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SUMMARY 

SHABAN NASSOR SHABAN. Deep Learning Model for The Detection and 

Classification of Banana Disease Based on Leaf Images, supervised by 

KARLISA PRIANDANA and MUSHTHOFA.  

 

Fungal diseases are among the main reasons for low productivity in banana 

farming. Black Sigatoka and fusarium wilt race 1 are the major fungal diseases 

that threaten banana production. black Sigatoka is a fungal disease caused by a 

wind-bone fungus, Mycosphaerella fijiensis Morelet. On the other hand, 

fusarium wilt is another fungal disease originating from soil caused by a fungus 

named Fusarium oxysporum f. sp. cubense (Foc). The spread of these diseases is 

accelerating in many countries and threatens the production of bananas globally.  

Early detection of fungal diseases is essential and one of the possible approaches 

is using machine vision. Due to its high accuracy, deep learning is the most 

widely used algorithm in machine vision for many solutions. Its ability to model 

the data into multiple levels of abstraction makes it suitable for many agricultural 

solutions. Furthermore, deep learning can be trained with a vast amount of data. 

However, deep learning requires a high computational resource, challenging 

many agricultural solutions implemented on low-computing devices such as edge, 

mobile, and IoT devices. Therefore, this research proposes deep-learning models 

for detecting and classifying banana diseases based on leaf images. The study 

proposes the use of lightweight deep learning algorithms instead of off-shelf 

algorithms. Lightweight deep learning algorithms have a small architecture 

which make them suitable for low computing resources devices.  

The research is conducted in two stages: the first stage focuses on 

identifying the diseases using deep learning where default algorithms are trained. 

In this stage, four lightweight deep learning utilized namely mobileNetv2, 

mobileNetv3-small, ShuffleNetv2, and SqueezeNet. The choice of algorithms is 

based on the popularity of the algorithm in the research community. The second 

stage focuses on modification of the algorithms to increase the performance of 

the models.  Modifications introduced include the addition of a convolutional 

block attention module (CBAM). CBAM is a lightweight attention module that 

enhances both channel and attention features. In both stages, sequential model-

based optimization (SMBO) is used for automatic hyperparameter tuning (HPO). 

SMBO is a variant of Bayesian optimization that selects the parameters 

sequentially. This makes SMBO to be faster than other optimization algorithms. 

The study used a dataset of images representing three classes: healthy, 

black Sigatoka, and fusarium wilt race 1. The dataset was collected in Northern 

Tanzania for a period of six months by the Mandela African Institution of 

Science and Technology (NM-AIST) and the International Institute of Tropical 

Agriculture (IITA). The preprocessing conducted after acquiring the dataset 

includes resizing, removing the stem images, splitting, and augmentation. The 

model's performance is measured by calculating accuracy, precision, recall, and 

f1-score as well as measuring model complexity. 

The results indicated that for stage one, mobileNetv2 outperforms all other 

models with 97,73% accuracy,97,74% precision, 97,73% recall, and 97,73% f1-

score, while shuffleNetv2 had poor performance with an accuracy of 84,21%, 



 

 

precision of 84,76%, recall of 84,21%, and f1-score of 84,03%. SqueezeNet is a 

light model with a size of 2,78 MB, while mobileNetv3-small is the heaviest 

model with a size of 8.74 MB. However, all models had trouble distinguishing 

between black sigatoka and fusarium wilt race 1. This indicates generalization 

ability of the models is poor. For lightweight deep learning with CBAM (stage 

two), shuffleNetv2 outperforms all other models with 99,07% accuracy, 99,07% 

precision, 99,07% recall, and 99,07% f1-score. SqueezeNet is a light model with 

a size of 2,09 MB, while mobileNetv2 is the heaviest model with 14,40 MB. 

SqueezeNet took a short time, with an estimated 558.0961, equal to 9.301 

minutes. Generally, the classification capability of all models increased 

significantly compared to stage one. Also, the CBAM module helps to increase 

the generalization capability of the models by reducing the number of 

misclassified images as well as increasing the performance of the models. 

However, the classification is still not 100% for all classes. 

Overall, the lightweight deep learning proposed by this research showed a 

good performance and can be used to overcome computational challenges. Also, 

classification and detection of banana diseases can be done based on image leaf, 

which can be a solution for early detection of the diseases and destruction 

method. Furthermore, the improvement of light-weight deep learning can be 

achieved by enhancing feature extraction ability. The approach proposed by this 

study can also be applied to other banana diseases and other plant species.  
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