EFEKTIVITAS PENYUNTIKAN PROSTAGLANDIN F$_{2\alpha}$ SATU KALI DAN DUA KALI UNTUK SINKRONISASI ESTRUS PADA TIKUS PUTIH (Rattus sp.)

SKRIPSI

Oleh
FITRIANTI
B01497012

FAKULTAS KEDOKTERAN HEWAN
INSTITUT PERTANIAN BOGOR
2002
EFEKTIVITAS PENYUNTKAN PROSTAGLANDIN F_{2\alpha} SATU KALI DAN DUA KALI UNTUK SINKRONISASI ESTRUS PADA TIKUS PUTIH (Rattus sp.)

FITRIANTI

Skripsi
Sebagai salah satu syarat untuk memperoleh gelar Sarjana Kedokteran Hewan pada Fakultas Kedokteran Hewan

FAKULTAS KEDOKTERAN HEWAN INSTITUT PERTANIAN BOGOR 2002
"Allah menunggukan orang yang beriman di antara kamu dan orang-orang yang diberi ilmu pengetahuan beberapa derajat" (TQS. Al-Mujadalah)

"Sesungguhnya sesudah kesulitan itu ada kemudahan maka apabila kamu telah selesai (dari sesuatu urusan), kerjakanlah dengan sungguh-sungguh (urasan yang lain)" (TQS. Alam Nasyrah: 6-7)

Persembahan
Teruntuk Ayahanda dan Ibunda tercinta, semoga Allah selalu memahara, memberi petunjuk serta memberi kebahagiaan dunia akhirat kepada mereka.
Teruntuk Kak Yuni, Kak Arwal, Adik Ipot, Rudi dan Linda tersayang.
Kupersembahkan hasil usaha nan sederhana ini, dengan harapan semoga Allah yang Mahatinguji lagi Mahakuasa senantiasa menganugerahkan segala faedahnya kepada kita.
KATA PENGANTAR

Pada kesempatan ini, penulis menyampaikan ucapan terima kasih dan penghargaan sebesar-besarnya kepada Prof. Dr. Ir. Wasmen Manalu dan Dr. Nastiti Kusumorini yang telah membimbing penulis dalam pelaksanaan penelitian hingga penulisan skripsi. Semoga amal kedua pembimbing penulis tercatat sebagai amal yang bernilai disisi Allah SWT. Terima kasih juga penulis sampaikan kepada pak Edi dan seluruh staf Laboratorium Fisisoligi FKH IPB, teman-teman sepenelitian (Iis, Umi dan Anam), semua pihak yang telah membantu penulis. Ungkapan terima kasih, penulis penuntukan untuk Orang Tua tercinta berkat doa dan kasihnya juga Kakak dan Adik-adikku, serta seluruh keluarga.

Bogor, Agustus 2002

Fitrianti
RIWAYAT HIDUP

ABSTRAK

FITRIANTI. Efektivitas Penyuntikan Prostaglandin F\textsubscript{2α} Satu Kali dan Dua Kali untuk Sinkronisasi Estrus pada Tikus Putih (Rattus sp.) Dibimbing oleh WASMEN MANALU dan NASTITI KUSUMORINI.

Penelitian dilakukan di bagian Fisiologi dan Farmakologi, Fakultas Kedokteran Hewan, Institut Pertanian Bogor yang dimulai bulan Januari 2002 dan berakhir pada bulan Maret 2002 untuk mengetahui pengaruh penyuntikan prostaglandin F\textsubscript{2α} satu kali dan dua kali terhadap pengendalian siklus berahi, apakah benar-benar dapat digunakan sebagai sinkronisasi pada tikus putih galur Sparague-Dawley.

Tikus putih yang digunakan adalah sebanyak 30 ekor dan telah berumur 10 minggu. Penelitian ini terdiri atas dua kelompok perlakuan. Pada kelompok pertama, penyuntikan prostaglandin F\textsubscript{2α} dilakukan dengan metode satu kali penyuntikan dan pada kelompok kedua, penyuntikan prostaglandin F\textsubscript{2α} dilakukan dengan metode dua kali penyuntikan. Penyuntikan kedua kelompok perlakuan ini dilakukan secara intraperitoneal dengan dosis yang sama yaitu sebanyak 1000 μg/kg BB.

Hasil penelitian menunjukkan bahwa perlakuan penyuntikan prostaglandin F\textsubscript{2α} dengan metode satu kali dan dua kali penyuntikan secara keseluruhan selama 3 hari waktu yang diuji tidak memperlihatkan perbedaan yang signifikan.
DAFTAR ISI

Halaman

DAFTAR ISI .. vii
DAFTAR TABEL ... ix
DAFTAR GAMBAR ... x

I. PENDAHULUAN

1.1. Latar Belakang .. 1
1.2. Tujuan Penelitian .. 4
1.3. Manfaat Penelitian .. 4

II. TINJAUAN PUSTAKA

2.1. Biologi Umum Tikus ... 5
2.2. Reproduksi Tikus .. 7
2.3. Sinkronisasi Estrus ... 10

2.3.1. Sintesis Prostaglandin F2α .. 15
2.3.2. Metabolisme Prostaglandin F2α ... 16
2.3.3. Aktivitas Biologi Prostaglandin F2α .. 17

III. BAHAN DAN METODE PENELITIAN

3.1. Tempat dan Waktu Penelitian .. 19
3.2. Persiapan Penelitian .. 19

3.2.1. Pelaksanaan Penelitian ... 20
3.2.2. Ulas Vagina ... 21
3.3. Analisis Data ... 23

IV. HASIL DAN PEMBAHASAN .. 24

V. KESIMPULAN DAN SARAN ..

5.1. Kesimpulan ... 31
5.2. Saran ... 31

DAFTAR PUSTAKA ... 32

LAMPIRAN
DAFTAR TABEL

Halaman

1. Perubahan Organ Reproduksi Selama Siklus Estrus .. 9

2. Pengaruh banyaknya penyuntikan Prostaglandin F₂α terhadap skoring fase siklus estrus ... 24

3. Pengaruh penyuntikan Prostaglandin F₂α terhadap Persentase Estrus ... 27
DAFTAR GAMBAR

Halaman

1. Keadaan dinding vagina tikus selama beberapa fase siklus estrus ... 9

2. Asam prostanoat dengan atom C yang membentuk satu cincin siklopentana dengan dua rantai sisi alifatik dan gugus karboksil ... 15

3. Perbedaan struktur cincin siklopentana antara lima tipe prostaglandin A, B, C, E, dan F .. 16

4. Transfer vena uterina ke arteri ovarika melalui mekanisme *counter current mechanism* (CCM) .. 18

5. Gambaran ulas vagina tikus putih galur Sparague-Dawley dengan pembesaran 40x .. 22
BAB I
PENDAHULUAN

1.1. Latar belakang

Reproduksi pada hewan betina merupakan suatu proses yang kompleks dan dapat terganggu pada berbagai stadium pada siklus reproduksi. Reproduksi yang normal melingkupi penyerentakkan dan penyesuaian banyak mekanisme fisiologik sehingga kegagalan dan keberhasilan reproduksi sekelompok hewan sangat ditentukan oleh bagaimana upaya pengelolaan reproduksi itu sendiri, salah satunya adalah faktor hormon reproduksi yang menunjang keberhasilan reproduksi. Hormon reproduksi yang penting selama proses reproduksi adalah estrogen, progesteron.
Pada hewan multipara yang mempunyai musim kawin lebih dari 2 kali dalam setahun, kemampuan untuk bereproduksi tinggi. Akan tetapi tingginya angka kematian embrional maupun anak yang lahir tidak dapat dihindari sehingga dilakukanlah berbagai macam cara untuk mengatasinya. Salah satunya adalah dengan superovulasi di mana diharapkan dapat meningkatkan angka konsepsi yang dicapai pada ovulasi. Pengamatan pada domba menunjukkan bahwa jumlah laju ovulasi berkorelasi dengan jumlah anak yang akan dilahirkan (Piper dan Bindon, 1984), sehingga peningkatan jumlah ovulasi dapat digunakan sebagai salah satu cara untuk meningkatkan keberhasilan kebuntingan. Untuk menunjang keberhasilan laju ovulasi dalam sistem reproduksi maka sebelumnya dilakukan teknik sinkronisasi berahi pada hewan mammalia. Teknik penyerentakan berahi dimaksudkan untuk mengendalikan periode siklus estrus pada banyak hewan betina yaitu terjadi serentak pada hari yang sama atau dalam waktu 2 atau 3 hari.

Untuk menanggulangi masalah sinkronisasi tersebut di atas maka digunakan preparat prostaglandin yang paling mutakhir dalam sinkronisasi estrus saat ini adalah prostaglandin dalam bentuk prostaglandin \(F_{2\alpha} \) yang mempunyai sifat luteolitik (Hafez, 2000) dan merupakan suatu vasokonstriktor sehingga menyebabkan hambatan pengaliran darah secara drastis melalui korpus luteum dan teregresinya korpus luteum. Bentuk prostaglandin \(F_{2\alpha} \) tersebut telah digunakan pada sapi dan domba dan dapat melisikkan korpus luteum.

Penggunaan prostaglandin sebagai bahan penyentak berahi dengan hormon eksogen telah dinyatakan berakibat buruk terhadap keberhasilan untuk mendapatkan embrio bahkan meningkatkan kejadian regresi korpus luteum secara prematur (Schiewe et al., 1991). Sebaliknya penelitian yang dilakukan oleh Manalu dan Sumaryadi (1996), menyatakan bahwa penggunaan prostaglandin \(F_{2\alpha} \) untuk penyentakan berahi tidak terbukti mengurangi pertumbuhan dan perkembangan folikel yang akan mengalami ovulasi karena semakin banyak folikel yang mengalami ovulasi semakin besar pula keberhasilan kebuntingan yang berhasil sampai melahirkan.

Walaupun demikian penggunaan preparat prostaglandin \(F_{2\alpha} \) dalam kegiatan reproduksi masih memperlihatkan hasil yang sangat bervariasi baik respon estrus maupun tingkat fertilitas ternak mamalia sehingga inilah yang mendasari penelitian dilakukan untuk membuktikan penggunaan prostaglandin \(F_{2\alpha} \) dalam menggertak dan mensinkronkan estrus agar tercapai estrus dalam jangka waktu yang diketahui dengan pasti pada tikus putih.
1.2. Tujuan Penelitian

Untuk mengetahui pengaruh penyuntikan prostaglandin \(F_{2a} \) satu kali dan dua kali terhadap pengendalian siklus berahi, apakah benar-benar dapat digunakan sebagai sinkronisasi pada ternak mammalia khususnya pada tikus putih.

1.3. Manfaat Penelitian

Hasil penelitian ini diharapkan dapat memberikan informasi tentang pengaruh prostaglandin \(F_{2a} \) sebagai sinkronisasi berahi pada tikus khususnya dan pada ternak mammalia pada umumnya. Penelitian lanjut terhadap penggunaan prostaglandin \(F_{2a} \) pada tikus khususnya dan hewan laboratorium lainnya masih diperlukan agar dapat ditarik kesimpulan yang pasti mengenai efektivitas penggunaan prostaglandin \(F_{2a} \) dalam usaha mensinkronkan estrus hewan mammalia.
BAB II
TINJAUAN PUSTAKA

2.1. Biologi Umum Tikus

Penelitian ini menggunakan tikus putih (*Rattus* sp.) karena memiliki sifat-sifat yang khas yaitu ukuran tubuhnya kecil sehingga memudahkan penanganan dan pemeliharaan, mudah berkembangbiak, jumlah anaknya cukup banyak dan siklus reproduksinya cepat (Malole dan Pramono, 1989).

Galur yang digunakan dalam penelitian ini adalah Sparague-Dawley karena selain ciri-ciri di atas, galur ini juga mempunyai pertumbuhan yang cepat, temperamen yang baik, kemampuan laktasi yang tinggi (Baker *et al.*, 1979) serta mempunyai siklus reproduksi yang cepat (Ballenger, 2000). Periode kebuntingan tikus 21-23 hari dengan jumlah anak rata-rata 6-12 ekor setiap kelahiran, berat lahir 5-6 gram dengan kondisi tubuh tidak berambut, mata dan telinga tertutup, tidak mempunyai gigi dan tikus sangat aktif. Pada saat berumur 2 hari, tubuh berwarna kemerah-merahan, kemudian pada hari ke-4 rambut tubuh mulai terlihat. Setelah

Pada masing-masing stadium terlihat gejala-gejala perubahan siklus berahi yang dapat diamati pada preparat ulas vagina. Hal ini dapat terjadi apabila tikus betina telah mencapai umur dewasa kelamin yaitu antara 6-8 minggu, walaupun vagina telah membuka antara umur 34 dan 109 hari (Kohn dan Barthold, 1984). Dewasa kelamin pada hewan betina ditandai oleh berahi pertama yang disertai dengan ovulasi.

Penentuan jenis kelamin pada tikus muda diobservasi dengan melihat jarak anogenitalia yaitu jarak antara papila genitalia dengan anus (Hafez, 1970). Jarak anogenitalia pada tikus jantan lebih besar dibandingkan dengan betina yaitu 5 mm pada umur 7 hari sedangkan yang betina hanya berjarak 2,5 mm. Cara yang tepat untuk menentukan jenis kelamin tikus adalah mengangkat tikus-tikus dari litter yang sama lalu membandingkan ukuran-ukuran tersebut (Harkness dan Wagner, 1989).

Tikus termasuk hewan nokturnal yang hampir semua kegiatan dilakukan malam hari termasuk kegiatan reproduksi sehingga perkawinan pun sering terjadi pada malam hari dan untuk mengetahui terjadinya kebuntingan dilakukan dengan memeriksa adanya spermatozoa dalam usapan vagina keesokan harinya (Malole dan Pramono, 1989).
2.2. Reproduksi Tikus

Satu siklus berahi terdiri atas 4 periode, yaitu proestrus, estrus, metestrus dan diestrus. Perubahan-perubahan yang terjadi pada setiap periode dapat diamati dengan pemeriksaan ulas vagina (Hafez, 1970) (Tabel 1).

Ovulasi terjadi selama estrus dan didahului oleh perubahan histologi di dalam folikel yang menunjukkan adanya luteinisasi awal.

Masa metestrus. Stadium ini terjadi segera sesudah ovulasi dan saat di antara estrus dan diestrus. Perkawinan biasanya tidak dimungkinkah karena ovarium mengandung korpus luteum dan folikel-folikel kecil. Stadium metestrus terjadi 12 jam di mana gambaran preparat ulas vagina akan didominasi oleh sel menumpuk sebagai hasil peluruhan epitel vagina. Selain itu didapati pula sel leukosit.

Masa diestrus. Pada stadium ini terjadi regresi korpus luteum. Uterus kecil, anemik dan agak kontraktil dan mukosa vagina tipis. Stadium diestrus merupakan stadium terakhir dan terlama yaitu mencapai 57 jam yang ditandai dengan adanya sel-sel leukosit dan sel-sel epitel berinti pada ulasan preparat vagina.

Panjang satu periode siklus estrus bergantung pada korpus luteum sedangkan siklus estrus erat hubungannya dengan pengaruh gonadotropin pada ovarium dan hormon ovarium sendiri sehingga gonad dan hipofisa mempunyai peranan utama dalam pengaturan siklus estrus. Pada akhir estrus terjadi ovulasi yaitu pelepasan telur dari folikel de Graaf dan terjadinya secara spontan. Segera setelah ovulasi akan terbentuk korpus luteum di dalam folikel yang telah pecah dan mulai mensekresikan progesteron. Akan tetapi jika terjadi pelepasan luteolisin dari uterus yaitu prostaglandin F2α maka korpus luteum mengalami regresi.

Akibat dari korpus luteum yang beregresi maka progesteron akan menurun secara tajam. Hal ini berarti pencegahan produksi FSH dan LH oleh hipotalamus
dihilangkan, sehingga FSH dan LH dilepaskan ke dalam sistem portal dari hipofisa. Peristiwa ini akan menyebabkan terjadinya siklus berahi kembali.

Tabel 1. Perubahan Organ Reproduksi Selama Siklus Estrus

<table>
<thead>
<tr>
<th>Fase Siklus Estrus</th>
<th>Lama Fase (jam)</th>
<th>Ulasan Vagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proestrus Awal</td>
<td>12</td>
<td>sel-sel berinti banyak</td>
</tr>
<tr>
<td>Proestrus Akhir</td>
<td></td>
<td>sel-sel bertanduk 25%</td>
</tr>
<tr>
<td>Estrus Awal</td>
<td>12</td>
<td>sel-sel bertanduk 75%</td>
</tr>
<tr>
<td>Estrus Akhir</td>
<td></td>
<td>sel-sel menumpuk 25%</td>
</tr>
<tr>
<td>Metestrus Awal</td>
<td>12</td>
<td>sel-sel menumpuk 100%</td>
</tr>
<tr>
<td>Metestrus Akhir</td>
<td></td>
<td>sel menumpuk dan leukosit</td>
</tr>
<tr>
<td>Diestrus Awal</td>
<td>57</td>
<td>Leukosit</td>
</tr>
<tr>
<td>Diestrus Akhir</td>
<td></td>
<td>leukosit dan sel berinti</td>
</tr>
</tbody>
</table>

Gambar 1. Keadaan dinding vagina tikus selama beberapa fase siklus estrus

A. Proestrus B. Estrus C. Metestrus D. Diestrus
2.3. Sinkronisasi Estrus

Penyerentakan estrus adalah manipulasi proses reproduksi dari sekelompok hewan betina hingga mengalami peristiwa estrus secara bersamaan dalam selang waktu 2 sampai 3 hari (Hafez, 1970) atau dapat dinyatakan bahwa sinkronisasi estrus berarti pengendalian siklus estrus sedemikian rupa sehingga periode estrus dari beberapa hewan terjadi secara serentak. Siklus estrus pada semua spesies ternak diatur secara hormonal di mana panjangnya bervariasi bergantung pada spesies.

Menurut Toelihere (1979), prinsip dasar fisiologis sinkronisasi estrus adalah hambatan pelepasan Luteinizing hormone (LH) dari adenohipofisa sehingga proses pematangan folikel de Graaf terhambat. Selain itu, pengeluaran follicle stimulating hormone (FSH) juga terhambat mengakibatkan proses follikulogenesis tidak terjadi.

Sampai saat ini berbagai macam preparat sinkronisasi telah digunakan dalam upaya menyerentakkan estrus pada sekelompok hewan. Teknik sinkronisasi yang telah digunakan sangat banyak antara lain ada sinkronisasi yang diberikan secara intrauterin, intraperitoneal maupun intramuskular misalnya progesteron dalam bentuk Repositol, 100 unit oxytocin yang digunakan pada sapi untuk memperpendek siklus estrus menjadi 8 sampai 12 hari dan ada juga preparat sinkronisasi yang diberikan secara per oral misalnya MAP (6-methyl-17-acetoxypregesterone), CAP (6-chloro-6-dihydro-17-acetoxypregesterone), MAG (melengestrol acetate), DHPA (dihydroxy progesterone acetophenide)

Pemberian prostaglandin F₂a pada tikus betina merupakan salah satu teknik sinkronisasi mutakhir yang digunakan saat ini dengan maksud untuk menghilangkan
korpus luteum yang ada sebelum percobaan dan untuk menyerentakkan berahi sebelum dikawinkan.

Pemanfaatan Prostaglandin F$_{2\alpha}$ dalam Sinkronisasi Estrus

Mekanisme kerja prostaglandin F$_{2\alpha}$ dalam menggertak estrus didasarkan pada kemampuannya sebagai vasokonstrktor potensial (Horton, 1972) yang menyebabkan regresi korpus luteum, diikuti oleh penurunan kadar progesteron yang berarti hilangnya hambatan terhadap FSH (*Follicle stimulating hormone*) dan LH (*Luteinizing hormone*).

Prostaglandin F$_{2\alpha}$ mendesak aksi luteolisisnya dengan mereduksi aliran darah ovari menyebabkan darah yang mengalir ke korpus luteum berkurang sedangkan aliran darah ke stroma dan folikel meningkat sehingga menyebabkan pemutangan folikel, timbulnya estrus dan disusul ovulasi dua sampai empat hari berikutnya (Louis *et al.*, 1972).

Mekanisme Kerja Prostaglandin F$_{2\alpha}$ dalam Proses Luteolitik

Mekanisme prostaglandin F$_{2\alpha}$ dalam menginduksi luteolisis sampai kini belum dapat dipastikan. Hasil penelitian Behrman dan Hichens (1976) yang melakukan penelitian pada tikus mengatakan bahwa efek awal dari prostaglandin F$_{2\alpha}$ adalah membatasi kemampuan LH untuk meningkatkan konsentrasi cAMP (siklik adenosin monofosfat) dalam sel luteal. Akan tetapi prostaglandin tidak mempengaruhi tingkat cAMP tetapi aksinya adalah untuk mengurangi kapasitas
LH dalam menstimulasi peningkatan lebih jauh dalam cAMP. LH yang bersirkulasi akan mengikat reseptor membran pada korpus luteum sehingga menstimulasi sintesis progesteron. Prostaglandin F\textsubscript{2α} menginduksi terjadinya regresi korpus luteum dengan merangsang terbukanya rantai kolesterol pada cAMP sehingga menghasilkan penghambatan dari jalur sintesis progesteron dan pemberian prostaglandin F\textsubscript{2α} menyebabkan penurunan yang tajam pada konsentrasi plasma progesteron sebanyak 70% dalam waktu 2 jam.

Hipotesis sebelumnya yang diajukan Pharriss dan Wyngarden (1969) menyatakan bahwa prostaglandin F\textsubscript{2α} menyebabkan penyempitan vena utero ovarika sehingga sel-sel luteal mengalami kekurangan darah atau iskemia dan akhirnya lisis.

Pharriss, Tilson dan Erickson (1972) mengemukakan lima mekanisme prostaglandin F\textsubscript{2α} dalam meregresikan korpus luteum yaitu: (1) Prostaglandin F\textsubscript{2α} langsung berpengaruh pada hipofisis, (2) Prostaglandin F\textsubscript{2α} dapat menginduksi luteolysis melalui uterus dengan jalan menstimulir kontraksi uterus sehingga uterus melepaskan luteolysis uterus endogen, (3) Prostaglandin F\textsubscript{2α} langsung bekerja sebagai racun terhadap sel-sel korpus luteum, (4) Prostaglandin F\textsubscript{2α} bersifat sebagai antigonadotropin, di mana interaksi dapat terjadi pada pembuluh darah atau pada reseptor di dalam korpus luteum dan (5) Prostaglandin F\textsubscript{2α} mempengaruhi aliran darah ke ovarium.
Prostaglandin F_{2α} dan Siklus Estrus

Panjang siklus estrus pada beberapa spesies hewan bervariasi. Hal ini dikarenakan panjang dari umur korpus luteum. Pada kebanyakan spesies hewan, 4 - 6 hari pertama dari siklus estrus yang diberi prostaglandin F₂ tidak mampu secara signifikan mengubah bentuk hidup luteal. Setelah waktu tersebut, prostaglandin F_{2α} secara selektif menginduksi luteolisis, yang ditandai oleh suatu pengurangan yang tajam dalam sekresi progesteron luteal dan suatu pengembalian yang tajam ke estrus (Conley dan Ford, 1991).

Uterus menghasilkan suatu substansi yang menyebabkan luteolisis dan substansi tersebut adalah prostaglandin F_{2α} (Inskeep, 1973). Selanjutnya dikatakan bahwa umur korpus luteum sendiri dibatasi oleh uterus di mana hari-hari terakhir siklus estrus pada hewan tidak bunting, prostaglandin F_{2α} disekresikan oleh uterus ke dalam vena uterus dan mencapai ovarium secara langsung kemudian ditransfer melalui suatu mekanisme ke arteri ovarium (Goding, 1974; McCracken, et al. 1984). Setelah itu prostaglandin F_{2α} akan mengalami beberapa perubahan biokimia dan fisis yang akan berakibat langsung dalam pengurangan sintesis steroid yang berakhir dengan terjadinya luteolisis.

Loeb pada tahun 1929 pertama kali melaporkan bahwa uterus dan fungsi luteal saling berhubungan dalam melisiskan korpus luteum karena ketika dilakukan histerektomi pada marmut ternyata tidak terjadi regresi korpus luteum (Goding, 1974; Curtis-Prior, 1976).
Banyak penelitian yang mendukung pernyataan ini, yakni ditemukannya kadar prostaglandin F_{2α} dengan jumlah tinggi dalam vena uterina pada saat terjadinya luteolisis. Hal ini membuktikan bahwa prostaglandin F_{2α} dialirkan dari vena ke arteri ovarika. Pernyataan McCracken et al. (1972) menegaskan hal tersebut bahwa prostaglandin F_{2α} tinggi dalam darah vena uterina pada waktu luteolisis.

Hafs et al. (1975) juga menyatakan bahwa pemberian prostaglandin F_{2α} secara intravaginal, intramuskular dan intrauterin pada hari kelima postestrus menurunkan kadar progesteron di dalam darah satu jam setelah pemberian.
2.3.1. Sintesis prostaglandin F$_{2\alpha}$

Senyawa prostaglandin F$_{2\alpha}$ terdiri atas asam lemak 20 atom karbon yang membentuk dasar rangka cincin siklopetanza dengan dua rantai sisi yang merupakan turunan asam prostanoat dan oksidasi (Gambar 2).

![Structure of prostaglandin F$_{2\alpha}$](image)

Gambar 2. Asam prostanoat dengan atom C yang membentuk satu cincin siklopetanza dengan dua rantai sisi alifatik dan gugus karboksil.

dalam kontrol (mengalami katalisis) suatu sistem mikrosomal. Prostaglandin sintetase merupakan enzim kompleks yang khas terdapat dalam mikrosom sel dan aktivitasnya kemungkinan diatur oleh adrenalin dan *Gonad stimulating hormone* (GSH). Biosintesis dan pelepasan prostaglandin dari jaringan terjadi cepat karena respon fisiologi yang terlihat pada perubahan membran sel sebagai suatu mekanisme yang cepat (Karim, 1975).

![Diagram of prostaglandin structures](image)

Gambar 3. Perbedaan struktur cincin siklopetana antara lima tipe prostaglandin A, B, C, E, dan F.

2.3.2. Metabolisme prostaglandin F₂₀

Prostaglandin telah diisolasi dari berbagai jaringan dan organ seperti paru-paru, ginjal, hati, limpa, usus, timus, jantung, ovarium, adrenal, pankreas dan plasma semen (Toelihere, 1981).
Menurut Partodihardjo (1987), prostaglandin \(F_{2\alpha}\) dihasilkan oleh organ uterus. Prostaglandin \(F_{2\alpha}\) mengatur siklus pada hewan betina dan menyebabkan korpus luteum mengalami regresi. Prostaglandin mempunyai efek farmakologis yang kompleks. Pada kondisi tertentu, ia dapat berfungsi sebagai hormon sistemik melalui sirkulasi darah dan erat kaitannya dengan alat reproduksi dikarenakan sifatnya sebagai vasokonstriktor dan pemberian prostaglandin \(F_{2\alpha}\) dapat menyebabkan hambatan pengaliran darah secara drastis yang melalui corpora lutea beberapa spesies hewan.

2.3.3. Aktivitas Biologi Prostaglandin \(F_{2\alpha}\)

Pharriss dan Wyngarden (1969) menyatakan bahwa prostaglandin \(F_{2\alpha}\) bersifat luteolitik. Luteolisis umumnya disebabkan oleh prostaglandin \(F_{2\alpha}\) tiba di arteri ovarika melalui vena uterina (Gambar 4). Korpus luteum sangat peka terhadap prostaglandin \(F_{2\alpha}\) sehingga akan segera mengalami regresi.

Partodihardjo (1987) menerangkan bahwa untuk mencapai korpus luteum prostaglandin \(F_{2\alpha}\) dialirkan dari uterus. Zat yang dihasilkan dari uterus ini mengalir ke dalam vena uterina media, kemudian menembus vena dan arteri ovarika yang keduanya terletak berdampingan.

Kemungkinan terlibatnya mekanisme demikian dalam transfer faktor luteolitik uterina antara vena ovarian-utero dan arteri ovarika mempunyai hubungan yang luas.

BAB III
BAHAN DAN METODE PENELITIAN

3.1. Tempat dan Waktu Penelitian

3.2. Persiapan Penelitian

Tikus percobaan tersebut dipelihara dalam kandang plastik berukuran 30 cm x 20 cm x 12 cm yang dilengkapi dengan kawat kasa penutup dan dialasi dengan sekam. Selama percobaan, tikus diberikan pakan berupa campuran pelet, jagung dan kacang hijau dengan perbandingan 5:1:1. Baik pakan dan air minum diberikan ad libitum.

Pada penelitian ini tikus diberi perlakuan dengan penyuntikan secara intraperitoneal menggunakan preparat prostaglandin dalam bentuk prostaglandin F₂α.
(Reprodin, Intervet), produksi Bayer Korea Ltd dalam ampul 10 ml yang mengandung 3,0 mg Luprostiol per 1 ml.

3.2.1. Pelaksanaan Penelitian

Penelitian ini terdiri atas dua kelompok perlakuan.

Kelompok Pertama

Pada kelompok pertama ini digunakan 30 ekor tikus dan sebelum diberi perlakuan dicatat fase siklus estrus dengan pemeriksaan ulas vagina (H-0). Selanjutnya diserentakan berahinya dengan penyuntikan satu kali yang mempergunakan prostaglandin \(F_{2\alpha} \) dengan nama dagang Reprodin secara intraperitoneal dengan dosis 1000 \(\mu g/kg \) BB. Setelah itu dilakukan pengamatan siklus estrus dua kali sehari yaitu pada pukul 07.00 dan pukul 17.00 selama 3 hari berturut-turut.

Diagram pengambilan sampel

```
H-0  \[ \rightarrow \] \[ \downarrow \] H-1  H-2  H-3
    \[ \rightarrow \] \[ \downarrow \] PGF\(_{2\alpha}\) I

Ulas vagina

   \[ \rightarrow \] \[ \downarrow \] \[ \rightarrow \] \[ \downarrow \]

Ulas vagina (2x sehari)
Pag: 07.00 wib
Sore: 17.00 wib
```
Kelompok Kedua

Pada kelompok kedua dengan menggunakan 30 ekor tikus maka sebelum diberi perlakuan, dicatat fase siklus estrus dengan pemeriksaan ulas vagina. Setelah itu tikus disuntik dua kali (dengan jarak 3 hari) prostaglandin F_{2alpha} dengan nama dagang Reprodin secara intraperitoneal dengan dosis 1000 µg/kg BB. Setelah penyuntikan kedua, dilakukan pengamatan dengan pemeriksaan ulas vagina (H-0) pada tikus betina. Pengamatan siklus estrus dilakukan dua kali sehari yaitu pada pukul 07.00 dan pukul 17.00 selama 3 hari berturut-turut.

Diagram pengambilan sampel

3 hari

H-0 ↓ PGF_{2alpha} I ↓ H-1 H-2 H-3

↓ PGF_{2alpha} II ↓

Ulas vagina

Ulas vagina (2x sehari)

Pagi: 07.00 wib
Sore: 17.00 wib

3.2.2. Ulas Vagina

Pembuatan preparat ulas vagina (pap smear) dilakukan dengan menggunakan kapas lidi (cotton bud) yang dibasahi dengan NaCl fisiologis steril. Lendir atau cairan vagina yang terusap di dalam vagina tikus ditempelkan pada gelas.
objek yang sebelumnya telah dibersihkan dengan alkohol 70% kemudian diputarkan sehingga lendir merata dan tipis. Setelah itu preparat difiksasi dengan metanol 90% selama 15 menit lalu dicuci dengan aquades, kemudian preparat ulas diwarnai dengan pewarnaan Giemsa selama 30 menit. Sediaan dibiarkan mengering lalu diamati di bawah mikroskop dengan pembesaran 10x40 X.

Gambar 5. Gambaran Ulas Vagina Tikus Putih Galur Sparague-Dawley dengan Pembesaran 40x
3.3. Analisis Data

Untuk mengetahui perbandingan dan efektivitas prostaglandin F₂α dengan perlakuan penyuntikan satu kali atau dua kali dalam rangka penyerentakan estrus pada tikus betina maka dilakukan analisis data dengan uji statistik nonparametrik Kruskal Wallis dengan skoring sebagai berikut:

Nilai 0 : Fase proestrus awal
Nilai 1 : Fase proestrus akhir
Nilai 2 : Fase estrus
Nilai 3 : Fase metestrus
Nilai 4 : Fase diestrus awal
Nilai 5 : Fase diestrus akhir
BAB IV
HASIL DAN PEMBAHASAN

Pengaruh penyuntikan prostaglandin F_{2a} satu kali dan maupun dua kali pada siklus estrus disajikan pada Tabel 2.

Tabel 2. Pengaruh banyaknya penyuntikan Prostaglandin F_{2a} terhadap skoring fase siklus estrus

<table>
<thead>
<tr>
<th>Waktu diuji</th>
<th>Penyuntikan satu kali</th>
<th>Penyuntikan dua kali</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 (P)</td>
<td>1,1 (0 - 5)</td>
<td>1 (0 - 5)</td>
</tr>
<tr>
<td>H1 (S)</td>
<td>1,1 (0 - 5)</td>
<td>1,0 (0 - 5)</td>
</tr>
<tr>
<td>H2 (P)</td>
<td>1,0 (0 - 5)</td>
<td>1,0 (0 - 5)</td>
</tr>
<tr>
<td>H2 (S)</td>
<td>1,0 (0 - 5)</td>
<td>1,0 (0 - 5)</td>
</tr>
<tr>
<td>H3 (P)</td>
<td>1,1 (0 - 5)</td>
<td>1 (0 - 5)</td>
</tr>
<tr>
<td>H3 (S)*</td>
<td>0,9 (0 - 5)</td>
<td>1,2 (0 - 5)</td>
</tr>
<tr>
<td>Total</td>
<td>1,0 (0 - 5)</td>
<td>1,0 (0 - 5)</td>
</tr>
</tbody>
</table>

* = Dipengaruhi secara signifikan oleh perlakuan penyuntikan pada uji Kruskal-Wallis p<0,05

Dari Tabel 2, dapat dilihat bahwa total rataan penyuntikan satu kali dan dua kali pada tikus yang disinkronkan selama 3 hari pengamatan waktu-waktu yang diuji tidak berbeda nyata. Hasil penelitian ini menunjukkan bahwa dengan penyuntikan prostaglandin F_{2a} secara eksogen yang dilakukan dengan satu kali maupun dua kali penyuntikan tidak berpengaruh pada siklus estrus. Tidak berpengaruhnya prostaglandin F_{2a} eksogen yang diberikan dengan satu kali dan dua kali penyuntikan kemungkinan karena tikus berada dalam fase folikuler, di mana tidak terdapat korpus luteum yang menjadi sasaran prostaglandin F_{2a}.
Pemberian prostaglandin F₂α eksogen dengan perlakuan penyuntikan satu kali dan dua kali pada tikus yang disinkronisasi menunjukkan bahwa hari pertama pagi dan sore baik penyuntikan satu kali maupun dua kali tidak berbeda nyata dengan hari ke dua pagi dan sore serta hari ke tiga pagi. Secara numerik penyuntikan prostaglandin F₂α pada hari ke-1 sampai hari ke-2 baik pagi maupun sore cenderung tidak berubah. Dalam artian tidak berbeda nyata atau bisa dianggap sama. Beberapa kemungkinan yang menyebabkan tidak berpengaruhnya pemberian prostaglandin F₂α dengan cara satu kali dan dua kali suntikan adalah pertama; kemungkinan karena pada saat pemberian prostaglandin F₂α baru memasuki tahap folikuler. Hal ini menyebabkan sasaran dari prostaglandin F₂α tidak tercapai karena kerja prostaglandin F₂α bukan untuk menyeragamkan pertumbuhan dan perkembangan folikel tetapi agar korpus luteum teregresi. Kedua; respon dari masing-masing individu tikus yang hampir sama terhadap pemberian prostaglandin F₂α eksogen. Ketiga; kemungkinan karena korpus luteum yang terbentuk masih dalam pertumbuhan dimana individu tikus yang masih berada pada permulaan fase luteal tidak akan berespon terhadap prostaglandin F₂α karena daya tumbuh korpus luteum yang kuat tidak dapat dihalangi oleh prostaglandin F₂α.

Dari Tabel 2. juga menunjukkan bahwa pada hari ke-3 sore, dengan adanya perlakuan penyuntikan satu kali dan dua kali terlihat adanya perbedaan yang nyata \((p<0.05) \), walaupun tidak mempengaruhi total rataan dari 3 hari pengujian. Beberapa kemungkinan mengapa hari ke-3 sore menyebabkan perbedaan antara penyuntikan satu kali dan dua kali adalah pertama; respon individu tikus terhadap pemberian

Persentase estrus keseluruhan dari tikus-tikus yang diberi perlakuan penyuntikan prostaglandin F2α satu kali dan dua kali pada sinkronisasi estrus adalah sebesar 66,7 persen dan 100 persen (Tabel 3). Nilai respon estrus ini diperoleh dari total respon individu-individu tikus terhadap pemberian prostaglandin F2α selama 3 hari pengujian yang tampaknya bervariasi antar perlakuan.
Tabel 3. Pengaruh penyuntikan Prostaglandin F₂₀ terhadap Persentase Estrus

<table>
<thead>
<tr>
<th>Waktu diuiji</th>
<th>Perlakuan</th>
<th>Penyuntikan 1 kali Banyaknya hewan yang estrus (%)</th>
<th>Penyuntikan 2 kali Banyaknya hewan yang estrus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1(p)</td>
<td>6 (20%)</td>
<td>7 (23,3%)</td>
<td></td>
</tr>
<tr>
<td>H1(s)</td>
<td>0</td>
<td>5 (16,7%)</td>
<td></td>
</tr>
<tr>
<td>H2(p)</td>
<td>6 (20%)</td>
<td>5 (16,7%)</td>
<td></td>
</tr>
<tr>
<td>H2(s)</td>
<td>1 (3,3%)</td>
<td>1 (3,3%)</td>
<td></td>
</tr>
<tr>
<td>H3(p)</td>
<td>5 (16,7%)</td>
<td>3 (10%)</td>
<td></td>
</tr>
<tr>
<td>H3(s)</td>
<td>2 (6,7%)</td>
<td>9 (30%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20 (66,7%)</td>
<td>30 (100%)</td>
<td></td>
</tr>
</tbody>
</table>

Bila dilihat secara terperinci pada Tabel 3. di atas terlihat bahwa hewan yang estrus pada hari pertama pagi (H1-p) dengan satu kali dan dua kali penyuntikan adalah 6 ekor tikus (20%) dan 7 ekor tikus (23,3%). Baik penyuntikan satu kali maupun dua kali pada H1-p, hewan yang memperlihatkan gejala estrus tidak berbeda jauh dengan pemberian prostaglandin F₂₀ eksogen yang berbeda pada 30 ekor tikus yang disinkronisasi. Prostaglandin F₂₀ belum terlihat atau mencapai target sasaran.

Pada H1-s dengan penyuntikan satu kali tidak ada satu ekor tikuspun yang mengalami estrus sedangkan pada penyuntikan dua kali ada 5 ekor tikus yangn estrus (16,7%). Dari data hari pertama belum memperlihatkan efek prostaglandin F₂₀. Pada hari ke-2 pagi menunjukkan 6 ekor estrus (20%) setelah penyuntikan satu kali dan 5 ekor estrus (16,7%) setelah penyuntikan dua kali. Hari ke-2 sore ada 1 ekor estrus (3,3%)setelah penyuntikan satu kali dan begitu pula dengan penyuntikan dua kali yaitu sebesar 3,3%. Walaupun perlakuan penyuntikan berbeda tapi penerimaan individu tikus terhadap prostaglandin F₂₀ eksogen sama pada H2-s. Pada hari ke-3, tikus yang
estrus pada pagi hari dengan penyuntikan satu kali dan dua kali adalah 5 ekor estrus (16,7%) dan 3 ekor estrus (10%) sedangkan tikus yang estrus pada sore hari adalah 2 ekor estrus (6,7%) dan 9 ekor estrus (30%). Setelah hari pertama baru terlihat efek prostaglandin F2α.

Prostaglandin F2α hanya dapat bekerja pada fase luteal yaitu fase diestrus, sehingga jika dilakukan penyuntikan prostaglandin F2α pada fase folikuler atau di bawah hari ke-4 siklus estrus tidak akan efektif. Pemberian dua kali penyuntikan prostaglandin F2α efektif untuk menghilangkan korpus luteum dan untuk menyertakkan estrus sebelum dikawinkan. Hal ini terlihat dari total persentase estrus selama 3 hari pengujian baik pagi maupun sore hari yaitu 100% sedangkan dengan satu kali penyuntikan total hewan yang estrus adalah 66,7%.

Jika mengamati putaran siklus estrus dari penyuntikan satu kali dan dua kali, akan terlihat bahwa penyuntikan satu kali hanya berjarak 1 hari atau 24 jam sebelum dilakukan pengujian efek prostaglandin F2α selama 3 hari terhadap respon estrus.
Jadi tidak mencapai satu siklus estrus. Penyuntikan dua kali dilakukan dengan penyuntikan awal kemudian 3 hari berikutnya dilakukan penyuntikan terakhir setelah itu baru dilakukan pengujian selama 3 hari. Jadi mencapai satu setengah siklus estrus. Berarti dari segi pemberian prostaglandin F2α dan waktu yang digunakan lebih banyak tetapi ternyata total persentase estrus keseluruhan waktu uji baik penyuntikan prostaglandin F2α satu kali maupun dua kali tidak terlalu berbeda (66,7% dan 100%).

Fukui dan Roberts (1977) menyatakan bahwa penyerentakan estrus pada domba dengan satu kali dan dua kali suntikan prostaglandin F2α tidak menunjukkan perbedaan yang nyata terhadap persentase estrus (74,3% dan 72,3%). Begitu pula dengan hasil penelitian Stevenson et al. (1987) menyatakan dengan penyuntikan prostaglandin F2α satu kali mampu meregresikan korspus luteum pada sapi sebesar 59,65% dan menunjukkan respon luteolisis sehingga menyebabkan peningkatan konsepsi 7-10%.

Pada penyuntikan satu kali ada 33,3% yang tidak berespon terhadap prostaglandin F2α eksogen sedangkan penyuntikan dua kali terlihat bahwa tidak ada satu ekor tikuspun yang tida berespon terhadap prostaglandin F2α atau 100% mencapai estrus setelah 3 hari pengujian. Kesepuluh ekor tikus (33,3%) yang tidak berespon pada penyuntikan prostaglandin F2α satu kali kemungkinan sedang berada pada fase folikuler di mana tidak terdapat korspus luteum fungsional yang menjadi sasaran-prostaglandin F2α. Nancarrow dan Radford (1976) menyatakan bahwa suatu kelompok hewan besar yang mengalami siklus estrus terdapat 5% hewan yang
keadaanya berada pada tiap satu hari dari siklus tersebut, karena itu kira-kira 20-25% hewan tidak akan berespon terhadap prostaglandin F_{2α} eksogen yang telah diberikan.

Hal ini diduga disebabkan oleh kondisi fisiologik tikus yang digunakan tidak sama (tidak berada pada fase luteal) atau tikus yang disinkronkan estrusnya ada yang mempunyai siklus estrus yang tidak normal di mana bisa lebih dari 4-5 hari atau sebaliknya. Menurut Turner dan Bagnara (1995), jarak antara siklus estrus yang satu dengan siklus estrus berikutnya adalah 4-5 hari.

Persentase estrus sebesar 100% yang didapat dengan perlakuan penyuntikan prostaglandin F_{2α} dua kali yang mana setelah penyuntikan prostaglandin F_{2α} terakhir dapat menyeragamkan estrus dari respon awal masing-masing individu yang berbeda-beda. Dengan hasil yang diperoleh tersebut menandakan perkembangan ovum yang terjadi secara serentak dari sekelompok hewan sehingga menyebabkan terjadinya keserentakan estrus.
BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Sinkronisasi dengan dua kali penyuntikan prostaglandin F$_{2\alpha}$ lebih efektif bila dibandingkan dengan satu kali penyuntikan prostaglandin F$_{2\alpha}$.

5.2. Saran

1. Perlu penelitian lebih lanjut tentang persentase keberhasilan dari prostaglandin F$_{2\alpha}$.

2. Sebaiknya penyuntikan prostaglandin F$_{2\alpha}$ 1x dan 2x dilakukan pada fase luteal.
DAFTAR PUSTAKA

Goding, J.R. 1974. The demonstration that the PGF2α is the uterine luteolytic in the ewe. J. Reprod. Fertil. 38:261-271.

LAMPIRAN
Kruskal-Wallis UNTUK HARI 1 PAI

MPARZ ONE WAY PROCEDURE
Wilcoxon Scores (Rank Sums) for variable H1P
Classified by variable PERL

<table>
<thead>
<tr>
<th>PERL</th>
<th>N</th>
<th>Scores</th>
<th>Expected Under HO</th>
<th>Std Dev Under HO</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>869.500000</td>
<td>915.0</td>
<td>64.6364327</td>
<td>28.983333</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>960.500000</td>
<td>915.0</td>
<td>64.6364327</td>
<td>32.016667</td>
</tr>
</tbody>
</table>

Average Scores were used for Ties

Wilcoxon 2-Sample Test (Normal Approximation)
With Continuity Correction of .5
S = 869.500 Z = -6.69201 Prob > |Z| = 0.4863
T-Test Approx. Significance = 0.4890
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 0.49533 DF = 1 Prob > CHISQ = 0.4815

Analysis of Variance Procedure
Class Level Information
Class Levels Values
PERL 2 A B

Number of observations in data set = 60

Analysis of Variance Procedure
Duncan’s Multiple Range Test for variable: H1P
NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate
Alpha = 0.05 dfe = 55 vse= 260.946

Critical Range 6.663
Means with the same letter are not significantly different.

Duncan Grouping

<table>
<thead>
<tr>
<th>Mean</th>
<th>N</th>
<th>PERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.017</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>32.222</td>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>

Kruskal-Wallis UNTUK HARI 1 SORE

MPARZ ONE WAY PROCEDURE
Wilcoxon Scores (Rank Sums) for variable H1S
Classified by variable PERL

<table>
<thead>
<tr>
<th>PERL</th>
<th>N</th>
<th>Scores</th>
<th>Expected Under HO</th>
<th>Std Dev Under HO</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>629.500000</td>
<td>622.0</td>
<td>63.2531119</td>
<td>30.650000</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>910.500000</td>
<td>622.0</td>
<td>63.2531119</td>
<td>30.350000</td>
</tr>
</tbody>
</table>

Average Scores were used for Ties

Wilcoxon 2-Sample Test (Normal Approximation)
With Continuity Correction of .5
S = 910.500 Z = -6.06154 Prob > |Z| = 0.9966
T-Test Approx. Significance = 0.9496
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 0.00003 DF = 1 Prob > CHISQ = 0.9433

Analysis of Variance Procedure
Class Level Information
Class Levels Values
PERL 2 A B

Number of observations in data set = 60

Analysis of Variance Procedure
Duncan’s Multiple Range Test for variable: H1S
NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate
Alpha = 0.05 dfe = 55 vse= 271.6664

Critical Range 6.319
Means with the same letter are not significantly different.

Duncan Grouping

<table>
<thead>
<tr>
<th>Mean</th>
<th>N</th>
<th>PERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.650</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>30.350</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>
Kruskal-Wallis Test

Wilcoxon Scores (Rank Sums) for Variable \(H2P \)

<table>
<thead>
<tr>
<th>PERL</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected</th>
<th>Std Dev</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>905.500000</td>
<td>915.0</td>
<td>66.0026964</td>
<td>30.2166667</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>923.500000</td>
<td>915.0</td>
<td>66.0026964</td>
<td>30.7833333</td>
</tr>
</tbody>
</table>

Average Scores were Used for Ties

Wilcoxon 2-sample Test (Normal Approximation)
(with Continuity Correction of .5)
\(S = 906.500 \)
\(Z = -0.323207 \)
\(\text{Prob} > \mid Z \mid = 0.7455 \)

T-Test Approx. Significance = 0.5039

Kruskal-Wallis Test (Chi-Square Approximation)

\(CHISQ = 0.01088 \)
\(DF = 1 \)
\(\text{Prob} > CHISQ = 0.9994 \)

Analysis of Variance Procedure

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>PERL</td>
</tr>
</tbody>
</table>

Number of observations in data set = 60

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: RANK

NOTE: This test controls the \(\alpha \) experiment-wise error rate, not the \(\alpha \) comparison-wise error rate.

Alpha = 0.05

Critical Range = 8.792

Means with the same letter are not significantly different.

Duncan Grouping

<table>
<thead>
<tr>
<th>Mean</th>
<th>N</th>
<th>PERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 15.43</td>
<td>30 2</td>
<td></td>
</tr>
<tr>
<td>A 15.24</td>
<td>30 1</td>
<td></td>
</tr>
</tbody>
</table>

Kruskal-Wallis Test UNIV. HARI 2 SCORE

Wilcoxon Scores (Rank Sums) for Variable \(H2S \)

<table>
<thead>
<tr>
<th>PERL</th>
<th>N</th>
<th>Sum of Scores</th>
<th>Expected</th>
<th>Std Dev</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>231.500000</td>
<td>225.0</td>
<td>65.3290238</td>
<td>30.7833333</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>234.500000</td>
<td>225.0</td>
<td>65.3290238</td>
<td>30.2166667</td>
</tr>
</tbody>
</table>

Average Scores were Used for Ties

Wilcoxon 2-sample Test (Normal Approximation)
(with Continuity Correction of .5)
\(S = 923.500 \)
\(Z = -0.212437 \)
\(\text{Prob} > \mid Z \mid = 0.8319 \)

T-Test Approx. Significance = 0.9023

Kruskal-Wallis Test (Chi-Square Approximation)

\(CHISQ = 0.01693 \)
\(DF = 1 \)
\(\text{Prob} > CHISQ = 0.9994 \)

Analysis of Variance Procedure

<table>
<thead>
<tr>
<th>Class Level Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>PERL</td>
</tr>
</tbody>
</table>

Number of observations in data set = 60

Analysis of Variance Procedure

Duncan's Multiple Range Test for variable: RANK

NOTE: This test controls the \(\alpha \) experiment-wise error rate.

Alpha = 0.05

Critical Range = 8.792

Means with the same letter are not significantly different.

Duncan Grouping

<table>
<thead>
<tr>
<th>Mean</th>
<th>N</th>
<th>PERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 15.78</td>
<td>30 1</td>
<td></td>
</tr>
<tr>
<td>A 15.24</td>
<td>30 2</td>
<td></td>
</tr>
</tbody>
</table>
KRUSKAL WALLIS UNTUK HARI 3 PAGI

WILCOXON PROCEDURE

Wilcoxon Scores (Rank Sums) for Variable HP

<table>
<thead>
<tr>
<th>PERL</th>
<th>N</th>
<th>Expected</th>
<th>Std Dev</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>851.500000</td>
<td>915.0</td>
<td>915.0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>978.500000</td>
<td>915.0</td>
<td>915.0</td>
</tr>
</tbody>
</table>

Average Scores were Used for Ties

WILCOXON 2-Sample Test (Normal Approximation)

(with Continuity Correction of 0.5)

- Z = 851.500 2 = 0.60472 Prob > |Z| = 0.3248
- Kruskal-Wallis Test (Chi-Square Approximation)
 - CHISQ = 0.06483 DF = 1 Prob > CHISQ = 0.3210

Analysis of Variance Procedure

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERL</td>
<td>2</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Number of Observations in Data Set = 60

Duncan's Multiple Ranges Test for Variable: HAP

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate.

- Alpha = 0.05 MSE = 273.029
- Critical Range = 5.340
- Means with the same letter are not significantly different.

Duncan Grouping

<table>
<thead>
<tr>
<th>Mean</th>
<th>N</th>
<th>PERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>26.353</td>
<td>30</td>
</tr>
</tbody>
</table>

KRUSKAL WALLIS UNTUK HARI 3 SORE

WILCOXON PROCEDURE

Wilcoxon Scores (Rank Sums) for Variable HP

<table>
<thead>
<tr>
<th>PERL</th>
<th>N</th>
<th>Expected</th>
<th>Std Dev</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>1046.6</td>
<td>784.0</td>
<td>915.0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>784.0</td>
<td>915.0</td>
<td>915.0</td>
</tr>
</tbody>
</table>

WILCOXON 2-Sample Test (Normal Approximation)

(with Continuity Correction of 0.5)

- S = 1046.6 2 = 0.60472 Prob > |Z| = 0.0406
- Kruskal-Wallis Test (Chi-Square Approximation)
 - CHISQ = 0.2248 DF = 1 Prob > CHISQ = 0.0396

Analysis of Variance Procedure

<table>
<thead>
<tr>
<th>Class</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERL</td>
<td>2</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Number of Observations in Data Set = 60

Duncan's Multiple Ranges Test for Variable: HAP

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate.

- Alpha = 0.05 MSE = 255.7402
- Critical Range = 5.265
- Means with the same letter are not significantly different.

Duncan Grouping

<table>
<thead>
<tr>
<th>Mean</th>
<th>N</th>
<th>PERL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>34.867</td>
<td>30</td>
</tr>
<tr>
<td>A</td>
<td>26.133</td>
<td>30</td>
</tr>
</tbody>
</table>