PENGARUH PUPUK NITROGEN DAN PERAMBATAN TERHADAP PERTUMBUHAN DAN PRODUKSI DAUN SAGA MANIS

(Abrus precatorius L.)

Oleh
Adnan
A01499035

DEPARTEMEN BUDI DAYA PERTANIAN
FAKULTAS PERTANIAN
INSTITUT PERTANIAN BOGOR
2003
"Maka terangkanlah kepada-Ku tentang yang kamu tanam? Kamukah yang menumbuhkannya ataukah Kami yang menumbuhkannya" (QS. Al Waaqi'ah : 63-64)

Dari Anas bin Malik RA. Berkata : Rasulullah SAW bersabda : "Tiadalah bagi seorang Muslim yang menanam pohon atau menanam tanaman yang kemudian dimakan burung, manusia atau binatang ternak kecuali baginya termasuk sedekah" (HR. Bukhari)

Untuk Seluruh Keluarga Tercinta atas Kasih Sayang yang Dicurahkan
RINGKASAN

Penelitian ini bertujuan untuk mengetahui pengaruh pupuk nitrogen dan perambatan terhadap pertumbuhan dan produksi daun saga manis yang dilaksanakan di Kebun Percobaan Cikarawang IPB pada bulan Januari sampai dengan April 2003. Metode penelitian menggunakan Rancangan Petak Terbagi terdiri atas dua faktor dengan empat ulangan. Petak utama adalah perambatan dengan taraf perambatan yaitu menggunakan perambatan dan tanpa perambatan. Sedangkan anak petak adalah pupuk nitrogen dengan taraf pupuk yaitu 0, 5, 10 dan 20 g N/polybag.

Perambatan yang digunakan adalah bambu Andong dengan panjang 200 cm dan lebar 4 cm. Bagian bambu sepanjang 20 cm dimasukkan ke dalam tanah. Pupuk nitrogen diaplikasikan dua kali pada 0 dan 4 MST. Aplikasi pupuk nitrogen dilakukan secara melingkar dengan kedalaman 8 cm dari permukaan tanah di polybag dan berjarak 10 cm dari tanaman.

Hasil penelitian menunjukkan bahwa pupuk nitrogen berpengaruh meningkatkan ILD (Indeks Luas Daun), tinggi tanaman, jumlah daun dan jumlah cabang, bobot basah dan bobot kering daun, bobot basah dan bobot kering batang serta bobot basah dan bobot kering akar. Hasil tertinggi pada setiap parameter tersebut didapat pada taraf pupuk 5 g N/polybag.

Pupuk nitrogen meningkatkan bobot basah daun sebesar 229.5 % pada taraf pupuk 5 g N/polybag dan meningkatkan sebesar 115.5 % pada taraf pupuk 10 g N/polybag. Sedangkan bobot basah daun menurun sebesar 42.5 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag.

Perambatan meningkatkan ILD dan tinggi tanaman. Perambatan juga mempengaruhi kualitas daun secara visual. Hasil tertinggi parameter ILD dan tinggi tanaman didapat pada taraf faktor menggunakan perambatan.

Interaksi antara perambatan dan pupuk nitrogen berpengaruh positif terhadap tinggi tanaman. Hasil tertinggi interaksi terhadap tinggi tanaman didapat pada taraf kombinasi perlakuan menggunakan perambatan dengan pupuk 5 g N/polybag.
PENGARUH PUPUK NITROGEN DAN PERAMBATAN TERHADAP PERTUMBUHAN DAN PRODUKSI DAUN SAGA MANIS
(Abrus precatorius L.)

Skripsi
sebagai salah satu syarat
untuk memperoleh gelar Sarjana Pertanian
pada Fakultas Pertanian Institut Pertanian Bogor

Oleh
Adnan
A01499035

DEPARTEMEN BUDI DAYA PERTANIAN
FAKULTAS PERTANIAN
INSTITUT PERTANIAN BOGOR
2003
Judul : PENGARUH PUPUK NITROGEN DAN PERAMBATAN TERHADAP PERTUMBUHAN DAN PRODUKSI DAUN SAGA MANIS (Abrus precatorius L.)

Nama : Adnan
NRP : A01499035

Menyetujui,
Dosen Pembimbing

Dr. Ir. Sudradiat, MS.
NIP 130 873 228

Mengetahui,
Kepala Dinas Budi Daya Pertanian

H. Dang Sapta Purwoko, MSc.
NIP 131 404 220

Tanggal Lulus : 12 NOV 2003
RIWAYAT HIDUP

KATA PENGANTAR

Ketertarikan penulis terhadap saga manis adalah karena banyak manfaat yang dapat diambil dari tanaman ini, diantaranya adalah sebagai tanaman penghias pagar dan secara tradisional daun saga manis digunakan dalam pengobatan batuk, sariawan dan panas dalam. Penelitian ini diharapkan dapat berguna bagi pengembangan tanaman obat di Indonesia.

Dalam pembuatan dan penyelasaian skripsi ini penulis dibantu dan terinspirasikan oleh banyak pihak, diantaranya adalah:
1. Keluarga penulis yaitu Jidah Wasilah (nenek penulis) serta Abi dan Mama (orangtua penulis) yang mengenalkan tanaman ini serta setia mengobati dengan daun saga jika penulis sakit dan atas dukungan spiritual dan material dalam menyelesaikan skripsi.
2. Dr. Ir. Sudradjat, MS. yang telah mengizinkan penelitian ini dilakukan dan bimbingan selama pembuatan skripsi.
3. Ir. Ahmad Junaedi, MSi. dan Dr. Ir. Sandra A. Aziz, MS. yang telah bersedia menjadi dosen penguji serta koreksi untuk perbaikan skripsi.
4. Aris Darajat yang selalu hadir disaat kritis dan teman seperjuangan saat kuliah serta persahabatan yang dijalin.
5. Dwigita Setiyowati dan Lenti Napitupulu atas persahabatan dan bantuan pengamatan yang sangat berarti untuk pembuatan skripsi ini.
7. Awang Mahirjaya yang meminjamkan Munsell Color Chart for Plant Tissues, Cha’irul serta teman-teman di Lab kuljar yang telah membantu meminjamkan fasilitas Lab untuk penimbangan hasil panen.
8. Teman-teman KKP Kabupaten Kuningan tahun 2002 yang telah membantu mengumpulkan benih dan masukan untuk penelitian.

Terima kasih kepada semua pihak yang tidak dapat disebutkan satu persatu yang telah banyak membantu sehingga skripsi ini dapat dilaksanakan dan diselesaikan. Semoga skripsi ini dapat berguna bagi siapa saja yang memerlukan.

Bogor, November 2003

Penulis
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan</td>
<td>3</td>
</tr>
<tr>
<td>Hipotesis</td>
<td>3</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td>4</td>
</tr>
<tr>
<td>Botani</td>
<td>4</td>
</tr>
<tr>
<td>Budidaya</td>
<td>4</td>
</tr>
<tr>
<td>Farmakologi</td>
<td>7</td>
</tr>
<tr>
<td>Perambatan</td>
<td>8</td>
</tr>
<tr>
<td>Pupuk Nitrogen</td>
<td>8</td>
</tr>
<tr>
<td>Indeks Luas Daun</td>
<td>9</td>
</tr>
<tr>
<td>Analisis Tanaman</td>
<td>9</td>
</tr>
<tr>
<td>BAHAN DAN METODE</td>
<td>11</td>
</tr>
<tr>
<td>Waktu dan Tempat</td>
<td>11</td>
</tr>
<tr>
<td>Bahan dan Alat</td>
<td>11</td>
</tr>
<tr>
<td>Metode Penelitian</td>
<td>11</td>
</tr>
<tr>
<td>Pelaksanaan Penelitian</td>
<td>12</td>
</tr>
<tr>
<td>Pengamatan</td>
<td>14</td>
</tr>
<tr>
<td>HASIL DAN PEMBAHASAN</td>
<td>17</td>
</tr>
<tr>
<td>Tinggi</td>
<td>17</td>
</tr>
<tr>
<td>Jumlah Daun</td>
<td>18</td>
</tr>
<tr>
<td>Indeks Luas Daun</td>
<td>19</td>
</tr>
<tr>
<td>Jumlah Cabang</td>
<td>22</td>
</tr>
<tr>
<td>Bobot Basah dan Bobot Kering Daun</td>
<td>22</td>
</tr>
<tr>
<td>Bobot Basah dan Bobot Kering Batang</td>
<td>24</td>
</tr>
<tr>
<td>Bobot Basah dan Bobot Kering Akar</td>
<td>25</td>
</tr>
<tr>
<td>Warna Daun</td>
<td>26</td>
</tr>
<tr>
<td>Analisis Daun</td>
<td>27</td>
</tr>
<tr>
<td>Korelasi antar Parameter Pengamatan</td>
<td>27</td>
</tr>
<tr>
<td>KESIMPULAN DAN SARAN</td>
<td>29</td>
</tr>
<tr>
<td>Kesimpulan</td>
<td>29</td>
</tr>
<tr>
<td>Saran</td>
<td>29</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>31</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>34</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

Teks

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pengaruh Pupuk Nitrogen dan Perambatan terhadap Tinggi Tanaman</td>
<td>17</td>
</tr>
<tr>
<td>2.</td>
<td>Interaksi antara Pupuk Nitrogen dengan Perambatan terhadap Tinggi Tanaman</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>Pengaruh Pupuk Nitrogen terhadap ILD</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Pengaruh Pupuk Nitrogen terhadap Jumlah Cabang</td>
<td>22</td>
</tr>
</tbody>
</table>

Lampiran

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Lampiran</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rekapitulasi Sidik Ragam</td>
<td>35</td>
</tr>
<tr>
<td>2.</td>
<td>Sidik Ragam</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>Pengaruh Pupuk Nitrogen terhadap Jumlah Daun</td>
<td>38</td>
</tr>
<tr>
<td>4.</td>
<td>Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Daun</td>
<td>38</td>
</tr>
<tr>
<td>5.</td>
<td>Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Batang</td>
<td>38</td>
</tr>
<tr>
<td>6.</td>
<td>Pengaruh Pupuk Nitrogen dan Perambatan terhadap Bobot Basah dan Bobot Kering Akar</td>
<td>38</td>
</tr>
<tr>
<td>7.</td>
<td>Hasil Analisis Contoh Tanah</td>
<td>39</td>
</tr>
<tr>
<td>8.</td>
<td>Faktor Koreksi Daun</td>
<td>40</td>
</tr>
<tr>
<td>9.</td>
<td>Warna Daun (2.5 GY)</td>
<td>41</td>
</tr>
<tr>
<td>10.</td>
<td>Korelasi antar Parameter Pengamatan</td>
<td>42</td>
</tr>
<tr>
<td>11.</td>
<td>Hasil Analisis Kandungan Nitrogen Dalam Daun</td>
<td>43</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

Teks

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Grafik Pertumbuhan Jumlah Daun</td>
<td>19</td>
</tr>
<tr>
<td>2.</td>
<td>Posisi Daun Tanpa Perambatan</td>
<td>21</td>
</tr>
<tr>
<td>3.</td>
<td>Posisi Daun Menggunakan Perambatan</td>
<td>21</td>
</tr>
<tr>
<td>4.</td>
<td>Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Daun</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Batang</td>
<td>24</td>
</tr>
<tr>
<td>7.</td>
<td>Pengaruh Pupuk Nitrogen terhadap Kadar Nitrogen Daun</td>
<td>27</td>
</tr>
</tbody>
</table>

Lampiran

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Lampiran</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Denah Penelitian</td>
<td>44</td>
</tr>
<tr>
<td>2.</td>
<td>Bentuk Perambatan</td>
<td>45</td>
</tr>
<tr>
<td>3.</td>
<td>Hasil Panen Tanpa Perambatan</td>
<td>45</td>
</tr>
<tr>
<td>4.</td>
<td>Hasil Panen Menggunakan Perambatan</td>
<td>46</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Saga manis (Abrus precatorius L.) merupakan tanaman obat asli Indonesia yang telah dikenal luas oleh masyarakat umum. Masyarakat biasanya menanam saga manis merambat pada pohon sebagai semak atau merambat pada pagar (Purwantoro dan Roemantyo, 1993). Tanaman ini dapat bernilai estetik jika dirambatkan pada pagar rumah.

Selain berfungsi sebagai tanaman hias, masyarakat telah memanfaatkan daun saga manis sejak lama untuk obat batuk dan anti sariawan (BPPP, 1985; Soeparto, 1999). Sebagai salah satu bagian dari ramuan obat tradisional, saga manis perlu terus dilestarikan dan dikembangkan pemanfaatannya dalam dunia pengobatan modern.

Glisirizin juga digunakan dalam industri pangan. Sait et al. (1993) menyatakan bahwa glisirizin dapat dibuat menjadi pemanis rendah kalori. Pembuatan pemanis tersebut potensial dikembangkan menjadi kegiatan industri rumah tangga.

Sementara ini untuk memenuhi kebutuhan industri farmasi, glisirizin diperoleh dari ekstrak rimpang dan akar *Glycyrrhiza glabra* yang dikenal dengan nama kayu manis cina. Bahan tanaman tersebut masih diimpor dari luar negeri (Sait et al., 1993). Peluang pasar terbuka bagi saga manis karena glisirizin yang berasal dari daun saga manis dapat menggantikan glisirizin yang berasal dari *Glycyrrhiza glabra*.

Walaupun saga manis sering ditanam untuk keperluan industri farmasi dan pembuatan pemanis buatan, data statistik produksi tidak didapatkan (Lemmens dan Breteler, 1999). Bagaimanapun juga, saga manis cukup menarik untuk diusahakan secara komersial. Salah satu perusahaan farmasi membeli daun saga manis seharga Rp 40 ribu/kg daun kering *). Untuk biji saga manis, di pasar internasional dijual dalam bentuk 1 paket berisi 10 butir dengan harga 3 Euros untuk wilayah Eropa, AU $ 4,- untuk wilayah Australia dan US $ 3.5 untuk

*) Pt. (Persero) Kimia Farma Unit Produksi Manufaktur Bandung, Juni 2001, komunikasi pribadi

Tujuan

Penelitian ini bertujuan untuk mengetahui pengaruh pupuk nitrogen dan perambatan terhadap pertumbuhan dan produksi daun saga manis.

Hipotesis

Hipotesis yang diajukan dalam penelitian ini adalah:
1. Nitrogen berpengaruh positif terhadap pertumbuhan dan produksi daun saga manis.
2. Perambatan berpengaruh positif terhadap pertumbuhan dan produksi daun saga manis.
3. Terdapat interaksi antara pupuk nitrogen dengan perambatan terhadap pertumbuhan dan produksi daun saga manis.
TINJAUAN PUSTAKA

Botani

Budidaya

Syarat Tumbuh

Saga manis tersebar luas di kawasan tropik dan sub tropik dan dari pantai sampai ketinggian 1 500 m di atas permukaan laut, terutama pada tempat agak kering. Tanaman ini tidak memilih jenis tanah. Curah hujan yang optimum antara 1 500-4 500 mm/tahun. Saga manis dapat tumbuh baik di tempat terbuka dan sedikit ternaung (Anonim, 1977; Lemmens dan Breteler, 1999).
Dormansi

Penanaman

tanaman saga manis banyak dijumpai di antara tanaman karet sebagai tanaman penutup tanah.

Pemupukan

Suhardiman dan Trisnawati (1993) menyarankan agar dilakukan penelitian ulang terhadap pengaruh jarak tanam dan pupuk nitrogen terhadap hasil dan kualitas daun saga manis. Pupuk nitrogen yang diberikan adalah 300 kg N/ha dengan jarak tanam saga manis 40 cm x 60 cm.

Hama dan Penyakit

Penyakit saga manis yang membahayakan dan mematikan adalah penyakit busuk batang yang disebabkan oleh jamur *Rhizoctonia solani*. Jamur ini merupakan penyakit yang ditularkan lewat tanah. Kebutuhan penanggulangan penyakit ini secara khusus belum terasa mendesak karena saga manis dapat diperbanyak dengan cara menambahkannya pada tanaman pagar rumah atau halaman. Penyakit ini belum dinilai berbahaya bagi produksi saga manis (Nurawan et al., 1993).

Nurawan dan Hadad (1993) dalam penelitiannya menemukan penyakit busuk batang saga manis yang disebabkan 3 jenis jamur *Fusarium* sp. dan 1 jenis *Rhizoctonia* sp. Jamur *Fusarium* sp. terdapat hampir pada setiap gejala serangan penyakit dan bekas serangan hama penggerek batang. Serangan penyakit ini akan menyebabkan batang menjadi kering di bagian tengah.
Panen dan Produksi

Emmyzar dan Rahmat (1993) menyarankan panen pertama dilakukan setelah tanaman berumur 6-8 bulan. Cara panen daun dilakukan dengan memangkasan tanaman setinggi 25-30 cm di atas permukaan tanah. Hasil tiap tahun dengan 4-6 kali panen adalah 4.7 ton daun dan ranting basah yang setara dengan 5.6-9.8 kuinal daun kering/ha. Rendemen bobot basah daun ke bobot kering daun adalah 14 %. Panen akar dapat dilakukan sesudah tanaman berumur 2.5-3 tahun dengan hasil bobot basah akar yaitu 25-35 kuinal/ha.

BPPP (1985) menyatakan bahwa cara panen dengan pemangkasan lebih baik daripada dengan pemetikan karena dapat meningkatkan produksi daun sebesar 26 % dan lebih mudah dikerjakan. Tanaman yang dipangkas lebih banyak dan lebih cepat bertunas. Produksi daun pada tahun pertama meningkat dari panen pertama sampai dengan panen ke empat, setelah itu produksi daun mulai menurun.

Pada penelitian tentang cara dan interval panen daun saga yang dilakukan Djauharinya dan Emmyzar (1993), panen pertama dilakukan 3 bulan setelah tanam. Perlakuan dengan cara dipangkas setiap 4 minggu sekali sampai tanaman berumur 6 bulan setelah tanam memberikan bobot daun kering tertinggi.

Farmakologi

Sundari et al. (1993) menyatakan bahwa kandungan glisirizin (C_{42}H_{62}O_{16}) dalam daun saga manis mempunyai efek farmakologi sebagai ekspекторan yaitu untuk mempermudah pengeluaran sekret pada penyakit bronkitis dan batuk. Sebagai laksansia lemah, glisirizin digunakan sebagai suplemen dengan daun senna untuk mengosongkan usus sebelum operasi, membersihkan usus sebelum dilakukan pemeriksaan radiologi, mengurangi rasa sakit sewaktu defaksi, mengurangi konstipasi pada waktu hamil, membantu mempercepat ekskresi bahan-bahan berbahaya pada kasus keracunan, mempercepat ekstraksi parasit dan digunakan pada penderita gangguan motilitas usus akibat pemakaian obat tertentu. Sebagai diuretik, glisirizin berguna memperbanyak pengeluaran urin pada keadaan tertentu seperti hipertensi dan batu ginjal. Sebagai flavoring agent, glisirizin digunakan untuk menutupi rasa tidak enak dari obat tertentu.

Perambatan

Pupuk Nitrogen

yang relatif pendek mempergunakan dosis pupuk nitrogen lebih rendah secara
efisien daripada tanaman yang berperawakan tinggi.

Foth (1988) menyatakan bahwa pengaruh nitrogen pada tanaman adalah
menaikkan pertumbuhan dengan cepat. Peningkatan pertumbuhan vegetatif akibat
pemberian nitrogen tidak berubah bila phosphor, kalium dan unsur penting
lainnya tidak tersedia dalam jumlah yang cukup. Pemberian nitrogen dalam
jumlah cukup selama awal kehidupan tanaman dapat memacu pertumbuhan.
Persediaan nitrogen yang besar mendorong produksi dan jaringan sukulent yang
lunak. Jaringan sukulent peka terhadap kerusakan mekanis dan serangan penyakit.

Indeks Luas Daun

Sitompul dan Guritno (1995) menyatakan bahwa pemilihan metode
penghitungan luas daun tergantung pada alat yang tersedia dan tingkat ketelitian
yang diinginkan. Prinsip dasar pemilihan metode yaitu metode yang paling mudah
diterapkan dengan hasil pengamatan yang cukup dapat dipercaya adalah yang
paling baik. Luas daun dapat ditaksir dengan mengukur panjang dan lebar daun
untuk bentuk daun yang teratur. Kelebihan metode ini adalah tidak merusak
tanaman.

Kerapatan daun berhubungan erat dengan populasi tanaman atau jarak
tanam. Semakin rapat jarak antar tanaman, semakin tinggi kerapatan di antara
daun dan semakin sedikit cahaya yang sampai ke lapisan daun bawah. Nilai ILD
> 1 menggambarkan adanya saling menaungi di antara daun pada lapisan bawah
tajuk serta mendapat cahaya yang kurang dan menyebabkan laju fotosintesis yang
lebih rendah daripada daun yang tidak ternaungi. Namun nilai ILD ≤ 1 tidak
berarti tanpa naungan. Hal ini tergantung pada bentuk dan posisi daun.

Analisis Tanaman

Menurut Whitney et al. (1997) analisis tanaman merupakan alat diagnostik
dan peramalan yang berguna jika suatu konsentrasi hara tertentu dapat
dihubungkan dengan konsentrasi hara yang diperlukan untuk mendapatkan hasil
yang maksimum. Korelasi konsentrasi hara dengan hasil tanaman dapat dilakukan
melalui teknik statistik yang sesuai. Salah satu cara analisis tanaman adalah
dengan melakukan analisis daun.

Interpretasi analisis tanaman dilakukan dengan cara membandingkan
konsentrasi hara dalam contoh tanaman dengan konsetrasi hara yang diketahui
cukup yang telah ditetapkan sebelumnya. Penentuan ambang batas mengikuti
skala kahat jika konsentrasi hara < 80 % dari hasil maksimum, rendah jika
konsentrasi hara antara 80 - 90 % dari hasil maksimum, cukup jika konsentrasi
hara > 90 - 100 % dari hasil maksimum serta berlebih jika konsentrasi hara
> 100 % dari hasil maksimum.
BAHAN DAN METODE

Waktu dan Tempat

Bahan dan Alat

Bahan yang digunakan adalah benih saga manis yang berasal dari kelurahan Cigugur, kecamatan Cigugur, kabupaten Kuningan pada ketinggian tempat 600 - 700 m dpl yang dipanen pada tanggal panen 30 Juni 2002. Pupuk dasar yang digunakan adalah 10 g P₂O₅/polybag, 10 g K₂O/polybag dan pupuk kandang ayam 250 ml/polybag. Pupuk nitrogen diberikan sesuai dosis penelitian yaitu 0, 5, 10 dan 20 g N/polybag.

Alat yang digunakan adalah Munsell Colour Chart for Plant Tissues, timbangan analitik, oven, gunting kuku, tray plastik dan meteran. Tempat perambatan yang digunakan adalah bambu Andong.

Metode Penelitian

Penelitian menggunakan Rancangan Petak Terbagi terdiri dari dua faktor dengan empat ulangan. Perambatan sebagai petak utama yaitu R₀ : tanpa perambatan dan R₁ : menggunakan perambatan. Pupuk nitrogen sebagai anak petak yaitu P₀ : 0 g N/polybag, P₁ : 5 g N/polybag, P₂ : 10 g N/polybag dan P₃ : 20 g N/polybag. Setiap unit penelitian terdiri dari lima tanaman sehingga jumlah seluruh tanaman pada penelitian ini adalah 160 tanaman.

Model rancangan penelitian ini adalah :

\[\hat{Y}_{ij} = \mu + U_k + R_i + \delta_{ik} + P_j + (RP)_{ij} + \varepsilon_{ijk} \]

i = 1, 2 (perlakuan perambatan)
\[j = 1, 2, 3, 4 \text{ (perlakuan pemupukan)} \]
\[k = 1, 2, 3, 4 \text{ (ulangan)} \]

Keterangan:

\[Y_{ijk} = \text{pengaruh percobaan ulangan ke-k dengan taraf perambatan ke-i dan taraf pupuk nitrogen ke-j} \]
\[\mu = \text{rataan umum} \]
\[U_{ik} = \text{pengaruh ulangan ke-k} \]
\[R_{i} = \text{pengaruh perambatan ke-i} \]
\[\delta_{ik} = \text{galat percobaan dari perambatan ke-i dalam ulangan ke-k} \]
\[P_{j} = \text{pengaruh taraf pupuk nitrogen ke-j} \]

\[(RP)_{ij} = \text{pengaruh interaksi taraf perambatan ke-i dengan pengaruh taraf pupuk nitrogen ke-j} \]

\[e_{ijk} = \text{galat percobaan dari ulangan ke-k dengan taraf perambatan ke-i dan dosis pupuk nitrogen ke-j} \]

Analisis sidik ragam dilakukan dengan uji F pada taraf kesalahan 5 \% pada setiap parameter pengamatan kecuali warna daun, analisis daun dan analisis tanah. Parameter yang menunjukkan perbedaan nyata akan dilanjutkan dengan analisis Uji Jarak Ganda Duncan (UJGD) pada taraf kesalahan 5 \%.

Pelaksanaan Penelitian

Pemecahan Dormansi

Benih membesar beberapa kali dari ukuran normalnya pada saat berkecambah karena proses imbibisi. Kemudian radikula keluar setelah 5 hari berada di media perkecambahan. Benih yang telah keluar radikula dipindah ke bumbungan kertas dengan ukuran panjang 7.5 cm dan diameter 2 cm. Media

Persiapan Lahan

Lahan dibersihkan dari gulma satu minggu sebelum tanam. Gulma dibersihkan dengan cara mekanik yaitu menggunakan parang dan pacul. Tanah yang telah terbuka akibat pembersihan gulma ditutup menggunakan mulsa dari jerami untuk menghambat pertumbuhan gulma.

Ajir dari bambu sebagai tempat perambatan dibuat setinggi 200 cm dan lebar 4 cm. Bagian 20 cm dari bambu dimasukkan ke dalam tanah. Pemasangan perambatan mengikuti denah penelitian.

Tahap selanjutnya adalah memasukkan tanah ke dalam polybag. Polybag berukuran 35 cm x 40 cm dengan diameter 22.2 cm dan volume maksimum 9200 ml. Polybag yang telah diisi tanah diletakkan pada lahan penelitian menurut denah penelitian dengan jarak 60 cm x 40 cm.

Penanaman

Bibit yang ditanam di polybag adalah bibit yang berpenampilan baik yaitu batang vigor dengan 3 daun terbuka sempurna. Bibit memiliki daun berwarna hijau terang.

Seluruh pupuk dasar diberikan dengan cara melingkar di sekeliling tanaman berjarak 10 cm dengan kedalaman 8 cm dari permukaan tanah di polybag. Pupuk nitrogen sebagai perlakuan diberikan setengah dosis saat penanaman. Sisa pupuk nitrogen diberikan pada saat 4 Minggu Setelah Tanam (MST).

Pemeliharaan Tanaman

Pengendalian gulma pada polybag dilakukan seminggu dua kali. Pengendalian gulma pada lahan dilakukan pada bulan ke satu dan bulan ke dua
setelah tanam. Penyiraman dilakukan jika tidak terjadi hujan. Pengendalian hama dan penyakit tidak dilakukan.

Panen

Panen dilakukan pada 12 MST. Pada saat panen, daun dipisahkan dari batang dan akar. Panen daun dilakukan dengan cara dipipil.

Pengamatan

Pengamatan dilakukan pada setiap tanaman. Parameter yang diamati pada penelitian ini adalah sebagai berikut:

3. Indeks Luas Daun (ILD), dihitung dengan menggunakan rumus:

\[
ILD = \frac{LD}{A}
\]

keterangan :
LD = luas daun majemuk setiap tanaman
A = luas tanah yang dicakup tanaman tersebut (jarak tanam)
Luas daun majemuk setiap tanaman dihitung dengan mengalikan rata-rata luas satu daun majemuk dengan jumlah daun. Rata-rata luas satu daun majemuk didapat dari menghitung luas anak daun dari tiga daun majemuk setiap tanaman. Luas anak daun dalam satu daun majemuk dianggap konstan. Luas anak daun ditaksir dengan menghitung jumlah anak daun dan mengukur
panjang dan lebar anak daun yang disebut dengan metode panjang kali lebar. Perhitungan luas anak daun berdasarkan pada persamaan:

$$LD = P \times L \times c$$

keterangan:
P = panjang anak daun
L = lebar anak daun
c = konstanta

Harga konstanta didapatkan dengan menggunakan metode millimeter blok. Hasil penghitungan metode millimeter blok dapat dilihat pada Tabel Lampiran 3. Luas anak daun ditaksir berdasarkan jumlah kotak yang terdapat di dalam pola anak daun yaitu:

$$LD = n \times LK$$

terangkan:
n = jumlah kotak
LK = luas setiap kotak (mm2)

Kotak yang dipotong gambar dimasukkan dalam perhitungan jika mempunyai ukuran ≥ 0.5 ukuran acuan. Jumlah anak daun sampel diambil 30 helai dengan ukuran panjang dan lebar yang bervariasi. Pengamatan yang dilakukan adalah menghitung jumlah anak daun dan panjang kali lebar anak daun. Pengukuran dilakukan setiap minggu dari mulai tanam sampai waktu panen. Setiap tanaman diukur tiga contoh daun majemuk. Pengukuran tiga contoh daun majemuk diperoleh dari daun majemuk pada bagian bawah, tengah dan atas tanaman secara acak.

5. Warna daun, warna daun yang diukur adalah warna yang dominan pada setiap tanaman. Pengamatan dilakukan pada 8 dan 12 MST. Pengamatan warna daun menggunakan *Munsell Colour Chart for Plant Tissues*.

6. Bobot basah dan bobot kering daun, daun dipetik mulai dari petiole. Daun ditimbang untuk mendapatkan bobot basah, setelah itu daun dikerlingkan
menggunakan oven dengan suhu 80 °C selama 2 hari untuk mendapatkan bobot kering. Daun mengeluarkan bau yang khas, berwarna coklat dan jika diremas mudah hancur setelah dikeringkan. Bobot basah dan bobot kering daun dihitung dalam satuan gram.

10. Analisis daun, pengambilan daun dicampur dari empat ulangan pada setiap unit penelitian. Analisis daun berguna untuk mengetahui kadar nitrogen dalam daun serta penentuan ambang batas kecukupan unsur hara tersebut terhadap produksi daun.
HASIL DAN PEMBAHASAN

Tinggi

Berdasarkan sidik ragam perlakuan perambatan berpengaruh sangat nyata pada 12 MST serta berpengaruh nyata pada 10 dan 11 MST (Tabel Lampiran 1). Perlakuan menggunakan perambatan berpengaruh meningkatkan tinggi tanaman sebesar 29.4 % jika dibandingkan perlakuan tanpa menggunakan perambatan pada 12 MST (Tabel 1).

Pada sidik ragam terlihat bahwa perlakuan pupuk nitrogen berpengaruh sangat nyata pada 2, 5, 6, 7, 8, 9, 10, 11 dan 12 MST serta berpengaruh nyata pada 3 MST (Tabel Lampiran 1). Pada akhir penelitian pupuk nitrogen berpengaruh terhadap tinggi tanaman yaitu meningkatkan sebesar 29.6 % pada taraf pupuk 5 g N/polybag, menurunkan sebesar 14.3 % pada taraf pupuk 10 g N/polybag dan menurunkan sebesar 58.0 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Tabel 1).

Tabel 1. Pengaruh Pupuk Nitrogen dan Perambatan terhadap Tinggi Tanaman

<table>
<thead>
<tr>
<th>MST</th>
<th>Dengan Perambatan</th>
<th>Tanpa Perambatan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>10</td>
<td>81.9a</td>
<td>61.8b</td>
</tr>
<tr>
<td>11</td>
<td>94.8a</td>
<td>70.8b</td>
</tr>
<tr>
<td>12</td>
<td>104.7a</td>
<td>80.9b</td>
</tr>
</tbody>
</table>

Pupuk Nitrogen (g N/polybag)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>2</td>
<td>10.6a</td>
<td>10.8a</td>
<td>10.6a</td>
<td>9.2b</td>
</tr>
<tr>
<td>3</td>
<td>14.9ab</td>
<td>16.2a</td>
<td>15.7a</td>
<td>13.1b</td>
</tr>
<tr>
<td>4</td>
<td>20.2a</td>
<td>24.2a</td>
<td>23.5a</td>
<td>18.7a</td>
</tr>
<tr>
<td>5</td>
<td>31.4a</td>
<td>40.4a</td>
<td>32.9a</td>
<td>21.5a</td>
</tr>
<tr>
<td>6</td>
<td>45.2a</td>
<td>59.1a</td>
<td>43.1a</td>
<td>23.0a</td>
</tr>
<tr>
<td>7</td>
<td>58.1a</td>
<td>71.8a</td>
<td>51.2a</td>
<td>25.6a</td>
</tr>
<tr>
<td>8</td>
<td>64.4ab</td>
<td>77.1a</td>
<td>55.9b</td>
<td>28.2a</td>
</tr>
<tr>
<td>9</td>
<td>71.6a</td>
<td>83.3a</td>
<td>60.6a</td>
<td>31.2a</td>
</tr>
<tr>
<td>10</td>
<td>83.4a</td>
<td>100.5a</td>
<td>66.5a</td>
<td>37.6a</td>
</tr>
<tr>
<td>11</td>
<td>92.6a</td>
<td>122.1a</td>
<td>76.2a</td>
<td>40.5a</td>
</tr>
<tr>
<td>12</td>
<td>103.9a</td>
<td>134.7a</td>
<td>89.0b</td>
<td>43.6a</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti huruf sama pada baris yang sama tidak berbeda nyata pada UJGD 5 %.

Interaksi antara perlakuan perambatan dan pupuk nitrogen berpengaruh nyata pada 11 dan 12 MST (Tabel Lampiran 1). Pada 12 MST nilai tertinggi
didapat pada interaksi perlakuan menggunakan perambatan dengan pupuk 5 g N/polybag dengan rata-rata tinggi 158.0 cm serta berbeda nyata dengan perlakuan lainnya (Tabel 2).

Tabel 2. Interaksi antara Pupuk Nitrogen dengan Perambatan terhadap Tinggi Tanaman

<table>
<thead>
<tr>
<th>MST</th>
<th>Perambatan</th>
<th>Pupuk Nitrogen (g N/polybag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Dengan Perambatan</td>
<td>111.7<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>TANpa Perambatan</td>
<td>73.4<sup>de</sup></td>
</tr>
<tr>
<td>12</td>
<td>Dengan Perambatan</td>
<td>125.7<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>TANpa Perambatan</td>
<td>82.1<sup>de</sup></td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti huruf sama tidak berbeda nyata pada UJGD 5 %.

Jumlah Daun

Hasil sidik ragam menunjukkan bahwa perlakuan perambatan tidak berpengaruh nyata terhadap jumlah daun. Tidak terdapat interaksi antara perambatan dengan pupuk nitrogen terhadap jumlah daun (Tabel Lampiran 1).

Perlakuan pupuk nitrogen berpengaruh sangat nyata pada 5, 6, 7, 8, 9, 10, 11 dan 12 MST serta berpengaruh nyata pada 2 dan 4 MST (Tabel Lampiran 1). Pada 12 MST pupuk nitrogen berpengaruh terhadap jumlah daun yaitu meningkatkan sebesar 111.6 % pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 39.9 % pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 55.0 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Tabel Lampiran 3).
Gambar 1. Grafik Pertumbuhan Jumlah Daun

Pembentukan daun tanaman menggunakan sebagian besar karbohidrat yang dibentuknya. Pembentukan daun menggunakan karbohidrat pada proses fotosintesis dan respirasi melibatkan senyawa yang disebut kofaktor enzim yang mengandung unsur nitrogen. Penambahan nitrogen diharapkan menambah pembentukan kofaktor enzim yang akan menyebabkan pembentukan dan pemakaian karbohidrat bertambah. Hal ini akan menyebabkan pembentukan daun bertambah banyak seiring dengan penambahan nitrogen (Harjadi, 1996; Prawiranata et al., 1995).

Indeks Luas Daun

Dari sidik ragam terlihat bahwa perlakuan perambatan memberikan pengaruh nyata terhadap indeks luas daun (ILD) pada 11 dan 12 MST (Tabel Lampiran 1). Pada 12 MST perlakuan perambatan meningkatkan ILD sebesar 23.7 % jika dibandingkan tanpa perambatan (Tabel 2). Pengaruh ini diduga karena posisi daun pada perlakuan dengan perambatan berada pada satu garis (Gambar 2). Namun posisi daun pada perlakuan tanpa perambatan dalam keadaan menyebar (Gambar 3). Hal ini menyebabkan daun pada perlakuan menggunakan perambatan relatif lebih ternaungi daripada perlakuan tanpa perambatan. Akibatnya pada perlakuan menggunakan perambatan daun melebar sebagai respon naungan. Keadaan saling menaungi di antara daun tidak dapat dihindari.
sejalan dengan penambahan umur tanaman. Hal ini diduga menyebabkan perlakuan perambatan memberikan ILD berbeda nyata pada 11 dan 12 MST (Sitompul dan Guritno, 1995).

Perlakuan pupuk nitrogen berpengaruh sangat nyata pada 4, 5, 6, 7, 8, 9, 10, 11 dan 12 MST serta berpengaruh nyata pada 3 MST (Tabel Lampiran 1). Pada 12 MST pupuk nitrogen berpengaruh terhadap ILD yaitu meningkatkan sebesar 132.3 % pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 40.2 % pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 24.3 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Tabel 3).

Tabel 3. Pengaruh Pupuk Nitrogen dan Perambatan Terhadap ILD

<table>
<thead>
<tr>
<th>MST</th>
<th>Perambatan</th>
<th>Dengan Perambatan</th>
<th>Tanpa Perambatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.493<sup>a</sup></td>
<td>0.493<sup>a</sup></td>
<td>0.652<sup>a</sup></td>
</tr>
<tr>
<td>12</td>
<td>0.652<sup>a</sup></td>
<td>0.652<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pupuk Nitrogen (g N/polybag)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.025<sup>b</sup></td>
<td>0.027<sup>*</sup></td>
<td>0.026<sup>*</sup></td>
<td>0.021<sup>b</sup></td>
</tr>
<tr>
<td>4</td>
<td>0.032<sup>ab</sup></td>
<td>0.036<sup>ab</sup></td>
<td>0.034<sup>ab</sup></td>
<td>0.029<sup>b</sup></td>
</tr>
<tr>
<td>5</td>
<td>0.050<sup>ab</sup></td>
<td>0.053<sup>ab</sup></td>
<td>0.040<sup>b</sup></td>
<td>0.025<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>0.070<sup>ab</sup></td>
<td>0.076<sup>ab</sup></td>
<td>0.055<sup>b</sup></td>
<td>0.030<sup>c</sup></td>
</tr>
<tr>
<td>7</td>
<td>0.113<sup>ab</sup></td>
<td>0.145<sup>ab</sup></td>
<td>0.092<sup>b</sup></td>
<td>0.034<sup>c</sup></td>
</tr>
<tr>
<td>8</td>
<td>0.150<sup>ab</sup></td>
<td>0.211<sup>b</sup></td>
<td>0.123<sup>b</sup></td>
<td>0.041<sup>c</sup></td>
</tr>
<tr>
<td>9</td>
<td>0.210<sup>ab</sup></td>
<td>0.355<sup>ab</sup></td>
<td>0.210<sup>b</sup></td>
<td>0.069<sup>c</sup></td>
</tr>
<tr>
<td>10</td>
<td>0.254<sup>ab</sup></td>
<td>0.505<sup>b</sup></td>
<td>0.290<sup>b</sup></td>
<td>0.098<sup>c</sup></td>
</tr>
<tr>
<td>11</td>
<td>0.365<sup>ab</sup></td>
<td>0.812<sup>b</sup></td>
<td>0.471<sup>b</sup></td>
<td>0.142<sup>c</sup></td>
</tr>
<tr>
<td>12</td>
<td>0.455<sup>ab</sup></td>
<td>1.057<sup>b</sup></td>
<td>0.638<sup>b</sup></td>
<td>0.212<sup>c</sup></td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata pada UJGD 5 %.

Interaksi antara pengaruh perambatan dengan pupuk nitrogen tidak memberikan pengaruh nyata terhadap ILD. Hal ini diduga karena terdapat faktor lain yang mempengaruhi ILD yaitu naungan. Tanaman yang menggunakan perambatan maupun tanpa perambatan terkena bayangan yang berasal dari bambu sebagai tempat perambatan. Faktor ini diduga menyebabkan interaksi karena pengaruh perlakuan menjadi bias.
Gambar 2. Posisi Daun Tanpa Perambatan

Gambar 3. Posisi Daun Menggunakan Perambatan
Jumlah Cabang

Perlakuan perambatan tidak berpengaruh nyata terhadap jumlah cabang. Tidak terdapat interaksi antara pengaruh perambatan dengan pupuk nitrogen terhadap jumlah cabang (Tabel Lampiran 1). Tampaknya jumlah cabang lebih dipengaruhi oleh perlakuan mekanik seperti pada pemangkasan (Djauhariya dan Emmyzar, 1993).

Berdasarkan sidik ragam perlakuan pupuk nitrogen berpengaruh nyata pada 8, 10 dan 12 MST. Dari UJGD terlihat bahwa hasil tertinggi pada 12 MST didapat pada taraf pupuk 5 g N/polybag dengan rata-rata jumlah cabang 11.2 dan berbeda nyata dengan taraf pupuk nitrogen lainnya kecuali dengan taraf pupuk 10 g N/polybag (Tabel 4).

Tabel 4. Pengaruh Pupuk Nitrogen terhadap Jumlah Cabang

<table>
<thead>
<tr>
<th>MST</th>
<th>Pupuk Nitrogen (g N/polybag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1.6a</td>
</tr>
<tr>
<td>10</td>
<td>3.9a</td>
</tr>
<tr>
<td>12</td>
<td>5.3b</td>
</tr>
</tbody>
</table>

Keterangan : angka yang diikuti huruf yang sama pada baris yang sama tidak berbeda nyata pada UJGD 5%.

Bobot Basah dan Bobot Kering Daun

Perlakuan perambatan tidak memberikan pengaruh nyata terhadap bobot basah dan bobot kering daun. Tidak terdapat interaksi antara pengaruh perambatan dengan pupuk nitrogen terhadap bobot basah dan bobot kering daun.

Berdasarkan sidik ragam, perlakuan pupuk nitrogen berpengaruh sangat nyata terhadap bobot basah dan bobot kering daun (Tabel Lampiran 1). Pengaruh pupuk nitrogen terhadap bobot basah daun yaitu meningkatkan sebesar 229.5% pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 115.5% pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 42.5% pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Gambar 4 dan Tabel Lampiran 4).

Gambar 4. Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Daun

Pengaruh pupuk nitrogen terhadap bobot kering daun yaitu meningkatkan sebesar 185.1% pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 96.6% pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 42.4% pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag.
(Gambar 4 dan Tabel Lampiran 4). Dari hasil tersebut terlihat bahwa pupuk nitrogen mempengaruhi produksi daun. Dari Gambar 4 terlihat bahwa nitrogen jika dalam keadaan kurang dapat membatasi kuantitas produksi daun sedangkan jika dalam keadaan lebih justru dapat menurunkan kuantitas produksi daun (Boswell et al., 1997).

Bobot Basah dan Bobot Kering Batang

Perlakuan perambatan tidak memberikan pengaruh nyata terhadap bobot basah dan bobot kering batang. Interaksi antara pengaruh perambatan dan pupuk nitrogen tidak memberikan pengaruh nyata terhadap bobot basah dan bobot kering batang (Tabel Lampiran 1).

Pada sidik ragam terlihat bahwa perlakuan pupuk nitrogen berpengaruh sangat nyata terhadap bobot basah dan bobot kering batang (Tabel Lampiran 1). Pengaruh pupuk nitrogen terhadap bobot basah batang yaitu meningkatkan sebesar 199.6 % pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 85.0 % pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 52.9 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Gambar 5 dan Tabel Lampiran 5).

![Diagram Bobot Basah dan Bobot Kering Batang](image)

Gambar 5. Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Batang
Pengaruh pupuk nitrogen terhadap bobot kering batang yaitu meningkatkan sebesar 179.2 % pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 73.0 % pada taraf pupuk 10 g N/polybag serta menurunkan bobot sebesar 58.0 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Gambar 5 dan Tabel Lampiran 5).

Batang sebagai bagian vegetatif dari tanaman seperti daun, memperlihatkan respon seperti daun yaitu nitrogen jika dalam keadaan kurang dapat membatasi kuantitas produksi batang sedangkan jika dalam keadaan lebih justru dapat menurunkan kuantitas produksi batang (Boswell \textit{et al.}, 1997).

Bobot Basah dan Bobot Kering Akar

Perlakuan perambatan tidak berpengaruh nyata terhadap bobot kering akar. Tidak terdapat interaksi antara pengaruh perambatan dan pupuk nitrogen terhadap bobot basah dan bobot kering akar. Berdasarkan sidik ragam, perlakuan perambatan memberikan pengaruh nyata terhadap bobot basah akar (Tabel Lampiran 1). Pengaruh tersebut diduga karena masih terdapat butir tanah pada permukaan akar saat penimbangan akibat sulitnya melepas butir tanah yang melekat pada permukaan akar.

![Diagram](image)

Gambar 6. Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Akar

Perlakuan pupuk nitrogen berpengaruh sangat nyata terhadap bobot basah dan bobot kering akar (Tabel Lampiran 1). Pengaruh pupuk nitrogen terhadap
bobot basah akar yaitu meningkatkan sebesar 135.9 % pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 32.6 % pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 56.9 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Gambar 6 dan Tabel Lampiran 6).

Pengaruh pupuk nitrogen terhadap bobot kering akar yaitu meningkatkan sebesar 128.4 % pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 28.9 % pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 58.7 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag (Gambar 6 dan Tabel Lampiran 6).

Pola bobot basah dan bobot kering akar yang relatif sama dengan bobot basah dan bobot kering daun dan batang memperlihatkan bahwa perkembangan akar mempengaruhi perkembangan tajuk. Pada dosis nitrogen yang tinggi, akar dapat mengalami perubahan bentuk atau mati dalam pita pupuk. Kandungan nitrogen tinggi memungkinkan pertumbuhan pucuk mengambil karbohidrat yang tersedia serta meningkatkan auksin yang mungkin dapat menghambat pertumbuhan akar (Gardner et al., 1991; Prawiranata et al., 1995).

Warna Daun

Perbedaan pada Value dan Croma diduga tidak disebabkan karena pengaruh pupuk nitrogen. Warna daun mungkin lebih dipengaruhi oleh faktor lain yaitu keberadaan unsur Mg. Unsur Mg terdapat sangat rendah dalam tanah (Tabel Lampiran 7). Unsur Mg dalam pembentukan klorofil sebagai pembentuk warna hijau daun dibandingkan N adalah 1:4 (Prawiranata et al., 1995). Jadi diduga Mg
berperan sebagai unsur pembatas pada pembentukan klorofil sebagai pembentuk warna hijau daun pada penelitian ini.

Analisis Daun

Dari hasil analisis daun ini belum dapat ditentukan ambang batas kecukupan hara. Jika ambang batas kecukupan hara dapat ditentukan, maka analisis ini akan berguna untuk menaksir tingkat produksi yang akan didapat. Jika kondisi nitrogen tidak dalam keadaan optimum, dapat diketahui berapa kebutuhan penambahan dosis pupuk nitrogen yang diperlukan (Whitney et al., 1997).

![Gambar 7. Pengaruh Pupuk Nitrogen terhadap Kadar Nitrogen Daun](image)

Korelasi antar Parameter Pengamatan

meningkatkan parameter yang diinginkan dapat dengan cara memodifikasi parameter lain yang secara korelasi berhubungan kuat.

Dari Tabel Lampiran 10 dapat dilihat bahwa bobot basah dan bobot kering daun berkorelasi positif terhadap parameter bobot basah dan bobot kering batang, bobot basah dan bobot kering kering akar, tinggi tanaman pada 12 MST, jumlah cabang pada 12 MST, jumlah daun pada 12 MST dan ILD pada 12 MST. Korelasi bobot basah dan bobot kering daun terhadap tinggi tanaman pada 12 MST bernilai relatif kecil dibandingkan terhadap parameter lain yaitu 0.78 dan 0.79. Hal ini dapat dipahami karena pada daerah pemanjiangan pada pucuk tanaman, daun belum terbuka sempurna serta belum terjadi penimbunan hasil fotosintesis. Korelasi tinggi tanaman pada 12 MST terhadap parameter lain juga relatif lebih kecil. Hal ini berimplikasi bahwa parameter tinggi tanaman kurang dapat diandalkan dibandingkan parameter lainnya untuk menggambarkan tingkat produksi daun.

Korelasi jumlah daun pada 12 MST terhadap bobot basah dan bobot kering daun bernilai 0.96 dan 0.97. Hal ini berarti bahwa makin banyak jumlah daun dapat diharapkan bobot basah dan bobot daun kering makin meningkat. Jumlah daun dapat diandalkan untuk menggambarkan tingkat produksi daun. Hanya saja sulit dilakukan karena jumlah daun relatif banyak setiap tanaman dan bentuk daun yang kecil menyulitkan penghitungan.

Korelasi jumlah cabang terhadap bobot basah dan bobot kering daun bernilai 0.90 dan 0.92. Hal ini berarti bahwa makin banyak jumlah cabang dapat diharapkan bobot basah dan bobot kering daun makin meningkat. Jumlah cabang dapat ditingkatkan dengan cara perlakuan pemangkasan (Djauhariya dan Emmyzar, 1993).
KESIMPULAN DAN SARAN

Kesimpulan

Pupuk nitrogen berpengaruh meningkatkan terhadap tinggi tanaman, jumlah daun, ILD, jumlah cabang bobot basah dan bobot kering daun, bobot basah dan bobot kering batang serta bobot basah dan bobot kering akar. Perlakuan pupuk 5 g N/Polybag memberikan hasil tertinggi pada parameter tinggi tanaman, jumlah daun, ILD, jumlah cabang, bobot basah dan bobot kering daun, bobot basah dan bobot kering batang serta bobot basah dan bobot kering akar.

Pengaruh pupuk nitrogen terhadap bobot basah daun yaitu meningkatkan sebesar 229.5 % pada taraf pupuk 5 g N/polybag, meningkatkan sebesar 115.5 % pada taraf pupuk 10 g N/polybag serta menurunkan sebesar 42.5 % pada taraf pupuk 20 g N/polybag jika dibandingkan dengan taraf pupuk 0 g N/polybag.

Perambatan berpengaruh meningkatkan terhadap parameter pertumbuhan yaitu ILD dan tinggi tanaman. Perlakuan menggunakan perambatan memberikan hasil tertinggi terhadap parameter ILD dan tinggi tanaman. Posisi daun akibat perambatan menyebabkan daun saling menaungi. Perambatan mempengaruhi kualitas produksi daun secara visual.

Interaksi antara pengaruh perambatan dengan pupuk nitrogen terjadi pada tinggi tanaman. Perambatan menunjukkan berdirinya tanaman akibat pemberian pupuk nitrogen yang memacu pertumbuhan tinggi tanaman. Hasil tertinggi didapat pada interaksi antara perlakuan menggunakan perambatan dengan taraf pupuk 5 g N/polybag.

Saran

panen yang tepat perlu diungkap dan dikembangkan lebih lanjut sehingga tanaman ini dapat berpotensi secara ekonomi.
DAFTAR PUSTAKA

Plum Flower Brand. 2003. www.plants.usda.gov/cgi_bin/plant_profile. [02 Juli 2003]

LAMPIRAN
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rambutua</th>
<th>Pupuk N</th>
<th>Interaksi</th>
<th>KK a (%)</th>
<th>KK a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-hit</td>
<td>F-hit</td>
<td>F-hit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinggi Tanaman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 MST</td>
<td>0.00</td>
<td>tn</td>
<td>0.56</td>
<td>tn</td>
<td>0.53</td>
</tr>
<tr>
<td>1 MST</td>
<td>0.84</td>
<td>tn</td>
<td>0.22</td>
<td>tn</td>
<td>0.06</td>
</tr>
<tr>
<td>2 MST</td>
<td>1.11</td>
<td>tn</td>
<td>6.39</td>
<td>**</td>
<td>0.68</td>
</tr>
<tr>
<td>3 MST</td>
<td>0.38</td>
<td>tn</td>
<td>4.19</td>
<td>*</td>
<td>0.20</td>
</tr>
<tr>
<td>4 MST</td>
<td>4.05</td>
<td>tn</td>
<td>2.94</td>
<td>tn</td>
<td>0.12</td>
</tr>
<tr>
<td>5 MST</td>
<td>0.11</td>
<td>tn</td>
<td>6.82</td>
<td>**</td>
<td>0.77</td>
</tr>
<tr>
<td>6 MST</td>
<td>0.17</td>
<td>tn</td>
<td>11.39</td>
<td>**</td>
<td>0.82</td>
</tr>
<tr>
<td>7 MST</td>
<td>0.05</td>
<td>tn</td>
<td>25.95</td>
<td>**</td>
<td>1.46</td>
</tr>
<tr>
<td>8 MST</td>
<td>0.77</td>
<td>tn</td>
<td>21.63</td>
<td>**</td>
<td>0.94</td>
</tr>
<tr>
<td>9 MST</td>
<td>5.89</td>
<td>tn</td>
<td>21.66</td>
<td>**</td>
<td>0.91</td>
</tr>
<tr>
<td>10 MST</td>
<td>17.33</td>
<td>*</td>
<td>23.10</td>
<td>**</td>
<td>2.43</td>
</tr>
<tr>
<td>11 MST</td>
<td>30.89</td>
<td>*</td>
<td>31.80</td>
<td>**</td>
<td>4.99</td>
</tr>
<tr>
<td>12 MST</td>
<td>16.61</td>
<td>**</td>
<td>26.49</td>
<td>**</td>
<td>3.83</td>
</tr>
</tbody>
</table>

<p>| Jumlah Daun | | | | | |
| | F-hit | F-hit | F-hit | | | | | |
| 2 MST | 0.78 | tn | 3.81 | * | 0.40 | tn | 6.9 | 7.0 |
| 3 MST | 0.04 | tn | 2.97 | tn | 0.39 | tn | 7.8 | 8.7 |
| 4 MST | 0.54 | tn | 3.57 | * | 0.42 | tn | 5.6 | 9.3 |
| 5 MST | 0.47 | tn | 21.50 | ** | 1.41 | tn | 14.7 | 17.2 |
| 6 MST | 0.21 | tn | 21.14 | ** | 1.31 | tn | 20.0 | 20.6 |
| 7 MST | 1.11 | tn | 12.70 | ** | 0.54 | tn | 12.4 | 11.9 |
| 8 MST | 0.34 | tn | 14.72 | ** | 1.39 | tn | 20.4 | 36.2 |
| 9 MST | 0.77 | tn | 25.36 | ** | 1.23 | tn | 21.3 | 32.4 |
| 10 MST | 0.01 | tn | 19.10 | ** | 1.00 | tn | 23.5 | 34.8 |
| 11 MST | 1.92 | tn | 23.31 | ** | 1.23 | tn | 12.4 | 33.0 |
| 12 MST | 0.62 | tn | 24.24 | ** | 0.86 | tn | 12.0 | 32.4 |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rambut-</th>
<th>Pupuk N</th>
<th>Interaksi</th>
<th>KK a (%)</th>
<th>KK b (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-hit</td>
<td>F-hit</td>
<td>F-hit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 MST</td>
<td>1.43</td>
<td>tn</td>
<td>1.06</td>
<td>1.00</td>
<td>tn</td>
</tr>
<tr>
<td>3 MST</td>
<td>0.94</td>
<td>tn</td>
<td>4.59</td>
<td>*</td>
<td>0.26</td>
</tr>
<tr>
<td>4 MST</td>
<td>1.74</td>
<td>tn</td>
<td>2.31</td>
<td>tn</td>
<td>0.66</td>
</tr>
<tr>
<td>5 MST</td>
<td>0.45</td>
<td>tn</td>
<td>11.13</td>
<td>**</td>
<td>0.78</td>
</tr>
<tr>
<td>6 MST</td>
<td>1.16</td>
<td>tn</td>
<td>11.98</td>
<td>**</td>
<td>0.49</td>
</tr>
<tr>
<td>7 MST</td>
<td>2.76</td>
<td>tn</td>
<td>11.05</td>
<td>**</td>
<td>0.35</td>
</tr>
<tr>
<td>8 MST</td>
<td>0.44</td>
<td>tn</td>
<td>14.54</td>
<td>**</td>
<td>1.31</td>
</tr>
<tr>
<td>9 MST</td>
<td>3.13</td>
<td>tn</td>
<td>17.61</td>
<td>**</td>
<td>1.31</td>
</tr>
<tr>
<td>10 MST</td>
<td>4.73</td>
<td>tn</td>
<td>19.31</td>
<td>**</td>
<td>1.29</td>
</tr>
<tr>
<td>11 MST</td>
<td>11.60</td>
<td>*</td>
<td>34.28</td>
<td>**</td>
<td>1.41</td>
</tr>
<tr>
<td>12 MST</td>
<td>16.61</td>
<td>*</td>
<td>26.78</td>
<td>**</td>
<td>0.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumlah Cabang</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 MST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 MST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 MST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
* = Berpengaruh nyata
** = Berpengaruh sangat nyata
tn = Tidak berpengaruh nyata
* = Transformasi \(\arctan(x) \)
<table>
<thead>
<tr>
<th>Peubah</th>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinggi Tanaman 12 MST</td>
<td>Ulangan</td>
<td>3</td>
<td>967.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perambatan</td>
<td>1</td>
<td>4526.29</td>
<td>4526.29</td>
<td>111.12**</td>
</tr>
<tr>
<td></td>
<td>Galat (Perambatan)</td>
<td>3</td>
<td>122.30</td>
<td>40.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pupuk Nitrogen</td>
<td>3</td>
<td>34526.80</td>
<td>11508.93</td>
<td>26.49**</td>
</tr>
<tr>
<td></td>
<td>Interaksi</td>
<td>3</td>
<td>4987.48</td>
<td>1662.49</td>
<td>3.83**</td>
</tr>
<tr>
<td></td>
<td>Galat (Pupuk N)</td>
<td>18</td>
<td>7818.87</td>
<td>434.38</td>
<td></td>
</tr>
<tr>
<td>KK A</td>
<td></td>
<td>6.9</td>
<td>10468.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK B</td>
<td></td>
<td>22.5</td>
<td>326.40</td>
<td>326.40</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Jumlah Daun 12 MST	Ulangan	3	312.40	312.40	0.38
	Perambatan	1	0.32	0.32	
	Galat (Perambatan)	3	1579.96	1579.96	
	Pupuk Nitrogen	3	328600.86	93534.62	24.24**
	Interaksi	3	9947.32	3315.77	0.86
	Galat (Pupuk N)	18	69442.52	3857.92	
KK A		12.0	7.55	3.32	
KK B		32.4	0.32	0.32	

Jumlah Cabang 12 MST	Ulangan	3	7.55	0.32	0.38
	Perambatan	1	3.23	0.32	
	Galat (Perambatan)	3	2.53	0.84	
	Pupuk Nitrogen	3	314.55	104.85	18.91**
	Interaksi	3	6.77	2.26	0.41
	Galat (Pupuk N)	18	99.79	5.54	
KK A		12.7	7.55	3.32	
KK B		32.6	0.32	0.32	

ILD 12 MST	Ulangan	3	0.23	0.13	16.61*
	Perambatan	1	0.13	0.13	
	Galat (Perambatan)	3	0.01	0.02	
	Pupuk Nitrogen	3	3.01	1.02	26.78**
	Interaksi	3	0.06	0.02	0.56
	Galat (Pupuk N)	18	0.69	0.04	
KK A		8.7	22.23	7.06	0.83
KK B		33.0	7.06	7.06	

Bobot Basah Daun	Ulangan	3	22.37		
Bobot Kering Daun	Ulangan	3	3.85	1.19	2.18
	Perambatan	1	1.19	1.19	
	Galat (Perambatan)	3	1.64	0.55	
	Pupuk Nitrogen	3	259.21	86.40	28.12**
	Interaksi	3	13.67	4.56	1.48
	Galat (Pupuk N)	18	55.30	3.07	
KK A		14.3	22.37	2.18	
KK B		34.0	3.85	1.19	

Keterangan: KK A = koefisien keragaman petak utama
KK B = koefisien keragaman anak petak
Tabel Lampiran 3. Pengaruh Pupuk Nitrogen terhadap Jumlah Daun

<table>
<thead>
<tr>
<th>MST</th>
<th>Pupuk Nitrogen (g N/polybag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8.4</td>
</tr>
<tr>
<td>3</td>
<td>11.6</td>
</tr>
<tr>
<td>4</td>
<td>14.0</td>
</tr>
<tr>
<td>5</td>
<td>18.2</td>
</tr>
<tr>
<td>6</td>
<td>26.2</td>
</tr>
<tr>
<td>7</td>
<td>42.7</td>
</tr>
<tr>
<td>8</td>
<td>59.3</td>
</tr>
<tr>
<td>9</td>
<td>77.7</td>
</tr>
<tr>
<td>10</td>
<td>93.7</td>
</tr>
<tr>
<td>11</td>
<td>112.6</td>
</tr>
<tr>
<td>12</td>
<td>154.6</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti huruf sama pada baris yang sama tidak berbeda nyata pada UJGD 5%.

Tabel Lampiran 4. Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Daun

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pupuk Nitrogen (g N/polybag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bobot Basah Daun</td>
<td>6.44</td>
</tr>
<tr>
<td>Bobot Kering Daun</td>
<td>3.23</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti huruf sama pada baris yang sama tidak berbeda nyata pada UJGD 5%.

Tabel Lampiran 5. Pengaruh Pupuk Nitrogen terhadap Bobot Basah dan Bobot Kering Batang

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pupuk Nitrogen (g N/polybag)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bobot Basah Batang</td>
<td>7.82</td>
</tr>
<tr>
<td>Bobot Kering Batang</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti huruf sama pada baris yang sama tidak berbeda nyata pada UJGD 5%.

Tabel Lampiran 6. Pengaruh Pupuk Nitrogen dan Perambatan terhadap Bobot Basah dan Bobot Kering Akar

<table>
<thead>
<tr>
<th>Parameter (g)</th>
<th>Perambatan</th>
<th>Dengan Perambatan</th>
<th>Tanpa Perambatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobot Basah Akar</td>
<td>5.72</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Bobot Basah Akar</td>
<td>4.29</td>
<td>10.12</td>
<td>5.69</td>
</tr>
<tr>
<td>Bobot Kering Akar</td>
<td>2.18</td>
<td>4.98</td>
<td>2.81</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti huruf sama pada baris yang sama tidak berbeda nyata pada UJGD 5%.
<table>
<thead>
<tr>
<th>Sifat Tanah</th>
<th>Nilai</th>
<th>Kriteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (%)</td>
<td>1.52</td>
<td>Rendah</td>
</tr>
<tr>
<td>N (%)</td>
<td>0.12</td>
<td>Rendah</td>
</tr>
<tr>
<td>C/N</td>
<td>13.00</td>
<td>Sedang</td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub> Olsen (ppm)</td>
<td>20.00</td>
<td>Rendah</td>
</tr>
<tr>
<td>K<sub>2</sub>O HCl 25 % (mg/100 g)</td>
<td>13.00</td>
<td>Rendah</td>
</tr>
<tr>
<td>Susunan Kation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K (me'/100 g)</td>
<td>0.23</td>
<td>Rendah</td>
</tr>
<tr>
<td>Na (me'/100 g)</td>
<td>0.00</td>
<td>Sangat Rendah</td>
</tr>
<tr>
<td>Mg (me'/100 g)</td>
<td>3.15</td>
<td>Sangat Rendah</td>
</tr>
<tr>
<td>Ca (me'/100 g)</td>
<td>8.66</td>
<td>Sedang</td>
</tr>
<tr>
<td>Kejenuhan Basa (%)</td>
<td>62.00</td>
<td>Tinggi</td>
</tr>
<tr>
<td>Kapasitas Tukar Kation</td>
<td>19.38</td>
<td></td>
</tr>
<tr>
<td>Kejenuhan Aluminium</td>
<td>0.00</td>
<td>Sangat Rendah</td>
</tr>
<tr>
<td>Kejenuhan Hidrogen</td>
<td>0.00</td>
<td>Sangat Rendah</td>
</tr>
<tr>
<td>pH H<sub>2</sub>O</td>
<td>6.0</td>
<td>Agak Masam</td>
</tr>
<tr>
<td>Tekstur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasir (%)</td>
<td>7.00</td>
<td>Lempung Liat</td>
</tr>
<tr>
<td>Debu (%)</td>
<td>64.00</td>
<td>Berdebu</td>
</tr>
<tr>
<td>Liat (%)</td>
<td>29.00</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Pusat Penelitian Dan Pengembangan Tanah Dan Agroklimat Bogor, 2003
<table>
<thead>
<tr>
<th>No</th>
<th>Panjang dan Lebar Daun</th>
<th>Faktor Koreksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$11 \times 5 \times c = 51$</td>
<td>$c = 0.9273$</td>
</tr>
<tr>
<td>2</td>
<td>$6 \times 4 \times c = 22$</td>
<td>$c = 0.9167$</td>
</tr>
<tr>
<td>3</td>
<td>$10 \times 4 \times c = 47$</td>
<td>$c = 0.9400$</td>
</tr>
<tr>
<td>4</td>
<td>$9 \times 5 \times c = 41$</td>
<td>$c = 0.9111$</td>
</tr>
<tr>
<td>5</td>
<td>$10 \times 5 \times c = 45$</td>
<td>$c = 0.9000$</td>
</tr>
<tr>
<td>6</td>
<td>$9 \times 5 \times c = 42$</td>
<td>$c = 0.9333$</td>
</tr>
<tr>
<td>7</td>
<td>$8 \times 4 \times c = 29$</td>
<td>$c = 0.9063$</td>
</tr>
<tr>
<td>8</td>
<td>$9 \times 5 \times c = 40$</td>
<td>$c = 0.8889$</td>
</tr>
<tr>
<td>9</td>
<td>$9 \times 4 \times c = 33$</td>
<td>$c = 0.9167$</td>
</tr>
<tr>
<td>10</td>
<td>$7 \times 4 \times c = 23$</td>
<td>$c = 0.8214$</td>
</tr>
<tr>
<td>11</td>
<td>$10 \times 4 \times c = 37$</td>
<td>$c = 0.9250$</td>
</tr>
<tr>
<td>12</td>
<td>$7 \times 3 \times c = 19$</td>
<td>$c = 0.9048$</td>
</tr>
<tr>
<td>13</td>
<td>$8 \times 3 \times c = 22$</td>
<td>$c = 0.9167$</td>
</tr>
<tr>
<td>14</td>
<td>$8 \times 4 \times c = 30$</td>
<td>$c = 0.9375$</td>
</tr>
<tr>
<td>15</td>
<td>$10 \times 5 \times c = 44$</td>
<td>$c = 0.8800$</td>
</tr>
<tr>
<td>16</td>
<td>$9 \times 3 \times c = 25$</td>
<td>$c = 0.9259$</td>
</tr>
<tr>
<td>17</td>
<td>$9 \times 4 \times c = 32$</td>
<td>$c = 0.8890$</td>
</tr>
<tr>
<td>18</td>
<td>$9 \times 5 \times c = 39$</td>
<td>$c = 0.8667$</td>
</tr>
<tr>
<td>19</td>
<td>$8 \times 5 \times c = 36$</td>
<td>$c = 0.9000$</td>
</tr>
<tr>
<td>20</td>
<td>$8 \times 5 \times c = 37$</td>
<td>$c = 0.9250$</td>
</tr>
<tr>
<td>21</td>
<td>$7 \times 4 \times c = 25$</td>
<td>$c = 0.8929$</td>
</tr>
<tr>
<td>22</td>
<td>$7 \times 3 \times c = 20$</td>
<td>$c = 0.9524$</td>
</tr>
<tr>
<td>23</td>
<td>$6 \times 3 \times c = 17$</td>
<td>$c = 0.9444$</td>
</tr>
<tr>
<td>24</td>
<td>$6 \times 4 \times c = 21$</td>
<td>$c = 0.8750$</td>
</tr>
<tr>
<td>25</td>
<td>$7 \times 3 \times c = 18$</td>
<td>$c = 0.8571$</td>
</tr>
<tr>
<td>26</td>
<td>$6 \times 3 \times c = 16$</td>
<td>$c = 0.8889$</td>
</tr>
<tr>
<td>27</td>
<td>$6 \times 4 \times c = 20$</td>
<td>$c = 0.8333$</td>
</tr>
<tr>
<td>28</td>
<td>$8 \times 4 \times c = 27$</td>
<td>$c = 0.8438$</td>
</tr>
<tr>
<td>29</td>
<td>$7 \times 4 \times c = 24$</td>
<td>$c = 0.8571$</td>
</tr>
<tr>
<td>30</td>
<td>$7 \times 4 \times c = 26$</td>
<td>$c = 0.9286$</td>
</tr>
</tbody>
</table>

Total $c = 27.0057$

Rata-rata $c = 0.90019$
Tabel Lampiran 9. Warna Daun (2.5 GY)

<table>
<thead>
<tr>
<th>MST</th>
<th>R₀P₀</th>
<th>R₁P₁</th>
<th>R₀P₂</th>
<th>R₁P₂</th>
<th>R₀P₀</th>
<th>R₁P₁</th>
<th>R₀P₂</th>
<th>R₁P₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S.1 7.5/10</td>
<td>L.4 6.6/5</td>
</tr>
<tr>
<td></td>
<td>L.4 6.6/5</td>
</tr>
<tr>
<td></td>
<td>L.3 7.5/6</td>
</tr>
</tbody>
</table>

Keterangan: Notasi Dp 2 6, S.1 7.5, L.4 6.6, Dp 1 5, B 2 8, Dl 3 5, L.3 7.5 merupakan Value

Notasi /5, /6, /7.5, /9, /10, /12 merupakan Croma

R₀: tanpa perambatan
R₁: menggunakan perambatan
P₀: 0 g N/polybag
P₁: 5 g N/polybag
P₂: 10 g N/polybag
P₃: 20 g N/polybag
Tabel Lampiran 10. Korelasi antar Parameter Pengamatan

<table>
<thead>
<tr>
<th></th>
<th>BBD</th>
<th>BKD</th>
<th>BBB</th>
<th>BKB</th>
<th>BBA</th>
<th>BKA</th>
<th>T 12</th>
<th>JC 12</th>
<th>JD 12</th>
<th>ILD 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBD</td>
<td>1.000</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
<td>0.942</td>
<td>0.925</td>
<td>0.776</td>
<td>0.897</td>
<td>0.960</td>
<td>0.940</td>
</tr>
<tr>
<td>BKD</td>
<td>0.989</td>
<td>1.000</td>
<td>0.991</td>
<td>0.989</td>
<td>0.941</td>
<td>0.915</td>
<td>0.790</td>
<td>0.919</td>
<td>0.972</td>
<td>0.940</td>
</tr>
<tr>
<td>BBB</td>
<td>0.989</td>
<td>0.991</td>
<td>1.000</td>
<td>0.997</td>
<td>0.960</td>
<td>0.941</td>
<td>0.822</td>
<td>0.889</td>
<td>0.966</td>
<td>0.951</td>
</tr>
<tr>
<td>BKB</td>
<td>0.989</td>
<td>0.989</td>
<td>0.997</td>
<td>1.000</td>
<td>0.961</td>
<td>0.943</td>
<td>0.823</td>
<td>0.891</td>
<td>0.972</td>
<td>0.949</td>
</tr>
<tr>
<td>BBA</td>
<td>0.942</td>
<td>0.941</td>
<td>0.960</td>
<td>0.961</td>
<td>1.000</td>
<td>0.992</td>
<td>0.831</td>
<td>0.847</td>
<td>0.959</td>
<td>0.958</td>
</tr>
<tr>
<td>BKA</td>
<td>0.925</td>
<td>0.915</td>
<td>0.941</td>
<td>0.943</td>
<td>0.992</td>
<td>1.000</td>
<td>0.836</td>
<td>0.822</td>
<td>0.937</td>
<td>0.960</td>
</tr>
<tr>
<td>T 12</td>
<td>0.776</td>
<td>0.791</td>
<td>0.823</td>
<td>0.825</td>
<td>0.831</td>
<td>0.836</td>
<td>1.000</td>
<td>0.665</td>
<td>0.818</td>
<td>0.851</td>
</tr>
<tr>
<td>JC 12</td>
<td>0.897</td>
<td>0.919</td>
<td>0.889</td>
<td>0.891</td>
<td>0.847</td>
<td>0.822</td>
<td>0.665</td>
<td>1.000</td>
<td>0.934</td>
<td>0.873</td>
</tr>
<tr>
<td>JD 12</td>
<td>0.960</td>
<td>0.972</td>
<td>0.966</td>
<td>0.972</td>
<td>0.958</td>
<td>0.937</td>
<td>0.818</td>
<td>0.934</td>
<td>1.000</td>
<td>0.963</td>
</tr>
<tr>
<td>ILD 12</td>
<td>0.940</td>
<td>0.940</td>
<td>0.951</td>
<td>0.949</td>
<td>0.958</td>
<td>0.960</td>
<td>0.851</td>
<td>0.873</td>
<td>0.963</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Keterangan:

- **BBD** = Bobot Basah Daun
- **BKD** = Bobot Kering Daun
- **BBB** = Bobot Basah Batang
- **BKB** = Bobot Kering Batang
- **BBA** = Bobot Basah Akar
- **BKA** = Bobot Kering Akar
- **T 12** = Tinggi 12 MST
- **JC 12** = Jumlah Cabang pada 12 MST
- **JD 12** = Jumlah Daun pada 12 MST
- **ILD 12** = Indeks Luas pada Daun 12 MST

** = Berbeda nyata pada uji statistik (p < 0.01)
<table>
<thead>
<tr>
<th>No</th>
<th>Perlakuan</th>
<th>Kadar N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tanpa Perambatan, 20 g N/polybag</td>
<td>4.28</td>
</tr>
<tr>
<td>2</td>
<td>Dengan Perambatan, 20 g N/polybag</td>
<td>4.16</td>
</tr>
<tr>
<td>3</td>
<td>Dengan Perambatan, 10 g N/polybag</td>
<td>3.89</td>
</tr>
<tr>
<td>4</td>
<td>Tanpa Perambatan, 10 g N/polybag</td>
<td>3.83</td>
</tr>
<tr>
<td>5</td>
<td>Tanpa Perambatan, 5 g N/polybag</td>
<td>3.17</td>
</tr>
<tr>
<td>6</td>
<td>Dengan Perambatan, 5 g N/polybag</td>
<td>2.96</td>
</tr>
<tr>
<td>7</td>
<td>Dengan Perambatan, 0 g N/polybag</td>
<td>2.89</td>
</tr>
<tr>
<td>8</td>
<td>Tanpa Perambatan, 0 g N/polybag</td>
<td>2.81</td>
</tr>
</tbody>
</table>

Sumber: Pusat Penelitian Dan Pengembangan Tanah Dan Agroklimat Bogor, 2003
Keterangan:
R₀ = tanpa rambatan
R₁ = menggunakan rambatan
P₀ = 0 g N/polybag
P₁ = 5 g N/polybag
P₂ = 10 g N/polybag
P₃ = 20 g N/polybag

Gambar Lampiran 1. Denah Penelitian
Gambar Lampiran 2. Bentuk Perambatan

Gambar Lampiran 3. Hasil Panen Tanpa Perambatan
Gambar Lampiran 4. Hasil Panen Menggunakan Perambatan