</td>
<td>15</td>
<td>62</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>Teluk Pakedai</td>
<td>10</td>
<td>60</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Kubu</td>
<td>24</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>Batu Ampar</td>
<td>-</td>
<td>55</td>
<td>106</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49</td>
<td>300</td>
<td>570</td>
<td>34</td>
</tr>
</tbody>
</table>

Sumber: Dinas Perikanan Kabupaten Pontianak, tahun 2003

4.3.3. Nelayan

4.4. Potensi Perikanan

Potensi lahan budidaya di Kabupaten Pontianak terdiri atas budidaya air tawar (kolam dan keramba), budidaya air payau (tambak udang windu dan bandeng), dan budidaya karamba apung air laut dengan komoditi ikan kerapu, kakap dan rumput laut.

Potensi kolam ikan di Kabupaten Pontianak masih belum dimanfaatkan secara optimal (Tabel 4). Lahan yang potensial untuk dikembangkan sebagai kolam budidaya masih luas tapi kebanyakan belum terdata dan diusahakan. Hanya ada empat kecamatan yang telah mengusahakan kolam budidaya, yaitu Sungai Pinyuh, Toho, Kubu dan Sungai Kakap.

Tabel 4. Potensi kolam ikan (ha) Kabupaten Pontianak tahun 2001

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Luas potensi</th>
<th>Lahan yang telah diusahakan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sungai Pinyuh</td>
<td>105</td>
<td>66,7</td>
<td>Ikan mas dan nila</td>
</tr>
<tr>
<td>2</td>
<td>Toho</td>
<td>400</td>
<td>6,2</td>
<td>Ikan mas dan nila</td>
</tr>
<tr>
<td>3</td>
<td>Kubu</td>
<td>Relatif luas</td>
<td>1,5</td>
<td>Ikan mas dan nila</td>
</tr>
<tr>
<td>4</td>
<td>Teluk Pakedai</td>
<td>Relatif luas</td>
<td>Belum terdata</td>
<td>Belum terdata</td>
</tr>
<tr>
<td>5</td>
<td>Sungai Kakap</td>
<td>Relatif luas</td>
<td>10,0</td>
<td>Ikan mas dan nila</td>
</tr>
<tr>
<td>6</td>
<td>Terentang</td>
<td>Relatif luas</td>
<td>Belum terdata</td>
<td>Belum terdata</td>
</tr>
<tr>
<td>7</td>
<td>Sui. Ambawang</td>
<td>Relatif luas</td>
<td>Belum terdata</td>
<td>Belum terdata</td>
</tr>
</tbody>
</table>

Sumber : Dinas Perikanan Kabupaten Pontianak, tahun 2003

Kolam budidaya yang telah diberdayakan di Kabupaten Pontianak hanya membudidayakan ikan mas dan nila. Hal ini membutuhkan pengembangan lebih lanjut dengan melakukan kegiatan budidaya jenis-jenis ikan air tawar lain yang bernilai ekonomis. Ini diperlukan agar usaha kolam budidaya di daerah tersebut dapat
lebih berkembang dan potensial untuk menghasilkan pemasukan domestik yang lebih menguntungkan.

Sama halnya dengan budidaya kolam, potensi karamba di Kabupaten Pontianak belum diusahakan secara optimal (Tabel 5). Tingkat pemanfaatan lahan potensial masih sangat rendah dengan data yang terbatas. Kecamatan Mempawah Hilir, merupakan satu-satunya kecamatan di Kabupaten Pontianak yang telah mengusahakan kegiatan budidaya keramba. Jumlah unit karamba yang telah diusahakan di kecamatan tersebut pula masih sangat sedikit yaitu, hanya sebanyak 50 unit.

Tabel 5. Potensi karamba (unit) Kabupaten Pontianak tahun 2001

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Luas potensi</th>
<th>Lahan yang telah diusahakan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mempawah Hilir</td>
<td>S. Mempawah</td>
<td>50 unit</td>
<td>Ikan mas, nila, patin</td>
</tr>
<tr>
<td>2</td>
<td>Sungai Raya</td>
<td>S. Kapuas</td>
<td>Belum terdata</td>
<td>Belum terdata</td>
</tr>
<tr>
<td>3</td>
<td>Siantan</td>
<td>S. Peniti</td>
<td>Belum ada</td>
<td>Belum ada</td>
</tr>
<tr>
<td>4</td>
<td>Kubu</td>
<td>S. Kapuas</td>
<td>Belum ada</td>
<td>Belum ada</td>
</tr>
<tr>
<td>5</td>
<td>Sui Ambawang</td>
<td>S. Kapuas</td>
<td>Belum ada</td>
<td>Belum ada</td>
</tr>
<tr>
<td>6</td>
<td>Rasau Jaya</td>
<td>S. Kapuas</td>
<td>Belum ada</td>
<td>Belum ada</td>
</tr>
<tr>
<td>7</td>
<td>Terentang</td>
<td>S. Kapuas</td>
<td>Belum ada</td>
<td>Belum ada</td>
</tr>
<tr>
<td>8</td>
<td>Kuala Mandor B</td>
<td>S. Kapuas</td>
<td>Belum ada</td>
<td>Belum ada</td>
</tr>
</tbody>
</table>

Sumber : Dinas Perikanan Kabupaten Pontianak, tahun 2003

Potensi lahan tambak air payau di Kabupaten Pontianak relatif luas (Tabel 6). Hampir semua kecamatan di Kabupaten Pontianak telah melakukan usaha tambak air payau. Walaupun demikian, dari delapan kecamatan yang terdata, hanya lima kecamatan yang telah memiliki tambak yang produktif.

Kecamatan Kubu merupakan kecamatan yang memiliki jumlah tambak air payau terbesar dengan jumlah pengusaha lahan terluas. Hal ini mengindikasikan bahwa usaha tambak air payau di Kubu sudah lebih maju dibandingkan usaha tambak di kecamatan lain. Tetapi bila dilihat dari segi potensi lahan yang telah diusahakan, kecamatan Kubu masih memerlukan pengembangan usaha tambak lebih lanjut.
Tabel 6. Potensi tambak air payau (ha) Kabupaten Pontianak tahun 2001

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Luas potensi</th>
<th>Lahan yang telah diusahakan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Batu Ampar</td>
<td>2.621,3</td>
<td>187</td>
<td>Produktif 10 ha</td>
</tr>
<tr>
<td>2</td>
<td>Kubu</td>
<td>6.212,8</td>
<td>1.228</td>
<td>Produktif 162 ha</td>
</tr>
<tr>
<td>3</td>
<td>Teluk Pakiedai</td>
<td>1.968,7</td>
<td>Belum ada</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Sungai Kakap</td>
<td>3.784,8</td>
<td>25</td>
<td>Belum produktif</td>
</tr>
<tr>
<td>5</td>
<td>Siantan</td>
<td>Relatif luas</td>
<td>243</td>
<td>Belum produktif</td>
</tr>
<tr>
<td>6</td>
<td>Sungai Pinyuh</td>
<td>Relatif luas</td>
<td>79,82</td>
<td>Produktif 15,3 ha</td>
</tr>
<tr>
<td>7</td>
<td>Mempawah Hilir</td>
<td>2.834,2</td>
<td>312,90</td>
<td>Produktif 51,1 ha</td>
</tr>
<tr>
<td>8</td>
<td>Sungai Kunyit</td>
<td>Cukup luas</td>
<td>63,11</td>
<td>Produktif 8,9 ha</td>
</tr>
</tbody>
</table>

Sumber: Dinas Perikanan Kabupaten Pontianak, tahun 2003

Hampir sama dengan usaha budidaya yang lain, lahan potensial untuk pengusahaaan karambah apung di Kabupaten Pontianak cukup luas dengan tingkat pemanfaatan yang masih rendah (Tabel 7). Hal ini terlihat dari lahan pengusahaaan karambah apung yang masih minim dan sangat kecil bila dibandingkan luas potensi lahan yang ada. Ini membutuhkan penanganan dan pengembangan usaha yang lebih lanjut agar karambah apung dapat dijadikan salah satu alternatif usaha budidaya yang menguntungkan.

Tabel 7. Potensi karambah apung air laut (ha) Kabupaten Pontianak tahun 2001

<table>
<thead>
<tr>
<th>No.</th>
<th>Kecamatan</th>
<th>Luas potensi</th>
<th>Lahan yang telah diusahakan</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sungai Kunyit</td>
<td>380</td>
<td>Belum ada</td>
<td>Sekitar P. Temajoh</td>
</tr>
<tr>
<td>2</td>
<td>Kubu</td>
<td>170</td>
<td>1-5</td>
<td>Antara P.Dabong dan P. Tiga</td>
</tr>
<tr>
<td>3</td>
<td>Batu Ampar</td>
<td>450</td>
<td>Belum ada</td>
<td>Laut Teluk Nuri</td>
</tr>
</tbody>
</table>

Sumber: Dinas Perikanan Kabupaten Pontianak, tahun 2003

4.5. Produksi

Pada Tabel 8, dapat dilihat jumlah produksi perikanan hasil penangkapan di laut dan sungai pada periode tahun 2002. Jumlah hasil tangkapan diperoleh dari
penangkapan di laut dimana udang merupakan komoditi krustasea favorit untuk ditangkap. Disamping itu ditangkap pula berbagai jenis ikan pelagis dan demersal.

Tabel 8. Jumlah produksi perikanan (ton) hasil penangkapan di laut dan sungai Kabupaten Pontianak tahun 2002

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis komoditi</th>
<th>Jumlah produksi</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perikanan laut</td>
<td>181.163,80</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>a. Tongkol</td>
<td>11.413,32</td>
<td>6,3</td>
</tr>
<tr>
<td></td>
<td>b. Pelagis lain</td>
<td>65.581,30</td>
<td>36,2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>76.994,62</td>
<td>42,5</td>
</tr>
<tr>
<td></td>
<td>a. Udang</td>
<td>46.377,93</td>
<td>25,6</td>
</tr>
<tr>
<td></td>
<td>b. Ikan demersal</td>
<td>57.791,25</td>
<td>31,9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>104.169,18</td>
<td>57,5</td>
</tr>
<tr>
<td>2</td>
<td>Perikanan sungai</td>
<td>488,50</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>a. Jenis ikan</td>
<td>390,80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>b. Jenis udang</td>
<td>97,70</td>
<td>20</td>
</tr>
</tbody>
</table>

Sumber: Dinas Perikanan Kabupaten Pontianak, tahun 2003

Jumlah produksi perikanan hasil budidaya mayoritas diperoleh dari usaha kolam dan karamba (Tabel 9). Walaupun demikian, usaha budidaya yang lain seperti tambak air payau tetap potensial untuk dikembangkan. Hal tersebut diperlukan agar kegiatan perikanan di Kabupaten Pontianak tidak hanya mengandalkan sektor penangkapan saja melainkan juga sektor budidaya.
Produksi perikanan budidaya terfokus pada jenis-jenis ikan air tawar. Hal ini terlihat pada Tabel 9 dimana ikan mas dan nila menjadi komoditi budidaya utama. Dengan adanya tambak air payau dan karamba apung air laut kegiatan budidaya dapat dikembangkan untuk megusahakan jenis-jenis ikan air laut. Ini sudah terlihat dari udang windu dan bandeng yang telah dihasilkan dari produksi tambak air payau walaupun jumlah produksinya masih cukup rendah.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis komoditi</th>
<th>Produksi</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kolam</td>
<td>123,5</td>
<td>100,00</td>
</tr>
<tr>
<td>a.</td>
<td>Mas</td>
<td>78,3</td>
<td>63,40</td>
</tr>
<tr>
<td>b.</td>
<td>Nila</td>
<td>37,4</td>
<td>30,28</td>
</tr>
<tr>
<td>c.</td>
<td>Lele</td>
<td>7,8</td>
<td>9,96</td>
</tr>
<tr>
<td>2</td>
<td>Karamba</td>
<td>126</td>
<td>100,00</td>
</tr>
<tr>
<td>a.</td>
<td>Mas</td>
<td>76,1</td>
<td>60,40</td>
</tr>
<tr>
<td>b.</td>
<td>Nila</td>
<td>49,9</td>
<td>39,60</td>
</tr>
<tr>
<td>3</td>
<td>Tambak (air payau)</td>
<td>35,2</td>
<td>100,00</td>
</tr>
<tr>
<td>a.</td>
<td>Udang windu</td>
<td>14,1</td>
<td>40,06</td>
</tr>
<tr>
<td>b.</td>
<td>Bandeng</td>
<td>21,1</td>
<td>59,94</td>
</tr>
</tbody>
</table>

Sumber : Dinas Perikanan Kabupaten Pontianak, tahun 2003

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis komoditi krustasea</th>
<th>Produksi (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nama lokal</td>
<td>Nama latin</td>
</tr>
<tr>
<td>1</td>
<td>Rajungan</td>
<td>Portunus pelagicus</td>
</tr>
<tr>
<td>2</td>
<td>Kepiting</td>
<td>Scylla serrata</td>
</tr>
<tr>
<td>3</td>
<td>Udang windu</td>
<td>Penaeus monodon</td>
</tr>
<tr>
<td>4</td>
<td>Udang putih</td>
<td>Litopenaeus vannamei</td>
</tr>
<tr>
<td>5</td>
<td>Udang dogol</td>
<td>Metapenaeus ensis</td>
</tr>
<tr>
<td>6</td>
<td>Jenis udang lain</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Dinas Perikanan Kabupaten Pontianak, tahun 2003

5. HASIL DAN PEMBAHASAN

5.1. Hasil Tangkapan

Uji coba penangkapan dilaksanakan sebanyak 12 trip dengan hasil tangkapan bervariasi. Hasil tangkapan utama adalah kepiting bakau sementara hasil tangkapan sampingan terdiri dari mimi bulan (Tachypleus spp.) sebanyak 2 ekor, masing-masing berjenis kelamin jantan dan betina serta ikan kerapu (Ephinephelus spp.) sebanyak 1 ekor dengan berat 150 gram seperti tersaji pada Tabel 11.

Tabel 11. Jumlah (ekor) dan jenis organisme yang tertangkap selama penelitian

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama Indonesia</th>
<th>Nama lokal</th>
<th>Nama Inggris</th>
<th>Nama latin</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kepiting bakau</td>
<td>Kepiting</td>
<td>Mud crab</td>
<td>Scylla serrata</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>Mimi bulan</td>
<td>Blangkas</td>
<td>Horseshoe crab</td>
<td>Tachypleus spp.</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Ikan kerapu</td>
<td>Kerapu</td>
<td>Groupers</td>
<td>Epinephelus spp.</td>
<td>1</td>
</tr>
</tbody>
</table>

Selain konstruksi, hal lain yang menyebabkan hasil tangkapan utama bubu adalah kepiting diduga juga karena umpan yang digunakan adalah ikan remang (Muraenesox talahon). Umpan ini baik digunakan dalam kegiatan penangkapan kepiting dan merupakan jenis umpan yang umum digunakan oleh para nelayan Sungai Radak. Umpan tersebut disukai kepiting karena memiliki bau yang menyengat dan khas. Kepiting adalah hewan yang memakan bangkai (Moosa et al., 1985) sehingga cenderung menyukai umpan berbau menyengat.

Daerah perendaman bubu pada saat penelitian adalah Muara Sungai Radak yang ditumbuhi oleh berbagai jenis spesies mangrove dan berurus relatif tenang. Kondisi yang demikian merupakan habitat kepiting untuk berkembang dan melakukan aktivitas makannya.
Rata-rata jumlah, panjang dan lebar karapas kepiting bakau selama 12 trip operasi penangkapan dapat dilihat pada Tabel 12. Pada tabel tersebut terlihat bahwa jumlah total kepiting tertangkap sebanyak 52 ekor dengan rata-rata tangkapan per trip sebanyak 4,33 ekor atau sekitar 4 ekor. Rata-rata panjang dan lebar karapas adalah 7,32 cm dan 10,54 cm dengan berat rata-rata per trip adalah 227,40 g.

Tabel 12. Rata-rata jumlah (ekor), panjang dan lebar karapas (cm) serta berat (gram) kepiting bakau yang tertangkap selama 12 trip

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Jumlah</th>
<th>Panjang</th>
<th>Lebar</th>
<th>Berat</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/09/03</td>
<td>3</td>
<td>27,00</td>
<td>37,50</td>
<td>1250</td>
</tr>
<tr>
<td>15/09/03</td>
<td>7</td>
<td>48,40</td>
<td>73,00</td>
<td>1400</td>
</tr>
<tr>
<td>16/09/03</td>
<td>4</td>
<td>27,00</td>
<td>39,50</td>
<td>785</td>
</tr>
<tr>
<td>17/09/03</td>
<td>5</td>
<td>37,50</td>
<td>51,50</td>
<td>1110</td>
</tr>
<tr>
<td>18/09/03</td>
<td>3</td>
<td>22,50</td>
<td>32,50</td>
<td>710</td>
</tr>
<tr>
<td>19/09/03</td>
<td>3</td>
<td>18,00</td>
<td>26,50</td>
<td>610</td>
</tr>
<tr>
<td>20/09/03</td>
<td>4</td>
<td>30,50</td>
<td>45,00</td>
<td>960</td>
</tr>
<tr>
<td>21/09/03</td>
<td>4</td>
<td>32,90</td>
<td>46,00</td>
<td>1320</td>
</tr>
<tr>
<td>22/09/03</td>
<td>4</td>
<td>29,00</td>
<td>40,50</td>
<td>560</td>
</tr>
<tr>
<td>23/09/03</td>
<td>7</td>
<td>52,00</td>
<td>75,20</td>
<td>1580</td>
</tr>
<tr>
<td>24/09/03</td>
<td>3</td>
<td>20,60</td>
<td>30,10</td>
<td>550</td>
</tr>
<tr>
<td>25/09/03</td>
<td>5</td>
<td>35,00</td>
<td>51,00</td>
<td>990</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>380,40</td>
<td>548,30</td>
<td>11825</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>4,33</td>
<td>7,32</td>
<td>10,54</td>
<td>227,40</td>
</tr>
</tbody>
</table>

Pada Tabel 12 terlihat bahwa jumlah kepiting bakau yang tertangkap selama 12 trip tidak terlalu banyak dan tidak jauh berbeda jumlahnya. Ini diduga karena kegiatan penelitian tidak dilakukan pada musim puncak kegiatan penangkapan. Nelayan Sungai Radak kebanyakan melakukan kegiatan penangkapan pada bulan Mei-Agustus dan pada musim barat antara bulan Oktober-Desember.

Kondisi yang demikian memungkinkan pada bulan September 2003, waktu dilakukan kegiatan *experimental fishing*, sumberdaya kepiting di daerah tersebut telah banyak tertangkap. Ini menyebabkan jumlah hasil tangkapan tidak seberapa dan hanya tersisa kepiting berukuran kecil.

Pada kedua tabel dibawah ini dapat dilihat rata-rata jumlah, ukuran dan berat kepiting bakau yang dibagi berdasarkan jenis kelamin pada waktu perendaman (Tabel 13) dan periode bulan (Tabel 14) berbeda. Terlihat dalam kedua tabel tersebut hasil yang diperoleh tidak jauh berbeda. Jumlah kepiting jantan yang tertangkap lebih besar dibanding kepiting betina.

Berdasarkan Tabel 13 dapat dilihat bahwa perolehan kepiting pada waktu perendaman siang hari (06.00-17.00 WIB) dengan malam hari (18.00-05.00 WIB) tidak terlalu berbeda. Jumlah kepiting yang tertangkap di siang hari lebih besar daripada jumlah yang tertangkap di malam hari. Kepiting jantan yang tertangkap lebih besar dibanding kepiting betina.

Tabel 13. Rata-rata jumlah (ekor), berat (g) dan ukuran (cm) kepiting bakau yang tertangkap berdasarkan waktu perendaman

<table>
<thead>
<tr>
<th>Waktu perendaman</th>
<th>Jml</th>
<th>Berat</th>
<th>Ukuran karapas</th>
<th>Jml</th>
<th>Berat</th>
<th>Ukuran karapas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Panjang</td>
<td>Lebar</td>
<td></td>
<td>Panjang</td>
</tr>
<tr>
<td>06.00-17.00 WIB</td>
<td>15</td>
<td>259,375</td>
<td>7,793</td>
<td>11,233</td>
<td>12</td>
<td>209,167</td>
</tr>
<tr>
<td>18.00-05.00 WIB</td>
<td>14</td>
<td>249,643</td>
<td>7,564</td>
<td>10,786</td>
<td>11</td>
<td>151,818</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>509,018</td>
<td>15,357</td>
<td>22,019</td>
<td>23</td>
<td>360,985</td>
</tr>
</tbody>
</table>

Dari hasil penelitian, kepiting yang tertangkap pada siang hari (06.00-17.00 WIB) lebih besar daripada malam hari (18.00-05.00 WIB) dengan perbedaan jumlah hanya 2 ekor. Kepiting bakau mengikuti pola pasang surut harian dimana kepiting akan
mencari makan pada saat pasang dan akan kembali ke tempat persembunyiannya pada saat perairan mulai surut.

Pada saat pasang bau umpan yang dipasang pada bubu akan terbawa oleh arus air sehingga terciu oleh kepiting yang sedang aktif mencari makan. Pola pasang surut di muara Sungai Radak adalah pola pasang surut harian tunggal (diurnal) sehingga dalam satu hari terjadi satu kali pasang dan satu kali surut. Hal ini berarti bubu dapat aktif dioperasikan pada saat pagi maupun malam hari.

Tabel 14. Rata-rata jumlah (ekor), berat (gram) dan ukuran (cm) kepiting bakau yang tertangkap berdasarkan periode bulan

<table>
<thead>
<tr>
<th>Periode bulan</th>
<th>Jml</th>
<th>Berat</th>
<th>Ukuran karapas</th>
<th>Jml</th>
<th>Berat</th>
<th>Ukuran karapas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jml</td>
<td></td>
<td>Panjang</td>
<td>Lebar</td>
<td>Jml</td>
<td></td>
</tr>
<tr>
<td>Kuadran 1</td>
<td>2</td>
<td>550,000</td>
<td>10,500</td>
<td>14,250</td>
<td>1</td>
<td>150,000</td>
</tr>
<tr>
<td>Full moon</td>
<td>6</td>
<td>285,000</td>
<td>7,483</td>
<td>10,667</td>
<td>5</td>
<td>152,000</td>
</tr>
<tr>
<td>Kuadran 2</td>
<td>18</td>
<td>247,222</td>
<td>7,578</td>
<td>10,889</td>
<td>15</td>
<td>196,667</td>
</tr>
<tr>
<td>New moon</td>
<td>3</td>
<td>223,000</td>
<td>7,000</td>
<td>10,333</td>
<td>2</td>
<td>160,000</td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>1305,222</td>
<td>32,561</td>
<td>46,139</td>
<td>23</td>
<td>658,667</td>
</tr>
</tbody>
</table>

Pada penelitian yang dilakukan di Muara Sungai Radak diperoleh hasil yang berbeda. Pada kuadran 2 diperoleh hasil tangkapan kepiting terbanyak dibandingkan dengan periode bulan yang lain. Ini disebabkan pada kuadran 2, bubu dioperasikan selama satu kuadran penuh yaitu, sebanyak tujuh hari. Pada periode bulan yang lain hal tersebut sulit untuk dilakukan dikarenakan keadaan daerah penelitian yang pada hari-hari tertentu mengalami ketinggian pasang yang rendah.

Bubu lipat tiga pintu baru dapat dioperasikan pada saat keadaan perairan mulai mengalami pasang dengan kedalaman perairan sekitar 2-3 m. Dari pengamatan selama penelitian, kedalaman ini ideal untuk pengoperasian bubu lipat karena bubu dapat terendam sepenuhnya. Pada saat bubu terendam, umpan yang berfungsi sebagai pemikat ikut terendam. Bau-bauan yang dihasilkan umpan tercium oleh indra penciuman kepiting melalui media air.

5.2. Pengaruh Waktu Perendaman dan Periode Bulan terhadap Kepiting Bakau Hasil Tangkapan Bubu

5.2.1. Pengaruh waktu perendaman terhadap kepiting bakau hasil tangkapan bubu

Waktu perendaman bubu adalah waktu yang dimulai sejak bubu mulai direndam di suatu perairan dan berakhir pada saat bubu diangkat kembali dari perairan tersebut. Waktu perendaman yang baik adalah merendam dengan waktu minimal dan menghasilkan tangkapan optimal.

Kondisi air memegang peranan penting terhadap keberhasilan operasi. Ini dikarenakan air merupakan media perendaman bubu. Bau umpan tercium oleh kepiting yang sedang aktif mencari makan dikarenakan adanya air sebagai media
perantara. Melalui air, organ penciuman kepiting dapat menangkap respon adanya bau-bauan.

Perendaman bubu dikatakan berhasil bila bubu dapat menangkap organisme target penangkapan dalam jumlah besar. Hasil tangkapan memiliki mutu baik dengan kondisi segar dan tidak cacat. Demi kepentingan ekonomis serta aspek pemberdayaan yang berkelanjutan maka organisme yang tertangkap harus pula sudah dalam keadaan layak tangkap.

Lamanya perendaman bubu di suatu perairan dapat menjadi aspek keberhasilan bertambahnya hasil tangkapan. Dengan semakin lamanya dilakukan proses perendaman maka peluang untuk suatu organisme masuk ke dalam bubu menjadi lebih besar. Hal ini terjadi karena umpan terendam dalam air, sebagai media penghantar, bau-bauan lebih lama, disamping faktor-faktor lain.

Selain lamanya waktu perendaman, keberhasilan perendaman dapat ditentukan oleh perbedaan waktu perendaman. Waktu perendaman tertentu misalnya pada saat pagi, siang, malam atau pada saat periode tertentu (periode musim atau periode bulan). Semuanya ini tergantung dari jenis organisme target penangkapan dan tingkah lakunya.

1). Waktu perendaman terhadap jumlah total kepiting bakau

Dari hasil uji statistika Mann-Whitney diperoleh nilai probabilitas sebesar 0,505 dan dari hasil uji statistika Kolmogorov-Smirnov diperoleh nilai probabilitas sebesar 0,893. Kedua nilai probabilitas tersebut berada di atas 0,05 sehingga diperoleh keputusan menerima H_0 yang berarti waktu perendaman siang dan malam tidak berbeda signifikan terhadap jumlah total kepiting bakau yang tertangkap oleh bubu. Hal ini berarti hasil tangkapan bubu pada siang dan malam hari adalah identik
sehingga perendaman bubu dapat dilaksanakan pada siang dan malam hari dengan jumlah tangkapan kepiting yang tidak berbeda nyata.

2). Waktu perendaman terhadap jumlah kepiting jantan

Dari hasil uji statistika Mann-Whitney dan Kolmogorov-Smirnov diperoleh nilai probabilitas masing-masing sebesar 0,404 dan 0,893. Kedua nilai probabilitas tersebut berada di atas 0,05 sehingga diperoleh keputusan menerima H_0 yang berarti waktu perendaman siang dan malam tidak berbeda signifikan terhadap jumlah kepiting jantan yang tertangkap oleh bubu. Hal ini berarti bubu dapat dioperasikan baik siang maupun malam untuk menangkap kepiting bakau yang berjenis kelamin jantan.

3). Waktu perendaman terhadap jumlah kepiting betina

Dari hasil uji statistika Mann-Whitney dan Kolmogorov-Smirnov diperoleh nilai probabilitas masing-masing sebesar 0,715 dan 0,289. Kedua nilai probabilitas tersebut berada di atas 0,05 sehingga diperoleh keputusan menerima H_0 yang berarti waktu perendaman siang dan malam tidak berbeda signifikan terhadap jumlah kepiting betina yang tertangkap oleh bubu. Hal ini berarti bubu dapat dioperasikan baik siang maupun malam untuk menangkap kepiting bakau yang berjenis kelamin betina.

4). Waktu perendaman terhadap panjang karapas kepiting bakau

Dari hasil uji statistika Mann-Whitney dan Kolmogorov-Smirnov diperoleh nilai probabilitas masing-masing sebesar 0,054 dan 0,139. Kedua nilai probabilitas tersebut berada di atas 0,05 sehingga diperoleh keputusan menerima H_0 yang berarti waktu perendaman siang dan malam tidak berbeda signifikan terhadap panjang karapas kepiting yang tertangkap oleh bubu. Hal ini berarti bubu yang dioperasikan pada siang dan malam menangkap kepiting dengan panjang karapas yang identik.

5). Waktu perendaman terhadap lebar karapas kepiting bakau

Dari hasil uji statistika Mann-Whitney dan Kolmogorov-Smirnov diperoleh nilai probabilitas masing-masing sebesar 0,078 dan 0,866. Kedua nilai probabilitas tersebut berada di atas 0,05 sehingga diperoleh keputusan menerima H_0 yang berarti waktu perendaman siang dan malam tidak berbeda signifikan terhadap lebar karapas
kepiting yang tertangkap oleh bubu. Hal ini berarti bubu yang dioperasikan pada siang dan malam menangkap kepiting dengan lebar karapas yang identik.

Lebar karapas dapat dijadikan pedoman untuk menentukan kepiting yang telah dewasa dan layak tangkap. Kepiting dewasa adalah kepiting yang telah siap untuk melakukan perkawinan. Perkawinan kepiting jantan dan betina terjadi bila kepiting telah matang gonad. Menurut Soim (1997), lebar karapas yang telah matang gonad adalah sekitar 120 mm.

Pada penelitian kali ini rata-rata lebar karapas kepiting hasil tangkapan hanya 10,54 cm atau 105,4 mm. Dari rata-rata lebar karapas yang diperoleh dapat dikatakan bahwa kebanyakan kepiting yang tertangkap dikategorikan belum dewasa. Ini berarti pula bahwa kepiting belum layak tangkap.

Kepiting muda yang belum layak tangkap sebaiknya dikembalikan ke perairan. Hal ini bertujuan agar kepiting muda diberi kesempatan untuk berkembang menjadi dewasa. Ini penting agar sumberdaya kepiting dapat terjaga kelestariannya. Pengembalian kepiting yang belum layak tangkap ke alam dapat dilakukan pada saat penyortiran hasil tangkapan.

6). Waktu perendaman terhadap berat kepiting bakau

Dari hasil uji statistika Mann-Whitney dan Kolmogorov-Smirnov diperoleh nilai probabilitas masing-masing sebesar 0,262 dan 0,866. Kedua nilai probabilitas tersebut berada di atas 0,05 sehingga diperoleh keputusan menerima H_0 yang berarti waktu perendaman siang dan malam tidak berbeda signifikan terhadap berat kepiting bakau yang tertangkap oleh bubu. Hal ini berarti bubu yang dioperasikan pada siang dan malam hari menangkap kepiting dengan berat yang identik.

Dari keenam uji statistika yang dipergunakan untuk menguji kepiting hasil tangkapan bubu lipat tiga pintu diperoleh hasil tidak signifikan. Hasil tangkapan kepiting bakau pada waktu siang dan malam tidak berbeda nyata. Selain jumlah, ukuran dan ciri biologis kepiting (TKG) yang tertangkap juga tidak berbeda nyata.

Hal ini diduga karena kebiasaan makan kepiting di suatu daerah dapat berbeda dengan di daerah lain. Kebiasaan makan berkaitan erat dengan ketertarikan kepiting
untuk memakan umpan pada bubu. Disamping pula dikarenakan waktu makan kepiting itu sendiri.

Meskipun tergolong hewan nokturnal, kepiting memiliki waktu makan yang tidak beraturan. Ia lebih suka bersembunyi di lubang-lubang persembunyiannya bila tidak aktif mencari makan dan reproduksi. Ini dilakukan agar kepiting dapat terhindar dari predator alaminya.

Kepiting akan mencari makan pada saat keadaan pasang dengan berenang menggunakan kaki dayungnya. Kepiting kemudian akan kembali ke lubang persembunyian bila kondisi perairan mulai surut. Dengan demikian kepiting cenderung pula untuk keluar saat terjadi pasang surut harian.

Pasang surut harian di muara Sungai Radak bertipe *diurnal* artinya terjadi satu kali pasang dan satu kali surut. Satu kali pasang berarti memungkinkan kepiting hanya dapat keluar satu kali untuk mencari makan. Ini menyebabkan kepiting memanfaatkan waktu sebaiknya dalam melakukan kegiatan makan.

Waktu terjadinya pasang surut dapat berbeda setiap hari. Terkadang waktu siang dapat terjadi pasang tinggi, namun dapat pula mengalami surut rendah. Demikian sebaliknya pada malam hari ada kemungkinan terjadi pasang tinggi dan ada kemungkinan terjadi surut yang rendah.

5.2.2. Pengaruh periode bulan terhadap kepiting bakau hasil tangkapan bubu

Periode bulan dipengaruhi oleh revolusi bulan mengelilingi bumi dengan kisaran waktu selama kurang lebih 29 hari. Banyak organisme krustasea dalam siklus hidupnya terpengaruhi periode bulan, kepiting adalah salah satu jenis krustasea yang siklus hidupnya diduga terpengaruhi periode bulan.

1). Periode bulan terhadap jumlah total kepiting bakau

Dari hasil uji statistika Kruskall-Wallis dan Median diperoleh nilai Chi Kuadrat masing-masing sebesar 2,417 dan 1,071. Kedua nilai Chi Kuadrat tersebut berada dibawah nilai Chi kuadrat tabel untuk $df = 3$ sebesar 7,815 sehingga diperoleh keputusan menerima H_0 yang berarti periode bulan (kuadran 1, *full moon*, kuadran 2, dan *new moon*) tidak berbeda signifikan terhadap jumlah total kepiting bakau yang tertangkap oleh bubu. Hal ini berarti hasil tangkapan bubu pada periode bulan yang
berbeda tidak berbeda nyata sehingga perendaman bubu dapat dilaksanakan pada setiap periode bulan.

2). Periode bulan terhadap jumlah kepiting jantan

Dari hasil uji statistika Kruskall-Wallis dan Median diperoleh nilai Chi Kuadrat masing-masing sebesar 0,874 dan 0,833. Kedua nilai Chi Kuadrat tersebut berada dibawah nilai Chi kuadrat tabel untuk $df = 3$ sebesar 7,815 sehingga diperoleh keputusan menerima H_0 yang berarti periode bulan (kuadran 1, full moon, kuadran 2, dan new moon) tidak berbeda signifikan terhadap jumlah kepiting bakau jantan yang tertangkap oleh bubu. Hal ini berarti jumlah kepiting jantan yang tertangkap pada periode bulan yang berbeda tidak berbeda nyata sehingga bubu dapat dioperasikan pada setiap periode bulan untuk menangkap kepiting jantan.

3). Periode bulan terhadap jumlah kepiting bakau betina

Dari hasil uji statistika Kruskall-Wallis dan Median diperoleh nilai Chi Kuadrat masing-masing sebesar 5,014 dan 5,455. Kedua nilai Chi Kuadrat tersebut berada dibawah nilai Chi kuadrat tabel untuk $df = 3$ sebesar 7,815 sehingga diperoleh keputusan menerima H_0 yang berarti periode bulan (kuadran 1, full moon, kuadran 2, dan new moon) tidak berbeda signifikan terhadap jumlah kepiting bakau betina yang tertangkap oleh bubu. Hal ini berarti jumlah kepiting betina yang tertangkap pada periode bulan yang berbeda tidak berbeda signifikan sehingga bubu dapat dioperasikan pada setiap periode bulan untuk menangkap kepiting bakau betina.

4). Periode bulan terhadap panjang karapas kepiting bakau

Dari hasil uji statistika Kruskall-Wallis dan Median diperoleh nilai Chi Kuadrat masing-masing sebesar 5,657 dan 6,286. Kedua nilai Chi Kuadrat tersebut berada dibawah nilai Chi kuadrat tabel untuk $df = 3$ sebesar 7,815 sehingga diperoleh keputusan menerima H_0 yang berarti periode bulan (kuadran 1, full moon, kuadran 2, dan new moon) tidak berbeda signifikan terhadap panjang karapas kepiting bakau yang tertangkap oleh bubu. Hal ini berarti bubu yang dioperasikan pada periode bulan yang berbeda menangkap kepiting dengan panjang karapas yang identik.
5). Periode bulan terhadap lebar karapas kepiting bakau

Dari hasil uji statistika Kruskall-Wallis dan Median diperoleh nilai Chi Kuadrat masing-masing sebesar 4,038 dan 3,143. Kedua nilai Chi Kuadrat tersebut berada dibawah nilai Chi kuadrat tabel untuk \(df = 3 \) sebesar 7,815 sehingga diperoleh keputusan menerima \(H_0 \) yang berarti periode bulan (kuadran 1, \textit{full moon}, kuadran 2, dan \textit{new moon}) tidak berbeda signifikan terhadap lebar karapas kepiting bakau yang tertangkap oleh bubu. Hal ini berarti bubu yang dioperasikan pada periode bulan yang berbeda menangkap kepiting dengan lebar karapas yang identik.

6). Periode bulan terhadap berat kepiting bakau

Dari hasil uji statistika Kruskall-Wallis dan Median diperoleh nilai Chi Kuadrat masing-masing sebesar 5,637 dan 6,286. Kedua nilai Chi Kuadrat tersebut berada dibawah nilai Chi kuadrat tabel untuk \(df = 3 \) sebesar 7,815 sehingga diperoleh keputusan menerima \(H_0 \) yang berarti periode bulan (kuadran 1, \textit{full moon}, kuadran 2, dan \textit{new moon}) tidak berbeda signifikan terhadap berat karapas kepiting bakau yang tertangkap oleh bubu. Hal ini berarti bubu yang dioperasikan pada periode bulan yang berbeda menangkap kepiting dengan berat yang identik.

Organisme perairan banyak yang terpengaruh dengan periode bulan adalah karena gravitasi bulan dan matahari yang menyebabkan terjadinya periode bulan mempengaruhi keadaan perairan secara langsung. Pasang surut, adalah salah satu fenomena yang terjadi diakibatkan dari gaya gravitasi bulan dengan matahari. Pada periode bulan purnama (\textit{full moon}) dan bulan gelap (\textit{new moon}) terjadi pasang besar yang disebut pasang perbani.

Kepiting baru keluar dari persembunyiannya pada saat keadaan perairan pasang untuk mencari makan dan akan kembali bersembunyi pada saat surut. Pasang surut diakibatkan oleh gaya gravitasi bulan, bumi dan matahari, gaya yang menyebabkan terjadinya periode bulan. Dari pemaparan tersebut terlihat bahwa ada keterkaitan antara pasang surut dan tingkah laku kepiting.

Walaupun demikian dari hasil uji statistika diperoleh hal yang berbeda dimana periode bulan tidak berpengaruh nyata terhadap hasil tangkapan. Ini dikarenakan gaya gravitasi bulan, bumi, dan matahari lebih mencakup pola pergerakan pasang surut secara global sementara pola pasang surut yang digunakan kepiting dalam melakukan kegiatan pencarian makan lebih terkait pada lingkup daerah yang kecil dengan melihat pasang surut dalam skala sempit, yaitu pola harian.

Disamping itu, waktu pelaksanaan penelitian yang agak terlambat dari musim puncak mengakibatkan hasil tangkapan kepiting bakau cenderung sedikit. Hasil tangkapan yang sedikit kurang dapat mencerminkan kondisi kepiting di suatu daerah. Untuk itu dibutuhkan penelitian yang lebih lanjut untuk memperbaiki jumlah hasil tangkapan.

5.3. Nisbah Kelamin (sex ratio) Kepiting Bakau

5.3.1. Nisbah kelamin berdasarkan waktu perendaman

Perbandingan kelamin kepiting bakau jantan dan betina pada setiap waktu perendaman yang berbeda dapat dilihat pada Tabel 15. Terlihat bahwa proporsi jantan dan betina tidak berbeda jauh antara masing-masing waktu perendaman. Pada kedua waktu perendaman yang berbeda, jumlah kepiting jantan yang tertangkap selalu lebih besar daripada kepiting betina. Rasio jantan pada waktu perendaman siang hari (06.00-17.00 WIB) sedikit lebih besar dibandingkan rasio penangkapan jantan pada malam hari (18.00-05.00 WIB).
Tabel 15. Nisbah kelamin jantan dan betina berdasarkan waktu perendaman

<table>
<thead>
<tr>
<th>Jenis kelamin</th>
<th>06.00-17.00 WIB</th>
<th>18.00-05.00 WIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jantan</td>
<td>0,556</td>
<td>0,560</td>
</tr>
<tr>
<td>Betina</td>
<td>0,444</td>
<td>0,440</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ini mengindikasikan bahwa jumlah keping bakau jantan dan betina yang tertangkap relatif seimbang. Kepiting bakau adalah hewan nokturnal, tetapi hasil tangkapan bubu menunjukkan bahwa keping banyak pula tertangkap pada siang hari. Kebiasaan nelayan setempat yang melakukan kegiatan penangkapan keping pada siang hari juga menunjukkan bahwa jumlah tangkapan keping pada siang hari relatif besar.

Penangkapan keping dilakukan pada siang hari lebih menguntungkan bila dibanding malam hari. Pada siang hari, pengontrolan alat tangkap dapat lebih mudah. Saat siang, tidak diperlukan alat bantu penerangan tambahan yang wajib digunakan pada kegiatan penangkapan malam hari.

Karena hasil tangkapan pada siang dan malam tidak berbeda nyata, maka disarankan agar penangkapan keping dilakukan pada siang hari. Hal yang penting adalah adanya pasang surut untuk perendaman bubu. Kedalaman pasang untuk mengoperasikan bubu minimal 2-3 m agar bubu dapat terendam sepenuhnya sehingga keping tertarik akan bau-bauan umpan.

5.3.2. Nisbah kelamin keping bakau berdasarkan periode bulan

Berdasarkan Tabel 16 dapat dilihat nisbah kelamin keping jantan dan betina pada periode bulan yang berbeda. Pada setiap periode bulan diperoleh kesimpulan bahwa rasio kelamin jantan selalu lebih besar dibandingkan dengan rasio kelamin betina. Pada periode bulan purnama (full moon) dan kuadran 2, proporsi jantan dan betina tidak terlalu berbeda walaupun proporsi jantan tetap lebih besar yaitu sebesar 0,545.
Tabel 16. Nisbah kelamin jantan dan betina berdasarkan periode bulan

<table>
<thead>
<tr>
<th>Jenis kelamin</th>
<th>Kuadran 1</th>
<th>Full moon</th>
<th>Kuadran 2</th>
<th>New moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jantan</td>
<td>0,667</td>
<td>0,545</td>
<td>0,545</td>
<td>0,600</td>
</tr>
<tr>
<td>Betina</td>
<td>0,333</td>
<td>0,455</td>
<td>0,455</td>
<td>0,400</td>
</tr>
<tr>
<td>Total</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Selain itu hal ini juga diduga karena sifat kepiting jantan yang lebih aktif dalam mencari makan sementara kepiting betina menyimpan energinya untuk pertumbuhan dan perkembangan gonad (Mengampa et al., 1987). Kepiting betina pada saat akan melakukan pemijahan mengalami perubahan tingkah laku dalam kebiasaan makan sehingga mengurangi ketertarikan kepiting akan bau umpan yang terbawa melalui media air (Sara, 2001).

5.4. Distribusi Frekuensi Panjang Karapas Kepiting Bakau

Panjang merupakan salah satu variabel yang dapat digunakan dalam menentukan tingkat pertumbuhan suatu organisme, termasuk kepiting. Walaupun demikian, pertumbuhan kepiting bakau lebih dominan ke arah lebar karapas dibandingkan dengan panjang karapas. Ukuran panjang karapas kepiting hanya dua per tiga lebaranya.

Gambar 6. Kelompok ukuran panjang karapas kepiting bakau (cm)

Pada Gambar 6, dapat dilihat bahwa terdapat tujuh selang kelas panjang karapas dengan interval sebesar 1,1 cm. Lebar karapas rata-rata kepiting bakau hasil
penelitian membentuk suatu pola yang menurun pada batas kelas kedua kemudian mengalami kenaikan yang dimulai pada batas kelas ketiga yaitu pada selang kelas 6,7-7,7 cm. Puncak kenaikan frekuensi didapat pada batas kelas keempat yaitu antara 7,8-8,8 cm dengan jumlah kepiting sebanyak 16 ekor. Setelah batas kelas keempat, kelompok ukuran lebar karapas kembali mengalami penurunan dengan frekuensi terendah terdapat pada batas kelas terakhir yaitu sebanyak 1 ekor.

Dari pola tersebut dapat diperkirakan sebaran maksimum panjang karapas yang tertangkap, yaitu berada pada kisaran 7,8-8,8 cm. Hal ini menunjukkan kepiting yang tertangkap kebanyakan adalah kepiting muda. Sehingga dapat dikatakan bahwa kepiting yang tertangkap belum layak tangkap.

Ukuran kepiting masuk ke dalam bubu antara lain tergantung pada ukuran mulut bubu. Cara jalan kepiting yang menyampaikan memungkinkan kepiting masuk ke mulut bubu dengan posisi panjang karapas bersentuhan dengan mulut bubu. Ini berarti bahwa mulut bubu yang tidak pas dengan anatomi kepiting dapat menyebabkan hasil tangkapan yang didapat cenderung berukuran kecil (kepiting muda).

Pada bubu lipat, ukuran mulut bubu memungkinkan kepiting dewasa masuk ke dalam bubu. Ini terlihat dari ukuran mulut yang cukup besar yaitu 12 cm. Tidak hanya itu, material mulut bubu yang terbuat dari jaring PE memungkinkan mulut bubu dapat terentang. Dari hasil pengukuran diketahui bahwa mulut bubu dapat terentang sampai dengan 30 cm.

Bubu dapat menangkap kepiting dewasa dengan probabilitas yang tinggi maka banyaknya hasil tangkapan kepiting muda diduga karena faktor lain. Ini dapat terkait dari tingkah laku dan daur hidup kepiting itu sendiri. Dugaan karena kepiting dewasa sedang melakukan perkawinan dan kegiatan pemijahan dapat mempengaruhi jumlah hasil tangkapan kepiting dewasa.
5.5. Distribusi Frekuensi Lebar Karapas Kepiting Bakau

Lebar karapas, seperti halnya panjang karapas dapat dijadikan parameter tingkat pertumbuhan kepiting bakau. Berbeda dengan ikan, pertumbuhan kepiting dominan ke arah lebar dibandingkan panjang. Ini menyebabkan lebar karapas lebih umum digunakan sebagai variabel dalam menentukan tingkat pertumbuhan kepiting.

Gambar 7. Kelompok ukuran lebar karapas kepiting bakau (cm)

Pada Gambar 7, dapat dilihat bahwa ada tujuh selang kelas lebar karapas dengan masing-masing interval sebesar 1,3 cm. Lebar karapas rata-rata kepiting bakau hasil penelitian membentuk suatu pola yang menurun pada batas kelas kedua kemudian mengalami kenaikan yang dimulai pada batas kelas ketiga yaitu 9,6-10,8 cm. Puncak frekuensi didapat pada batas kelas keempat yaitu antara 10,9-12,1 cm dengan jumlah kepiting sebanyak 16 ekor. Setelah batas kelas keempat, kelompok ukuran lebar karapas kembali mengalami penurunan dengan frekuensi terendah terdapat pada batas kelas terakhir yaitu sebanyak 1 ekor.

Bila dilihat dari pola sebaran ukuran lebar karapas maka kepiting bakau lebih banyak tertangkap pada 10,9-12,1 cm. Ukuran lebar karapas ini menunjukkan bahwa kepiting bakau yang tertangkap kebanyakan berada pada periode peralihan, kepiting yang tertangkap kebanyakan adalah kepiting muda yang sedang berkembang tahap dewasa (maturing). Kepiting bakau sudah dapat melakukan perkawinan saat ukuran lebar karapasnya mencapai 12 cm.

5.6. Distribusi Frekuensi Berat Kepiting Bakau

Gambar 8. Kelompok ukuran berat kepiting bakau

Pada Gambar 8 dapat dilihat bahwa terdapat tujuh selang kelas berat kepiting dengan masing-masing interval sebesar 105 g. Berat kepiting bakau rata-rata hasil penelitian mengalami puncak pada selang kelas pertama (70-174 g) dengan frekuensi kepiting sebanyak 23 ekor. Frekuensi kepiting mengalami penurunan terus menerus sampai pada selang kelas keempat (385-489 g). Pada selang kelas kelima dan keenam frekuensi kepiting tidak ada sama sekali dan baru ada kembali pada selang kelas terakhir yaitu hanya sebanyak 1 ekor.
Dari pola sebaran berat kepiting bakau terlihat bahwa kepiting bakau yang tertangkap berada pada kisaran interval berat yang masih cukup rendah. Ini mungkin saja terjadi karena ketersediaan makanan bagi kepiting pada saat dilakukan penelitian cukup rendah, atau dapat pula dikarenakan kepiting yang tertangkap masih muda. Dari hasil pengamatan di lapangan, berat hasil tangkapan yang rendah lebih disebabkan kepiting yang tertangkap masih muda.

Muara Sungai Radak merupakan daerah dengan keadaan perairan cukup subur dan keadaan alam yang masih alami dan belum tercemar. Daerah tersebut merupakan habitat kepiting bakau dengan ketersediaan makanan masih besar. Kepiting muda yang beratnya masih rendah memungkinkan untuk berkembang menjadi kepiting yang lebih besar dengan berat yang memadai. Kondisi kepiting yang demikian, merupakan kondisi potensial kepiting untuk ditangkap di alam.

5.7. Tingkat Kematangan Gonad (TKG) Kepiting Betina

5.7.1. TKG kepiting betina pada waktu perendaman berbeda

Pada Gambar 9 dapat dilihat bahwa TKG kepiting betina pada siang dan malam hari tidak jauh berbeda. Kepiting betina yang tertangkap paling banyak berada pada TKG 1 yaitu belum ada tanda-tanda perkembangan telur pada calon induk atau masih dalam kondisi immature. Posisi kedua terbanyak diperoleh oleh TKG 2 yang berarti sedang dalam proses pematangan tetapi telur masih belum matang gonad atau dalam kondisi maturing. Jumlah kepiting betina yang telah dewasa (TKG 3) sangat sedikit yaitu sebanyak 2 ekor pada waktu penangkapan siang hari dan hanya 1 ekor pada waktu penangkapan malam hari.
Gambar 9. TKG kepiting betina pada waktu perendaman 06.00-17.00 WIB () dan 18.00-05.00 WIB ()

Hal ini diduga disebabkan tingkah laku kepiting betina dimana kepiting yang telah siap memijah akan melakukan ruaya ke perairan yang lebih dalam untuk melakukan pemijahan. Pemijahan kepiting bakau dapat berlangsung sepanjang tahun dengan puncak pemijahan pada setiap perairan tidak sama (Kasry, 1996).

5.7.2. TKG kepiting betina pada periode bulan yang berbeda

Berdasarkan Gambar 16 diperoleh hasil yang lebih bervariasi dimana pada kuadran 1, kepiting betina yang ditemukan pada TKG 1 hanya 1 ekor dan tidak ditemukan kepiting betina lain pada TKG yang berbeda. Pada periode bulan purnama (full moon) kepiting betina yang berada pada TKG 1 sebanyak 2 ekor, pada TKG 2 sebanyak 3 ekor dan tidak ditemukan kepiting betina lain pada TKG 3 dan TKG 4.

Sementara itu pada periode kuadran kedua diperoleh kepiting betina yang tertangkap pada TKG 1 sebanyak 9 ekor dan pada TKG 2 sebanyak 2 ekor serta pada TKG 3 sebanyak 1 ekor. Yang terakhir pada periode bulan baru (new moon) jumlah kepiting betina yang tertangkap hanya pada TKG 1 sebanyak 1 ekor.
Gambar 10. TKG kepiting betina pada kuadran 1 (), full moon (), kuadran 2 (), dan new moon ()

Berbedanya jumlah kepiting yang diperoleh pada setiap periode bulan disebabkan jumlah ulangan yang tidak sama antara masing-masing periode bulan. Tetapi dari gambar di atas dapat diperoleh suatu kesimpulan bahwa kepiting betina yang tertangkap pada setiap periode bulan mayoritas belum dewasa dan masih dalam keadaan immature dan maturing. Kepiting dewasa melakukan pemijahan pada periode bulan-bulan tertentu, terutama pada awal tahun (Soim, 1997).
6. KESIMPULAN DAN SARAN

6.1. Kesimpulan

1). Kepiting bakau hasil tangkapan bubu lipat tiga pintu meliputi : jumlah sebanyak 52 ekor, panjang dan lebar karapas rata-rata sebesar 7,32 cm dan 10,54 cm, berat kepiting rata-rata sebesar 227,40 gram. Kepiting yang tertangkap lebih banyak berjenis kelamin jantan daripada betina, kepiting betina yang tertangkap belum matang gonad dan berada pada kisaran TKG 1 dan 2; dan

2). Waktu perendaman (soaking time) dan periode bulan tidak berpengaruh nyata terhadap kepiting bakau hasil tangkapan bubu lipat tiga pintu.

6.2. Saran

Untuk mendapatkan hasil tangkapan yang lebih baik, waktu pengamatan di lapangan perlu diperpanjang dengan melakukan kegiatan experimental fishing pada musim puncak.
DAFTAR PUSTAKA

Sumber: Dinas Perikanan Kabupaten Pontianak, 2003
Lampiran 2. Desain bubu lipat tiga pintu

Badan bubu, Jaring PE biru \(\diamond = 2,33 \text{ cm} \)

\[\Sigma \diamond = 1 \]

\[\Sigma \diamond = 14 \]

\[\Sigma \diamond = 12 \]

\[\Sigma \diamond = 18 \qquad \Sigma \diamond = 16 \]

\[\llap{-}11 \text{ cm} \quad 30 \text{ cm} \quad 25 \text{ cm} \quad 30 \text{ cm} \quad 11 \text{ cm} \]

\[K \]

\[\Theta = 60 \text{ cm} \]

\[30 \text{ cm} \quad 19 \text{ cm} \quad 29 \text{ cm} \]

\[\Sigma = 2, \Theta = 1,5 \text{ kg} \]
\[\Theta \text{ besi} = 0,62 \text{ cm} \]

Dikerut dan ditarik, diberi tali pelampung

PE putih, \(p = 2 - 3 \text{ m} \)
\[\Theta = 0,21 \text{ cm} \]

\[\Sigma \diamond = 23 \]
\[\Sigma \diamond = 8 \]
\[\Sigma \diamond = 11 \]

Mulut bubu
\[\Sigma 2 \text{ bh jaring, displicing} \]
Jaring PE kuning
\[\diamond = 1,45 \text{ cm} \]
\[a = e = 14 \text{ cm} \]
\[b = d = 11 \text{ cm} \]
\[c = 30 \text{ cm} \]
\[f = 22 \text{ cm} \]

Ket:
- M = Mulut bubu
- K = Kerangka besi
- P = Penyangga bambu
- = Bagian yang displicing
- = Tali pengikat, PE merah
\[\Theta = 0,22 \text{ cm} \]

Sumber: Identifikasi langsung di lapangan
Lampiran 3. Spesifikasi alat tangkap bubu lipat tiga pintu

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama bagian</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Badan bubu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Material</td>
<td>Jaring PE ($\odot = 2,33$ cm, $\Theta = 0,05$ cm, $\Sigma\odot$ panjang $= 104$, lebar $= 41$, arah pilinan $= z$)</td>
</tr>
<tr>
<td></td>
<td>b. Bentuk</td>
<td>Persegi panjang</td>
</tr>
<tr>
<td></td>
<td>c. Ukuran</td>
<td>$p = 162$ cm, $l = 78$ cm</td>
</tr>
<tr>
<td></td>
<td>d. Warna</td>
<td>Biru</td>
</tr>
<tr>
<td>2.</td>
<td>Mulut bubu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Material</td>
<td>Terdiri atas 2 lembar jaring PE berbentuk segi enam yang di-splicing, bukaan mulut berbentuk ellips, ukuran jaring ($\odot = 1,45$ cm; $\Theta = 0,03$ cm; $\Sigma\odot a = e$ $= 11$; $\Sigma\odot b = d = 8$; $\Sigma\odot c = 23$; dan $\Sigma\odot f = 17$ (Lampiran 2), arah pilinan $= z$)</td>
</tr>
<tr>
<td></td>
<td>b. Bentuk</td>
<td>Ellips</td>
</tr>
<tr>
<td></td>
<td>c. Ukuran</td>
<td>$\Sigma\odot a = e = 14$ cm; $\Sigma\odot b = d = 11$ cm; $\Sigma\odot c = 30$ cm; dan $\Sigma\odot f = 22$ cm (Lampiran 2)</td>
</tr>
<tr>
<td></td>
<td>d. Warna</td>
<td>Kuning</td>
</tr>
<tr>
<td></td>
<td>e. Jumlah</td>
<td>3 buah</td>
</tr>
<tr>
<td>3.</td>
<td>Kerangka sekaligus pemberat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Material</td>
<td>Besi padat,silinder, diberi plastik pelapis slang air ($\Theta = 0,62$ cm (tanpa plastik pelapis); $\Theta = 0,83$ cm (dengan pelapis))</td>
</tr>
<tr>
<td></td>
<td>b. Bentuk</td>
<td>Lingkaran, $\Theta = 60$ cm</td>
</tr>
<tr>
<td></td>
<td>c. Jumlah</td>
<td>2 buah</td>
</tr>
<tr>
<td></td>
<td>d. Warna</td>
<td>Hitam</td>
</tr>
<tr>
<td>4.</td>
<td>Penyangga</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Material</td>
<td>Bambu</td>
</tr>
<tr>
<td></td>
<td>b. Ukuran</td>
<td>$p = 25$ cm, $l = 3$ cm</td>
</tr>
<tr>
<td></td>
<td>c. Jumlah</td>
<td>5 buah</td>
</tr>
<tr>
<td></td>
<td>d. Warna</td>
<td>Coklat muda</td>
</tr>
<tr>
<td>5.</td>
<td>Pelampung tanda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Material</td>
<td>Styrofoam</td>
</tr>
<tr>
<td></td>
<td>b. Bentuk</td>
<td>Kotak</td>
</tr>
<tr>
<td></td>
<td>c. Ukuran</td>
<td>$p = 10$ cm, $l = 10$ cm, $t = 3$ cm</td>
</tr>
<tr>
<td></td>
<td>d. Jumlah</td>
<td>1 buah</td>
</tr>
<tr>
<td></td>
<td>e. Warna</td>
<td>Putih</td>
</tr>
<tr>
<td>6.</td>
<td>Tali pelampung tanda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Material</td>
<td>Tali PE, $\Theta = 0,21$ cm, arah pilinan $= z$</td>
</tr>
<tr>
<td></td>
<td>b. Ukuran</td>
<td>Panjang 2-3 m</td>
</tr>
<tr>
<td></td>
<td>c. Warna</td>
<td>Putih</td>
</tr>
</tbody>
</table>

Sumber : Identifikasi langsung di lapangan
Lampiran 4. Konstruksi bubu lipat tiga pintu

Konstruksi bubu tampak samping

Konstruksi bubu tampak atas

Sumber: Identifikasi langsung di lapangan
Lampiran 5. Metode pengoperasian bubu lipat tiga pintu

Penyiapan bubu untuk dioperasikan

Ikan remang (*Muraenesox talabon*) yang digunakan sebagai umpan

Proses pemasangan umpan
Lanjutan Lampiran 5. Metode pengoperasian bubu lipat tiga pintu

Menuju lokasi penempatan bubu

Perendaman bubu di selu-sela akar pohon bakau
Lampiran 6. Penanganan hasil penangkapan

Proses pengikatan kepiting dengan tali rafia

Pengukuran panjang karapas dan lebar karapas

Penimbangan kepiting dengan timbangan meja
Lampiran 7. Fase bulan pada saat penelitian

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Sumber: (Lakemartin, 2003)

Catatan: Penelitian dilakukan pada tanggal 5-25 September 2003
<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Waktu perendaman (WIB)</th>
<th>Periode bulan</th>
<th>Panjang (cm)</th>
<th>Lebar (cm)</th>
<th>Berat (g)</th>
<th>Jenis kelamin</th>
<th>TKG</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/09/03</td>
<td>06.00-17.00</td>
<td>Kuadran 1</td>
<td>12</td>
<td>16,0</td>
<td>800</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>9,0</td>
<td>150</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>12,5</td>
<td>300</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>15/09/03</td>
<td>18.00-05.00</td>
<td>Kuadran 1</td>
<td>8,4</td>
<td>12,0</td>
<td>350</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,5</td>
<td>10,5</td>
<td>150</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>12,0</td>
<td>200</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>10,0</td>
<td>150</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,5</td>
<td>10,5</td>
<td>200</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>11,0</td>
<td>250</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7,0</td>
<td>100</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>16/09/03</td>
<td>18.00-05.00</td>
<td>Full moon</td>
<td>5</td>
<td>7,0</td>
<td>110</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>12,5</td>
<td>400</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>12,0</td>
<td>200</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>8,0</td>
<td>75</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>17/09/03</td>
<td>18.00-05.00</td>
<td>Kuadran 2</td>
<td>8,5</td>
<td>11,5</td>
<td>250</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>12,5</td>
<td>310</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
<td>100</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>150</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>12,5</td>
<td>300</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>18/09/03</td>
<td>18.00-05.00</td>
<td>Kuadran 2</td>
<td>8,5</td>
<td>11,5</td>
<td>250</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>9</td>
<td>150</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>12</td>
<td>310</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>19/09/03</td>
<td>18.00-05.00</td>
<td>Kuadran 2</td>
<td>5</td>
<td>7</td>
<td>100</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
<td>110</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>12,5</td>
<td>400</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>21/09/03</td>
<td>06.00-17.00</td>
<td>Kuadran 2</td>
<td>8,5</td>
<td>11,5</td>
<td>250</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
<td>200</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>14</td>
<td>430</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9,4</td>
<td>13,5</td>
<td>440</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>21/09/03</td>
<td>06.00-17.00</td>
<td>Kuadran 2</td>
<td>8</td>
<td>11,5</td>
<td>130</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
<td>8,5</td>
<td>100</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7,5</td>
<td>10,5</td>
<td>150</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
<td>180</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
<td>160</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>11,5</td>
<td>310</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>23/09/03</td>
<td>06.00-17.00</td>
<td>Kuadran 2</td>
<td>10</td>
<td>14</td>
<td>400</td>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
<td>160</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>10,2</td>
<td>170</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>12</td>
<td>310</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7,5</td>
<td>70</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 8. Data hasil tangkapan kepiting selama penelitian

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Waktu perendaman (WIB)</th>
<th>Periode bulan</th>
<th>Panjang (cm)</th>
<th>Lebar (cm)</th>
<th>Berat (g)</th>
<th>Jenis kelamin</th>
<th>TKG</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/09/03</td>
<td>18.00-05.00</td>
<td>Kuadran 2</td>
<td>8</td>
<td>12</td>
<td>310</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
<td>9,5</td>
<td>140</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,1</td>
<td>8,6</td>
<td>100</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>25/09/03</td>
<td>06.00-17.00</td>
<td>New moon</td>
<td>8</td>
<td>12,5</td>
<td>400</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>12,5</td>
<td>250</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7,5</td>
<td>70</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>7,5</td>
<td>70</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>11</td>
<td>200</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 9. Data hasil uji Mann-Whitney dan Kolmogorov-Smirnov Dua Sampel

Mann-Whitney Test

<table>
<thead>
<tr>
<th></th>
<th>PERENDAM</th>
<th>N</th>
<th>Mean Rank</th>
<th>Sum of Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>JANTAN</td>
<td>06.00-17.00</td>
<td>6</td>
<td>7.33</td>
<td>44.00</td>
</tr>
<tr>
<td></td>
<td>18.00-05.00</td>
<td>6</td>
<td>5.67</td>
<td>34.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETINA</td>
<td>06.00-17.00</td>
<td>6</td>
<td>6.17</td>
<td>37.00</td>
</tr>
<tr>
<td></td>
<td>18.00-05.00</td>
<td>6</td>
<td>6.83</td>
<td>41.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUMLAH</td>
<td>06.00-17.00</td>
<td>6</td>
<td>7.17</td>
<td>43.00</td>
</tr>
<tr>
<td></td>
<td>18.00-05.00</td>
<td>6</td>
<td>5.83</td>
<td>35.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANJANG</td>
<td>06.00-17.00</td>
<td>6</td>
<td>8.50</td>
<td>51.00</td>
</tr>
<tr>
<td></td>
<td>18.00-05.00</td>
<td>6</td>
<td>4.50</td>
<td>27.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEBAR</td>
<td>06.00-17.00</td>
<td>6</td>
<td>8.33</td>
<td>50.00</td>
</tr>
<tr>
<td></td>
<td>18.00-05.00</td>
<td>6</td>
<td>4.67</td>
<td>28.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERAT</td>
<td>06.00-17.00</td>
<td>6</td>
<td>7.67</td>
<td>46.00</td>
</tr>
<tr>
<td></td>
<td>18.00-05.00</td>
<td>6</td>
<td>5.33</td>
<td>32.00</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>JANTAN</th>
<th>BETINA</th>
<th>JUMLAH</th>
<th>PANJANG</th>
<th>LEBAR</th>
<th>BERAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>13.00</td>
<td>16.00</td>
<td>14.00</td>
<td>6.00</td>
<td>7.00</td>
<td>11.00</td>
</tr>
<tr>
<td>Wilcoxon W</td>
<td>34.00</td>
<td>37.00</td>
<td>35.00</td>
<td>27.00</td>
<td>28.00</td>
<td>32.00</td>
</tr>
<tr>
<td>Z</td>
<td>-.835</td>
<td>-.365</td>
<td>-.667</td>
<td>-.1925</td>
<td>-1.761</td>
<td>-1.121</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.404</td>
<td>.715</td>
<td>.505</td>
<td>.054</td>
<td>.078</td>
<td>.262</td>
</tr>
<tr>
<td>Exact Sig. [2*(1-tailed Sig.)]</td>
<td>.485<sup>a</sup></td>
<td>.818<sup>a</sup></td>
<td>.589<sup>a</sup></td>
<td>.065<sup>a</sup></td>
<td>.093<sup>a</sup></td>
<td>.310<sup>a</sup></td>
</tr>
</tbody>
</table>

^a Not corrected for ties.

^b Grouping Variable: PERENDAM
Two-Sample Kolmogorov-Smirnov Test

Frequencies

<table>
<thead>
<tr>
<th>PERENDAM</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>JANTAN</td>
<td></td>
</tr>
<tr>
<td>06.00-17.00</td>
<td>6</td>
</tr>
<tr>
<td>18.00-05.00</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>BETINA</td>
<td></td>
</tr>
<tr>
<td>06.00-17.00</td>
<td>6</td>
</tr>
<tr>
<td>18.00-05.00</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>JUMLAH</td>
<td></td>
</tr>
<tr>
<td>06.00-17.00</td>
<td>6</td>
</tr>
<tr>
<td>18.00-05.00</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>PANJANG</td>
<td></td>
</tr>
<tr>
<td>06.00-17.00</td>
<td>6</td>
</tr>
<tr>
<td>18.00-05.00</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>LEBAR</td>
<td></td>
</tr>
<tr>
<td>06.00-17.00</td>
<td>6</td>
</tr>
<tr>
<td>18.00-05.00</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
<tr>
<td>BERAT</td>
<td></td>
</tr>
<tr>
<td>06.00-17.00</td>
<td>6</td>
</tr>
<tr>
<td>18.00-05.00</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>JANTAN</th>
<th>BETINA</th>
<th>JUMLAH</th>
<th>PANJANG</th>
<th>LEBAR</th>
<th>BERAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Extreme Differences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.333</td>
<td>.167</td>
<td>.333</td>
<td>.667</td>
<td>.500</td>
<td>.500</td>
</tr>
<tr>
<td>Positive</td>
<td>.167</td>
<td>.167</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.167</td>
</tr>
<tr>
<td>Negative</td>
<td>-.333</td>
<td>.000</td>
<td>-.333</td>
<td>-.667</td>
<td>-.500</td>
<td>-.500</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>.577</td>
<td>.289</td>
<td>.577</td>
<td>1.155</td>
<td>.866</td>
<td>.866</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.893</td>
<td>1.000</td>
<td>.893</td>
<td>.139</td>
<td>.441</td>
<td>.441</td>
</tr>
</tbody>
</table>

a. Grouping Variable: PERENDAM
Lampiran 10. Data hasil uji Kruskall-Wallis dan Median

Kruskal-Wallis Test

<table>
<thead>
<tr>
<th>BULAN</th>
<th>N</th>
<th>Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>JANTAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kuadran 1</td>
<td>1</td>
<td>5.00</td>
</tr>
<tr>
<td>full moon</td>
<td>2</td>
<td>7.75</td>
</tr>
<tr>
<td>kuadran 2</td>
<td>7</td>
<td>6.79</td>
</tr>
<tr>
<td>new moon</td>
<td>2</td>
<td>5.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>BETINA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kuadran 1</td>
<td>1</td>
<td>2.50</td>
</tr>
<tr>
<td>full moon</td>
<td>2</td>
<td>10.00</td>
</tr>
<tr>
<td>kuadran 2</td>
<td>7</td>
<td>5.64</td>
</tr>
<tr>
<td>new moon</td>
<td>2</td>
<td>8.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>JUMLAH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kuadran 1</td>
<td>1</td>
<td>2.50</td>
</tr>
<tr>
<td>full moon</td>
<td>2</td>
<td>9.00</td>
</tr>
<tr>
<td>kuadran 2</td>
<td>7</td>
<td>6.50</td>
</tr>
<tr>
<td>new moon</td>
<td>2</td>
<td>6.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>PANJANG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kuadran 1</td>
<td>1</td>
<td>12.00</td>
</tr>
<tr>
<td>full moon</td>
<td>2</td>
<td>3.00</td>
</tr>
<tr>
<td>kuadran 2</td>
<td>7</td>
<td>7.43</td>
</tr>
<tr>
<td>new moon</td>
<td>2</td>
<td>4.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>LEBAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kuadran 1</td>
<td>1</td>
<td>12.00</td>
</tr>
<tr>
<td>full moon</td>
<td>2</td>
<td>4.50</td>
</tr>
<tr>
<td>kuadran 2</td>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>new moon</td>
<td>2</td>
<td>4.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>BERAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kuadran 1</td>
<td>1</td>
<td>12.00</td>
</tr>
<tr>
<td>full moon</td>
<td>2</td>
<td>4.00</td>
</tr>
<tr>
<td>kuadran 2</td>
<td>7</td>
<td>7.43</td>
</tr>
<tr>
<td>new moon</td>
<td>2</td>
<td>3.00</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 10. Data hasil uji Kruskall-Wallis dan Median

<table>
<thead>
<tr>
<th>Test Statistics<sup>a,b</sup></th>
<th>JANTAN</th>
<th>BETINA</th>
<th>JUMLAH</th>
<th>PANJANG</th>
<th>LEBAR</th>
<th>BERAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square</td>
<td>.874</td>
<td>5.014</td>
<td>2.417</td>
<td>5.657</td>
<td>4.038</td>
<td>5.637</td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.832</td>
<td>.171</td>
<td>.491</td>
<td>.130</td>
<td>.257</td>
<td>.131</td>
</tr>
</tbody>
</table>

^a Kruskal Wallis Test
^b Grouping Variable: BULAN

Median Test

<table>
<thead>
<tr>
<th>Frequencies</th>
<th>BULAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kuadran 1</td>
</tr>
<tr>
<td>JANTAN > Median</td>
<td>0</td>
</tr>
<tr>
<td><= Median</td>
<td>1</td>
</tr>
<tr>
<td>BETINA > Median</td>
<td>0</td>
</tr>
<tr>
<td><= Median</td>
<td>1</td>
</tr>
<tr>
<td>JUMLAH > Median</td>
<td>0</td>
</tr>
<tr>
<td><= Median</td>
<td>1</td>
</tr>
<tr>
<td>PANJANG > Median</td>
<td>1</td>
</tr>
<tr>
<td><= Median</td>
<td>0</td>
</tr>
<tr>
<td>LEBAR > Median</td>
<td>1</td>
</tr>
<tr>
<td><= Median</td>
<td>0</td>
</tr>
<tr>
<td>BERAT > Median</td>
<td>1</td>
</tr>
<tr>
<td><= Median</td>
<td>0</td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 10. Data hasil uji Kruskall-Wallis dan Median

<table>
<thead>
<tr>
<th></th>
<th>JANTAN</th>
<th>BETINA</th>
<th>JUMLAH</th>
<th>PANJANG</th>
<th>LEBAR</th>
<th>BERAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Median</td>
<td>2.00</td>
<td>2.00</td>
<td>4.00</td>
<td>7.33950</td>
<td>10.36450</td>
<td>212.66650</td>
</tr>
<tr>
<td>Chi-Square</td>
<td>.833<sup>a</sup></td>
<td>5.456<sup>b</sup></td>
<td>1.071<sup>c</sup></td>
<td>6.286<sup>d</sup></td>
<td>3.143<sup>d</sup></td>
<td>6.286<sup>d</sup></td>
</tr>
<tr>
<td>df</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Asymp. Sig.</td>
<td>.842</td>
<td>.141</td>
<td>.784</td>
<td>.099</td>
<td>.370</td>
<td>.099</td>
</tr>
</tbody>
</table>

a. 8 cells (100.0%) have expected frequencies less than 5. The minimum expected cell frequency is .4.

b. 7 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is .1.

c. 8 cells (100.0%) have expected frequencies less than 5. The minimum expected cell frequency is .3.

d. 8 cells (100.0%) have expected frequencies less than 5. The minimum expected cell frequency is .5.

e. Grouping Variable: BULAN