PRESTASI KERJA DAN ANALISIS BIAYA
PENYARADAN KAYU DENGAN GELETREK DUA LOG
(Studi Kasus di BKPH Manglayang Barat KPH Bandung Utara)

Oleh:
HINDUN ROSYADA
E02496070

JURUSAN TEKNOLOGI HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2001
RINGKASAN

Hindum Rosyada E02496070. Prestasi Kerja dan Analisis Biaya Penyarakdian Kayu dengan Geletrek Dua Log (Studi Kasus di BKPH Manglayang Barat KPH Bandung Utara). Di bawah bimbingan Dr. Ir. Elias.


Penelitian ini bertujuan untuk mengetahui besarnya prestasi kerja dan biaya penyarakdian kayu, mengetahui pengaruh volume kayu yang disarad, jarak sarad, dan kelerengan jalan sarad terhadap prestasi kerja dan biaya penyarakdian kayu dan membandingkan pengaruh volume kayu yang disarad, jarak sarad, dan kelerengan jalan sarad terhadap prestasi kerja dan biaya penyarakdian kayu menggunakan geleik dwa log dengan penyarakdian kayu menggunakan geleletrek satu log.

Geletrek yang di RPH Arcamanik juga disebut “palen” merupakan alat penyarakdian manual yang terbuat dari dua batang bambu sepanjang 2,5 - 3 m dengan diameter 1,5 cm. Bambu ini dikombinasikan dengan klep besi pada salah satu ujungnya. Klep besi ini berfungsi sebagai baut. Kegiatan penyarakdian dilakukan dengan berjalan kosong memju tunggak, dilanjutkan dengan penurasan geleletrek, berjalan bermuatan, yaitu menyarak kayu dari tunggak ke TPn Legok Nyenang dan kegiatan bongkar. Waktu kerja penyarakdian dibagi dalam 2 bagian yaitu waktu kerja efektif dan waktu kerja tidak efektif. Waktu kerja efektif didefinisikan sebagai waktu yang digunakan untuk menyelesaikan setiap elemen kerja penyarakdian. Elemen kerja penyarakdian yang termasuk waktu kerja efektif adalah penyarak berjalan menuju tunggak, memasang klep besi/geletrek pada kayu (kegiatan muat), berjalan bermuatan atau menyarak kayu, dan melepas geleletrek dari kayu (kegiatan bongkar)
sesampainya di TPn. Waktu kerja tidak efektif terdiri dari unsur kerja tidak efektif, yaitu gangguan pada saat berjalan bermuatan, seperti klop bosi kendor atau terlepas dari kayu, lepasnya kayu dari geletrik hingga kayu terperosok keluar dari jalur sarad, dan waktu hilang yang disebabkan penyaradan yang dilakukan oleh penyarad lain terganggu serta waktu istirahat. Total waktu yang dibutuhkan untuk menyarad kayu rata-rata sebesar 26,32 menit per trip, terdiri dari waktu tetap dan waktu variabel.

Besarnya waktu tetap rata-rata 4,32 menit, sedangkan waktu variabel rata-rata jauh lebih besar yaitu 22,00 menit.Elemen kerja penyaradan yang membutuhkan waktu terbanyak adalah elemen kerja berjalan kosong menuju tunggak dengan rata-rata 9,87 menit atau 37,51% dari total waktu yang dibutuhkan dalam penyaradan. Besarnya waktu berjalan bermuatan rata-rata 8,95 menit atau 34,0% dari waktu total penyaradan. Selisih antara waktu kerja berjalan bermuatan dengan waktu berjalan kosong sebesar 0,92 menit. Waktu kerja efektif terendah dibutuhkan pada kegiatan bongkar dengan waktu rata-rata 1,31 menit atau 4,96% dari total waktu yang diperlukan untuk penyaradan. Waktu rata-rata untuk kegiatan muat sebesar 1,39 menit atau 5,28%). Selisih waktu antara kegiatan muat dengan kegiatan bongkar sekitar 0,08 menit. Dalam penyaradna dengan geletrik 1 log, kegiatan memasang alat (muat) memerlukan waktu rata-rata 0,45 menit dan kegiatan bongkar membutuhkan waktu rata-rata 0,36 menit. Waktu kerja tidak efektif rata-rata 4,80 menit atau 18,24% dari total waktu penyaradna, terdiri dari waktu tidak efektif hilang berupa gangguan, rata-rata 3,57 menit dan waktu istirahat rata-rata 1,23 menit.

Prestasi kerja efektif rata-rata tiap siklus penyaradna adalah 0,39 m³/jam dan prestasi kerja aktual rata-rata hanya 0,33 m³/jam. Jarak sarad terjauh dalam penelitian ini 5,57 Hm dan jarak sarad terpendek 3,83 Hm, dengan jarak sarad rata-rata 4,77 Hm. Volume kayu yang disarad antara 0,08 m³ hingga 0,23 m³ dengan nilai rata-rata 0,14 m³. Untuk setiap 1 Hm jarak sarad, prestasi kerja efektif sebesar 1,88 m³/jam dan prestasi kerja aktualnya 1,57 m³/jam.

Biaya penyaradna merupakan penjumlahan biaya tetap sarad dengan biaya variabel sarad. Biaya tetap sarad dihitung berdasarkan perkalian waktu tetap dengan biaya usaha, sedangkan biaya variabel sarad diperoleh dari perkalian waktu variabel dengan biaya usaha. Biaya usaha yang dikeluarkan Perum Perhutani ditentukan berdasarkan upah penyarad, yaitu Rp 15.000/m³. Untuk tingkat prestasi kerja rata-rata sebesar 0,33 m³/jam, biaya usaha yang dikeluarkan Rp 4950,00/jam. Pada penelitian penyaradna dengan geletrik satu log, besarnya biaya usaha rata-rata Rp 5345,91,00/jam untuk tarif upah yang sama. Berdasarkan hasil perhitungan biaya penyaradna dengan geletrik 2 log, diperoleh biaya total penyaradna rata-rata Rp 16.155,00/m³. Biaya ini lebih kecil dibandingkan biaya penyaradna menggunakan geletrik satu log yang besarnya Rp 17.868,00/m³. Hal ini disebabkan biaya usaha yang dikeluarkan lebih besar sebagai kompensasi dari volume dan prestasi kerja yang lebih besar pula. Volume kayu yang dihasilkan dari penyaradna dengan geletrik dua log lebih kecil yaitu rata-rata sebesar 0,14 m³, sedangkan pada penyaradna dengan geletrik satu log, volume kayu yang dihasilkan rata-rata 0,18 m³ per trip. Besar biaya tetap penyaradna rata-rata Rp
2638,98/m³ atau 16,34% dari total biaya penyeardan sebesar Rp 16.155,00 dan biaya variabel penyeardan sebesar Rp 13.516,00/m³ atau 83,66% dari total biaya penyeardan.

Pengaruh volume kayu (X₁), jarak sarad (X₂), dan kelerengan jalan sarad (X₃) terhadap prestasi kerja penyeardan (Y) dapat diduga dari analisis regresi hubungan tunggal antara prestasi kerja dengan tiap-tiap faktor tersebut. Dari analisis regresi hubungan tunggal diperoleh nilai F hitung dan t hitung kelerengan jalan sarad lebih kecil daripada nilai F dan t tabel sehingga kelerengan tidak dimasukkan ke dalam persamaan secara bersama-sama agar tidak tejadi bias bagi faktor yang berpengaruh. Model persamaan yang terbentuk Y = 0,301 + 1,95X₁ - 0,0512X₂. Hasil pengujian statistik menunjukkan bahwa kedua variabel (X₁, X₂) secara bersama-sama mempunyai pengaruh yang nyata terhadap variabel tak bebasnya (Y) pada taraf nyata 0,05 dan 0,01. Selain kedua faktor tersebut di atas, prestasi kerja penyeardan juga dipengaruhi oleh kedua jalan sarad yang bergelombang dan ketrampilan penyeardan. Dari hasil uji t diperoleh nilai t hitung untuk masing-masing faktor, yaitu t hitung untuk volume kayu yang disarad sebesar 9,12, untuk jarak sarad yang ditempuh sebesar -4,33. Nilai t hitung untuk volume kayu yang disarad dan jarak sarad yang ditempuh lebih besar dari t tabel, menunjukkan bahwa faktor volume dan jarak sarad sangat berarti dan pengaruhnya tidak dapat diabaikan pada taraf nyata 0,05 dan 0,01. Dari persamaan regresi yang terbentuk dapat diketahui bahwa setiap penambahan volume kayu sebesar 0,1 m³ akan meningkatkan prestasi kerja penyeardan sebesar 1,95 m³/jam, penambahan jarak sarad sebesar 1 Hm akan menurunkan prestasi kerja sebesar 0,0512 m³/jam.

Biaya penyeardan dipengaruhi oleh faktor volume kayu, jarak sarad, dan kelerengan jalan sarad. Pengaruh ketiga faktor tersebut dapat diketahui dari analisis regresi hubungan tunggal antara biaya penyeardan dengan tiap-tiap faktor. Dari analisis regresi hubungan tunggal, kelerengan tidak berpengaruh nyata dalam variasi biaya penyeardan, dengan kata lain pengaruhnya dapat diabaikan. Karena itu, faktor kelerengan tidak dimasukkan ke dalam persamaan secara bersama-sama. Model persamaan yang diperoleh Y = 18283 - 94317X₁ + 2312X₂. Hasil pengujian statistik menunjukkan bahwa kedua variabel bebas di atas secara bersama-sama mempunyai pengaruh yang nyata terhadap variabel tak bebasnya (Y) pada taraf nyata 0,05 dan 0,01. Dari hasil uji t, diperoleh nilai t hitung untuk volume kayu yang disarad sebesar -8,55 dan jarak sarad sebesar 3,79. Dari kedua nilai t hitung di atas, t hitung volume kayu dan jarak sarad lebih besar dari t tabel yang menunjukkan bahwa volume kayu dan jarak sarad sangat berarti dan pengaruhnya tidak dapat diabaikan pada taraf nyata 0,05 dan 0,01. Dari persamaan regresi diketahui bahwa setiap penambahan volume kayu sebesar 0,1 m³ akan menurunkan biaya penyeardan sebesar Rp 9431,00 dan penambahan jarak sarad sejauh 1 Hm akan meningkatkan biaya penyeardan sebesar Rp 2312,00. Jadi antara volume kayu dengan biaya penyeardan mempunyai hubungan yang negatif, sedangkan jarak sarad mempunyai hubungan yang bersifat positif dengan biaya penyeardan. Pada penyeardan dengan geletrek satu log, volume kayu, jarak sarad dan kelerengan jalan sarad secara bersama-sama memberikan pengaruh yang nyata terhadap prestasi kerja dan biaya penyeardan.
PRESTASI KERJA DAN ANALISIS BIAYA PENYARADAN KAYU
DENGAN GELETREK DUA LOG

Studi Kasus di BKPH Manglayang Barat KPH Bandung Utara

Oleh :
HINDUN ROSYADA
E02496070

SKRIPSI
Sebagai salah satu syarat untuk memperoleh
Gelar Sarjana Kehutanan
Pada Fakultas Kehutanan Institut Pertanian Bogor

JURUSAN TEKNOLOGI HASIL HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2001
LEMBAR PENGESAHAN

Judul Penelitian : Prestasi Kerja dan Analisis Biaya Penyaradan Kayu dengan Geletrek Dua Log (Studi Kasus di BKPH Manglayang Barat KPH Bandung Utara)
Nama Mahasiswa : Hindu Rosyada
Nomor Polok : E01496070
Jurusan : Teknologi Hasil Hutan

Disetujui oleh :
Ketua Komisi Pembimbing

[Signature]
Dr. Ir. Elias

Disahkan oleh :
Pengprov Jurusan Teknologi Hasil Hutan
Fakultas Kehutanan Institut Pertanian Bogor

[Signature]
Dr. Ir. Fauzi Febrianto, MS

Tanggal Lulus : 23 April 2001
RIWAYAT HIDUP

Penulis dilahirkan pada tanggal 22 Juni 1977 di Cilacap, Jawa Tengah. Penulis merupakan anak ke tiga dari lima bersaudara dari pasangan Riswan dan Siti Makmuriyah.


Untuk memperoleh gelar Sarjana Kehutanan, penulis melakukan penelitian untuk penulisan karya ilmiah dengan judul “Prestasi Kerja dan Analisis Biaya Penyaradan Kayu dengan Geletrek Dua Log” (Studi Kasus di BKPH Manglayang Barat KPH Bandung Utara) dibawah bimbingan Dr. Ir. Elias.
KATA PENGANTAR

Alhamdulillah, puji syukur penulis panjatkan ke hadirat Allah SWT yang telah melimpahkan tolong dan kurnia-Nya sehingga karya ilmiah ini dapat diselesaikan.


Selesainya penulisan karya ilmiah ini tidak lepas dari bantuan berbagai pihak, yang telah memberikan dukungan moril dan materil selama proses penelitian dan penulisan karya ilmiah dilakukan. Untuk itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

1. Ibu dan Bapak tercinta atas kasih sayang, doa dan pengorbanan yang tiada henti, Mas Yadi, Mas Ajid, Dhe’ Hajar, Mbah Kakung dan Mbah Putri serta keluarga di Kober.
2. Dr. Ir. Elias sebagai dosen pembimbing utama, atas bimbingan dan nasehatnya.
3. Dr. Ir. Leti Sundawati, MSc sebagai dosen penguji dari jurusan Manajemen Hutan dan Ir. Jarwadi Budi Hernowo, MScF sebagai dosen penguji dari jurusan Konservasi Sumberdaya Hutan.
7. Sahabat-sahabat pertamaku, Ari, Budi, Kiki, Nunung dan Indra.
9. Sarah, Rey, Daffa, Zuhdi, Fahmi, Raka and all my beloved brothers and sisters (for showing me the right wonderful way of life and for always remind me to keep the faith):
11. Roni, Pak Iksal, Pak Mul dan Bu Icot atas bantuan mereka.

Penulis menyadari bahwa karya ilmiah ini masih jauh dari kesempurnaan sehingga berbagai saran dan tambahan informasi sangat diperlukan untuk perbaikan di masa yang akan datang. Penulis berharap karya ilmiah ini bermanfaat bagi siapa saja yang memerlukannya. Terima kasih.

Bogor, Mei 2001

Penulis
DAFTAR ISI

DAFTAR ISI ................................................................. i
DAFTAR LAMPIRAN ......................................................... iii
DAFTAR TABEL ............................................................ iv
DAFTAR GAMBAR .......................................................... v

I. PENDAHULUAN.
   A. Latar Belakang......................................................... 1
   B. Tujuan............................................................... 2

II. TINJAUAN PUSTAKA
   A. Penyaranan .......................................................... 3
      1. Sistem Penyaranan........................................... 3
      2. Penyaranan Manual dengan Geletrek Dua Log ....... 4
   B. Volume Kayu......................................................... 4
   C. Waktu Kerja ........................................................ 5
   D. Prestasi Kerja ........................................................ 6
   E. Analisis Biaya Penyaranan .................................... 7

III. KONDISI UMUM LOKASI PENELITIAN
   A. Letak dan Luas ....................................................... 9
   B. Kedamaan Hutan ................................................... 9
   C. Kedamaan Sosial Ekonomi ..................................... 10
   D. Prasarana ........................................................... 10

IV. METODOLOGI PENELITIAN
   A. Lokasi dan Waktu Penelitian.................................. 11
   B. Alat dan Bahan ..................................................... 11
   C. Pengumpulan Data ............................................... 11
   D. Pengolahan Data .................................................. 13
   E. Analisis Data ...................................................... 14

V. HASIL DAN PEMBAHASAN.
   A. Pelaksanaan Penelitian ........................................ 17
   B. Alat Penyaranan ................................................. 17
   C. Cara Kerja Penyaranan ........................................ 17
   D. Sistem Upah Penyaranan ...................................... 19
   E. Waktu Kerja Penyaranan ....................................... 20
   F. Prestasi Kerja Penyaranan ..................................... 23
G. Biaya Penyuradan .......................................................... 24
H. Pengaruh Volume, Jarak Sarad, dan Kelerengan Jalan Sarad terhadap Prestasi Kerja
   dan Biaya Penyuradan dengan Geletrek Dua Log........................................ 25
VI. KESIMPULAN DAN SARAN
    A. Kesimpulan................................................................. 30
    B. Saran........................................................................... 31
DAFTAR PUSTAKA
LAMPIRAN
DAFTAR LAMPIRAN

Lampiran 1. Data Volume Kayu yang Disarad per Trip
Lampiran 2. Data Waktu Penyaranan
Lampiran 3. Data Prestasi Kerja dan Biaya Penyaranan dengan Geletrek Dua Log
Lampiran 5. Data Lapangan Jalan Sarad RPH Arcamanik
Lampiran 6. Peta Jalan Sarad Petak 41e RPH Arcamanik BKPH Manglayang Barat
DAFTAR TABEL

Tabel 1. Analisis Regresi Linier Berganda ................................................................. 15
Tabel 2. Waktu Penyaranan, Waktu Rata-rata, dan Persentase Waktu Tiap Unsur Kerja .......... 21
Tabel 3. Analisis Regresi Linier Berganda antara Prestasi Kerja Penyaranan dengan Volume Kayu, Jarak Sarad, dan Kelerengan Jalan Sarad ................................................. 25
Tabel 5. Analisis Regresi Linier Berganda antara Biaya Penyaranan dengan Volume Kayu, Jarak Sarad, dan Kelerengan Jalan Sarad ................................................. 27
Tabel 6. Nilai Dugaan dari Parameter yang Mempengaruhi Biaya Penyaranan .................... 28
<table>
<thead>
<tr>
<th>Gambar</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Walking Measure</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Penyaran dengan Geletrek Dun Log.</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Elemen Kerja Bongkar</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>TPn Legok Nyenang RPH Arcamanik</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Gangguan Alat</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Kondisi Jalan Sarad yang Bergelombang</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Jalan Sard Petak 41e RPH Arcamanik</td>
<td>23</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. Latar Belakang

Hutan merupakan suatu kesatuan ekosistem berupa hamparan lahan berisi sumberdaya alam hutan yang didominasi pepohonan dalam persekutuan alam lingkungannya, yang satu dengan yang lainnya tidak dapat dipisahkan. Manfaat hutan sebagai anugerah Tuhan yang Maha Pengasih bagi seluruh umat manusia sangatlah besar. Manfaat yang berhubungan dengan iklim, udara dan tata air dapat dirasakan secara langsung sebagai hasil dari suatu siklus yang berlangsung alami. Berbeda dengan manfaat yang berasal dari hasil hutan itu sendiri, baik hasil utamanya yang berupa kayu maupun hasil lain berupa hasil hutan non kayu, yang tidak dapat kita rasakan langsung manfaatnya apabila tidak dikeluarkan dari hutan menuju ke pusat konsumen.

Pemanenan kayu merupakan suatu proses kegiatan pemindahan hasil hutan, terutama yang berupa kayu, dari hutan sebagai tempat tumuhnya menuju pasar atau tempat pemanfaattannya. Dengan adanya kegiatan pemanenan, hasil hutan berupa kayu tersebut akan mempunyai nilai guna bagi manusia. Kegiatan pemanenan kayu merupakan salah satu kegiatan yang cukup berat dan memerlukan biaya yang besar dalam ruang lingkup usaha pengelolaan dan pemanfaatan sumber daya alam hutan.


Kecilnya produktivitas disebabkan rendahnya tingkat prestasi kerja. Untuk meningkatkan produksi kayu perlu dilakukan peningkatan prestasi kerja, dengan cara melakukan penelitian waktu kerja. Berdasarkan hasil penelitian waktu kerja tersebut dapat diketahui hal-hal yang menyebabkan hilangnya waktu kerja sehingga pada akhirnya nanti dapat dilakukan perubahan cara kerja yang lebih baik untuk mendapatkan output yang optimum. Output optimum tercapai bila produksi maksimum dapat tercapai dengan biaya yang minimum. Karena keterkaitannya dengan biaya, maka pengetahuan tentang besarnya prestasi kerja sangat penting dalam kegiatan pemanenan kayu.
B. Tujuan

Penelitian ini bertujuan untuk:

1. Mengetahui besarnya prestasi kerja penyaradan kayu menggunakan geletrek dua log.
3. Mengetahui pengaruh volume kayu yang disarad, jarak sarad, dan kelerengan jalan sarad terhadap prestasi kerja dan biaya penyaradan kayu menggunakan geletrek dua log.
4. Membandingkan pengaruh volume kayu yang disarad, jarak sarad, dan kelerengan jalan sarad terhadap prestasi kerja dan biaya penyaradan kayu menggunakan geletrek dua log dengan penyaradan kayu menggunakan geletrek satu log.
II. TINJAUAN PUSTAKA

A. Penararan

1. Sistem penararan

Menurut Elias (1988), penararan merupakan kegiatan membawa kayu dari tempat penebangan (tunggak) ke tempat pengumpulan kayu atau TPn di pinggir jalan rel, jalan mobil atau sungai.

Sedangkan Brown (1958) mendefinisikan penararan sebagai suatu kegiatan pemindahan log dari tempat penebangan ke tempat pengumpulan kayu (TPn) atau landing.

Secara umum, menurut Budiawan (1996), sistem penararan dapat dikelasifikasikan berdasarkan:

a. Tenaga yang digunakan.

b. Hubungan antara batang kayu yang disarad dengan permukaan tanah.

c. Ukuran batang yang disarad.

Berdasarkan tenaga yang digunakan, cara-cara penararan yang dikenal hingga saat ini menurut Elias (1998), yaitu:

1. Pemikulan dan penarikan oleh manusia.
2. Penararan dengan bantuan gaya penarik binatang (sapi, gajah, kuda dan kerbau).
3. Penararan dengan gaya berat gravitasi.
4. Penararan dengan traktor.
5. Penararan dengan kabel.
6. Penararan dengan balon.
7. Penararan dengan pesawat udara.

Sedangkan sistem penararan berdasarkan bentuk dan sortimen kayu yang dihasilkan, oleh Elias (1999) dibedakan menjadi:

1. Full Tree System
2. Tree Length System
3. Long Wood System
4. Short Wood System
5. Pulp Wood System
6. Chips Wood System

Adapun faktor-faktor yang mempengaruhi pemilihan sistem penararan, antara lain:

1. Ukuran kayu dan sifat kayu
2. Topografi
3. Pertimbangan silvikultur
4. Pertimbangan iklim
5. Jarak ke tempat pengangkutan

Simmons (1951), mengemukakan beberapa faktor yang perlu dipertimbangkan dalam penyaradan, yaitu:

a. Ukuran dan berat log
b. Kondisi permukaan jalan sarad
c. Jumlah pohon yang ditebang per satuan luas
d. Total tebangan untuk kesseluruhan areal

2. Penyaradan Manual dengan Geletrek Dua Log

Penyaradan kayu dengan tenaga manusia atau secara manual menurut Budiaman (1996) dapat dilakukan dengan berbagai cara, antara lain:

a. Memikul
b. Menggulingkan
c. Menggunakan sistem kuda-kuda


B. Volume Kayu

Volume kayu dibedakan secara alami menurut berbagai macam klasifikasi sortimen (Kadir, et al, 1992). Beberapa jenis volume kayu yang paling lazim digunakan sebagai dasar penaksiran adalah:

1. Volume tunggak, yaitu volume kayu yang terdiri atas akar dan pangkal pohon sampai ketinggian tertentu (tunggak).


Untuk mendapatkan volume kayu, diperlukan pengukuran panjang dan diameter kayu (pangkal dan ujung). Rumus-rumus yang digunakan untuk menghitung volume kayu (batang) antara lain:

1. Rumus Huber : \[ V = G_m \times L \]

2. Rumus Smalian : \[ V = \left( \frac{G_p + G_u}{2} \right) \times L \]

3. Rumus Newton : \[ V = \left( \frac{G_p + 4G_m + G_u}{6} \right) \times L \]

4. Rumus Huber yang dimodifikasi : \[ V = 0,25 \pi \left( \frac{dp + du}{2} \right)^2 + 100 \times L \]

Keterangan:

\( V \) = Volume batang (m³)

\( L \) = Panjang batang (m)

\( G_p \) = Luas bidang dasar pangkal batang (cm²)

\( G_m \) = Luas bidang dasar tengah batang (cm²)

\( G_u \) = Luas bidang dasar ujung batang (cm²)

Luas bidang dasar (lbsd) dihitung berdasarkan rumus : \( G = \frac{1}{4} \pi (D)^2 \)

Di mana:

\( G \) = Luas bidang dasar (cm²)

\( D \) = Diameter rata-rata (cm)

\( dp \) = Diameter pangkal kayu yang disarad (cm)

\( du \) = Diameter ujung kayu yang disarad (cm)

100 = Konversi ke satuan meter

C. Waktu Kerja

Menurut ILO (1983), waktu kerja merupakan waktu yang diperlukan oleh seorang pekerja untuk menyelesaikan pekerjaan tertentu pada tingkat prestasi yang ditetapkan. Waktu kerja dibagi menjadi dua, yaitu waktu kerja efektif dan tidak efektif. Waktu kerja efektif adalah waktu yang digunakan untuk suatu kegiatan yang sudah merupakan bagian tertentu dari pekerjaan yang bersangkutan. Sedangkan waktu kerja tidak efektif adalah waktu kerja yang diperlukan untuk suatu kerja yang tidak efektif dalam suatu proses produksi.
Inti dari penelitian prestasi kerja adalah pengukuran waktu kerja (Sanjoto, 1958). Pada umumnya, pengukuran waktu kerja bertujuan untuk mengetahui faktor-faktor yang mempengaruhi prestasi kerja dan syarat-syarat yang dapat digunakan untuk memperbaiki pekerjaan sehingga tercapai efisiensi pekerjaan.

Pengukuran waktu kerja menurut Sanjoto (1958) dan ILO (1983) dapat dilakukan dengan tiga metode, yaitu:

1. Metode Null Stop (berulang)
   Metode ini memerlukan dua buah stopwatch atau lebih, yang dipasang pada papan pencatat waktu sehingga dapat dihidupkan atau dimatikan dengan tangan kiri. Waktu kerja sesungguhnya dari setiap elemen dibaca seketika pada stopwatch dan pada setiap awal elemen kerja dikembalikan pada angka nol.

2. Metode Berurut (kumulatif)
   Waktu kerja sesungguhnya dihitung dengan cara mengurangi dua pengukuran yang berurutan. Metode ini memerlukan satu buah stopwatch dari awal hingga akhir pekerjaan.

3. Metode Kombinasi Null Stop dan Berurut
   Waktu kerja dihitung dengan menggunakan kedua metode di atas. Kombinasi kedua metode ini dimaksudkan untuk menghilangkan kesalahan yang mencolok. Stopwatch yang digunakan lebih dari satu buah.

D. Prestasi Kerja

Prestasi kerja merupakan hasil kerja yang diproduksi dalam satuan penerjaan per satuan waktu (Sanjoto, 1958 dan ILO, 1983).

Sanjoto (1958) menyatakan bahwa prestasi kerja dipengaruhi oleh beberapa faktor, yaitu faktor yang dapat diubah dan faktor yang tidak dapat diubah. Faktor yang dapat diubah antara lain alat yang digunakan, metode kerja, tempo dan efek yang digunakan oleh pekerja. Sedangkan faktor yang tidak dapat diubah meliputi faktor tegakan hutan, iklim, cuaca, keadaan tempat bekerja dan teknik kerja alamiah. Selain itu, prestasi kerja juga tidak terlepas dari faktor psikologis dan fisiologis pekerja.

Sedangkan menurut Soewartika (1980), faktor-faktor yang mempengaruhi prestasi kerja adalah:

1. Metode atau cara kerja.
2. Alat-alat yang digunakan pekerja.
4. Tradisi atau kebiasaan pekerja.
5. Keadaan fisik dan mental pekerja.
7. Iklim/musim.
8. Organisasi kerja.

Untuk menghitung prestasi kerja, Sanjoto (1958) menggunakan rumus:

\[ P = \frac{V \times 60}{T} \]

Di mana:
- \( P \) = Prestasi kerja (m³/jam)
- \( V \) = Volume kayu yang dihasilkan (m³)
- \( T \) = Total waktu kerja (menit)
- 60 = Faktor konversi ke satuan jam

E. Analisis Biaya Penyaradan


Hal ini disebabkan oleh faktor-faktor:
1. Kayu, meliputi ukurannya, kepadatan, berat, dan banyaknya pohon per satuan luas.
2. Jarak angkut, tergantung pada jenis transportasi (major transportation dan minor transportation) serta fasilitas angkutan.
3. Topografi.
4. Efisiensi jumlah tenaga kerja.
5. Peraturan yang membatasi, misalnya jam kerja, keadaan keselamatan kerja, dan asuransi.

Wiradinata (1981) dan Elias (1987) membagi biaya kegiatan pemanenan kayu menjadi dua, yaitu:

a. Biaya tetap

Biaya tetap adalah biaya yang secara keseluruhan jumlahnya tetap dan perubahan hanya terjadi dalam biaya per unit produksi sesuai dengan perubahan dalam volume produksi. Biaya tetap terdiri dari komponen-komponen:
1. Biaya penghapusan (depreciation) adalah biaya penghapusan per jam operasi yang merupakan selisih harga beli dengan harga sisa/rongsokan dibagi jumlah jam kerja pemakaian.
2. Bunga modal (interest of investment) adalah bunga modal, terutama untuk alat produksi seperti traktor, gergaji mesin, dan lain-lain.

b. Biaya tidak tetap

Yaitu biaya yang berubah-ubah dalam jumlah keseluruhan sesuai dengan perubahan volume produksi. Komponen-komponen biaya tidak tetap meliputi:
1. Biaya perbaikan.
2. Biaya pemeliharaan.
4. Upah operator dan buruh.

Dalam pemanenan kayu, kegiatan penyaradan memerlukan biaya yang cukup besar. Oleh karena itu harus diupayakan penekanan hingga seminimum mungkin. Hal ini dapat tercapai dengan pemakaian alat yang tepat dan ekonomis untuk mencapai harga pokok yang serendah-rendahnya.

Biaya penyaradan dibagi dalam biaya tetap dan biaya tidak tetap. Yang termasuk biaya tetap yaitu bunga dan depresiasi dari hewan/alat penyarad dan peralatannya, atau dengan kata lain bunga dan depresiasi dari modal perusahaan. Sedangkan yang termasuk biaya tidak tetap yaitu biaya yang berhubungan dengan perlindungan barang-barang modal, termasuk biaya pemeliharaan hewan penyarad dan pemeliharaan keperluan penarredan lainnya (Juta, 1954).


Biaya penarredan merupakan biaya terbesar dari seluruh unsur biaya pemanenan kayu, oleh karena itu penarredan menjadi bagian yang sangat penting dalam perencanaan pemanenan hutan (Elias, 1987).

Wiradinata (1981) menyatakan bahwa waktu sarad memegang peranan penting sehingga erat kaitannya dengan biaya penarredan. Waktu sarad yang dimaksud terdiri dari tiga jenis waktu, yaitu:

a. Waktu total, yaitu waktu yang diperlukan untuk melaksanakan seluruh kegiatan penarredan.

b. Waktu tetap, yaitu bagian dari waktu total yang dianggap tetap dan tidak dipengaruhi oleh faktor jarak sarad, diameter kayu yang disarad, dan lain-lain. Dalam kegiatan penarredan, yang termasuk waktu tetap adalah waktu mengaitkan muatan di hutan dan waktu melepaskan muatan di TPn/landing, serta waktu hilang (idle time).

c. Waktu tidak tetap atau waktu variabel yaitu bagian dari waktu total yang dipengaruhi oleh faktor jarak sarad, diameter kayu yang disarad, dan lain-lain.

Jarak sarad sangat berpengaruh terhadap biaya penarredan, semakin jauh jarak sarad, semakin besar biaya penarredan yang harus dikeluarkan (Conway, 1982).

Juta (1954), juga mengemukakan bahwa jarak sarad maksimum yang masih diperbolehkan adalah jarak di mana jumlah biaya penarredan rata-rata setiap m³ ditambah biaya pembuatan jalan angkutan yang sekecil-kecilnya.
III. KONDISI UMUM LOKASI PENELITIAN

A. Letak dan Luas

Bagian Kesatuan Pemangkuan Hutan Manglayang Barat merupakan salah satu BKPH yang ada di KPH Bandung Utara, di samping BKPH Padalarang, BKPH Cisalak, BKPH Cicalengka, BKPH Lembang, BKPH Tangkuban Perahu dan BKPH THR Djuanda. KPH Bandung Utara secara administratif terletak di tiga wilayah kabupaten, yaitu seluas 56,50% dari luas total wilayahnya terletak di Kabupaten Bandung bagian Utara, 32,80% di Kabupaten Subang dan 10,70% di Kabupaten Purwakarta. Luas kawasan hutan secara keseluruhan mencapai 28.012,13 Ha. Menurut fungsi pengelolaannya, kawasan hutan KPH Bandung Utara dibagi lagi menjadi kawasan hutan lindung seluas 10.666,03 Ha, kawasan hutan produksi 9.830,07 Ha, hutan suaka alam 7.172,90 Ha dan Genangan Cirata seluas 343,30 Ha. Wilayah hutan KPH Bandung Utara berbatasan dengan:

- Sebelah Utara : KPH Purwakarta
- Sebelah Selatan : KPH Bandung Selatan
- Sebelah Timur : KPH Sumedang dan Garut
- Sebelah Barat : KPH Cianjur


B. Kependekan Hutan

Kawasan KPH Bandung Utara pada umumnya memiliki topografi miring, landai, bergelombang hingga berjurang terjal karena terdiri dari dataran rendah yang berbukit-bukit dan pegunungan. Demikian pula halnya dengan BKPH Manglayang Barat yang terletak di daerah pegunungan, yaitu Gunung Manglayang, Gunung Pulosari, Gunung Bukit Tunggul, Gunung Kramat dan Gunung Pangparang.

Menurut Peta Tanah De Joungh dan Mohr, jenis tanah di KPH Bandung Utara dari Utara ke Selatan terdiri dari tanah campuran dari bahan yang sangat hancur dengan Mergel (tanah list krawang), tanah laterit merah dari bahan muda gunung berapi dan amat miskin simpanan mineral. Sedangkan BKPH Manglayang Barat secara umum memiliki jenis tanah latosol coklat dan abu-abu, sedikit berkerikil, sebagian kecil berbatu-batu dan pasir, sebagian besar sarang dan dalam serta kaya akan humus.
Wilayah KPH Bandung Utara memiliki beberapa tipe iklim menurut tipe iklim Smith dan Ferguson :
1. Bagian Utara (lereng Gunung Tangkuban Perahu dan Gunung Burangrang yang menghadap Utara) mempunyai tipe iklim A dan B dengan curah hujan 4300-5200 mm.
2. Bagian Utara yang masuk wilayah Kabupaten Subang memiliki tipe iklim B dengan rata-rata curah hujan 4300-5000 mm.
3. Bagian Utara yang masuk wilayah Kabupaten Purwakarta memiliki tipe iklim A dengan rata-rata curah hujan 4300 mm.
4. Bagian Selatan (lereng Gunung Tangkuban Perahu dan Gunung Burangrang yang menghadap ke Selatan) memiliki tipe iklim D dan C dengan rata-rata curah hujan 5000-5200 mm.
Suhu rata-rata tiap tahun adalah 21°C dengan suhu terendah 18°C dan suhu tertinggi 24°C.
Kawasan hutan BKPH Manglayang Barat sebagian besar terdiri dari tegakan Pinus merkusii, yaitu seluas 2316,02 Ha dan Tanaman Kayu Lain seluas 110,15 Ha yang terdiri dari akasia (Acacia sp), sengon (Paraserianthes falcataria), puspas (Schima walichii), dan tegakan bambu alam.

C. Kedanaan Sosial Ekonomi
Masyarakat yang tinggal di sekitar hutan pada umumnya bekerja sebagai petani dan tenaga kerja borongan pada kegiatan-kegiatan yang dilaksanakan pihak Perum Perhutani, seperti kegiatan pembuatan tanaman, pemeliharaan tanaman, dan penelitian.

D. Prasarana
Wilayah KPH Bandung Utara dilalui Sungai Citarum, tepatnya BKPH Padalarang. Aliran Sungai Citarum ini dimanfaatkan untuk pembangkit listrik dan saluran irigasi guna memenuhi kebutuhan pertanian di sekitarnya.
Kegiatan angkutan hasil hutan tidak dilakukan lewat air, melainkan melalui jalan darat mengingat keadaan lapangannya yang berbukit-bukit dengan topografi landai hingga bergelombang. Jalan-jalan yang digunakan di wilayah KPH Bandung Utara antara lain jalan propinsi, jalan jawatan kehutanan dan jalan desa, yang satu sama lain saling berhubungan. Jalan kereta api yang ada adalah jalan kereta api yang menghubungkan Bandung-Jakarta-Surabaya.
IV. METODOLOGI PENELITIAN

A. Lokasi dan Waktu Penelitian


B. Alat dan Bahan

Alat dan bahan yang digunakan dalam penelitian ini terdiri dari:
1. Geletrek dua log untuk menyarad kayu.
2. Stopwatch untuk mengukur waktu setiap elemen kerja penyaradan (waktu efektif dan waktu tidak efektif).
3. Clinometer untuk mengukur kelerengan jalan sarad.
4. Pita ukur untuk mengukur diameter dan panjang kayu yang akan disarad.
5. Kompas, untuk mengukur azimuth atau arah sarad.
7. Tali sepanjang 20 meter untuk mengukur panjang elemen jalan sarad. Tipi satu meter tali tersebut diberi tanda.
10. Tally sheet data jalan sarad dan data penyaradan.
11. Tabel volume kayu pinus.
12. Film dan kamera untuk dokumentasi kegiatan.

C. Pengumpulan Data

Data-data yang harus dikumpulkan selama penelitian berupa data primer dan data sekunder.
1. Data primer, diperoleh dari pengamatan langsung di lapangan, terdiri dari data mengenai:
   a. Panjang jalan sarad sebenarnya di lapangan, yaitu jarak dari petak tebang ke TPn yang diperoleh melalui pengukuran dengan menggunakan *Walking Measure*.
   b. Diameter kayu yang disarad, diperoleh melalui pengukuran pada bagian pangkal dan ujung batang kayu dengan menggunakan pita ukur.
   c. Panjang kayu yang disarad, diperoleh melalui pengukuran dengan menggunakan pita ukur.
   d. Kemiringan jalan sarad dari tempat tebang sampai ke TPn, diukur pada setiap jarak elemen sarad dengan menggunakan clinometer.
e. Arah penyaradan kayu, diperoleh melalui pengukuran dengan menggunakan kompas dari petak tebang sampai ke TPn.

f. Waktu kerja penyaradan (waktu efektif dan tidak efektif), diperoleh melalui pengukuran dengan menggunakan stopwatch (Metode Null Stop).

g. Organisasi kerja, seperti alat sarad yang digunakan, jumlah tenaga kerja, cara penyelesaian suatu pekerjaan, hubungan antara pekerja dengan petugas, dan lain-lain.

h. Jenis sortimen kayu yang diproduksi.

2. Data sekunder, diperoleh dari hasil wawancara langsung dengan petugas yang berkaitan dan dari arsip-arsip kantor tempat dilaksanakannya penelitian. Yang termasuk dalam data sekunder:

a. Keadaan umum lokasi penelitian (letak, luas, topografi, iklim, tegakan, dan lain-lain).

b. Target produksi (tebangan) tahunan pada petak yang diamati.

c. Potensi tegakan yang ditanam atau riap (m³/ha/th).

d. Jumlah jam kerja per hari atau per tahun.

e. Daftar upah pekerja (penyarad), baik riil maupun tarif upah.

f. Harga/biaya pembuatan geledek.

g. Data-data lain yang diperlukan untuk menunjang hasil penelitian ini.

[Gambar 1. Walking Measure]
D. Pengolahan Data

1. Volume Kayu

   Volume kayu yang disarad dihitung berdasarkan rumus Huber yang dimodifikasi, yaitu:

   \[ V = 0,25 \pi \left( \frac{dp + du}{2} \right)^2 \times 100 \times L \]

   Di mana:
   - \( V \) = Volume kayu yang disarad (m³)
   - \( dp \) = Diameter pangkal kayu yang disarad (cm)
   - \( du \) = Diameter ujung kayu yang disarad (cm)
   - \( L \) = Panjang kayu yang disarad (m)
   - 100 = Konversi ke satuan meter

2. Prestasi Kerja Penyaraadan

   Prestasi kerja penyaraadan per jam dihitung dengan menggunakan rumus sebagai berikut:

   \[ P = \frac{V \times 60}{T} \]

   Di mana:
   - \( P \) = Prestasi kerja penyaraadan (m³/jam)
   - \( V \) = Volume kayu (m³)
   - \( T \) = Total waktu kerja penyaraadan (menit)
   - 60 = Faktor konversi ke satuan jam

3. Biaya Usaha Penyaraadan


4. Biaya Penyaraadan

   Biaya penyaraadan terdiri dari biaya tetap dan biaya variabel kegiatan penyaraadan.

   a. Biaya tetap penyaraan diperoleh dari perhitungan:

   \[ BT = \frac{WT \times BU}{V} \]
Keterangan:

BT = Biaya tetap penyadaran (Rp/m³)
WT = Waktu tetap penyadaran per trip (jam)
BU = Biaya usaha penyadaran (Rp/jam)
V = Volume kayu yang disarad per trip (m³)

b. Biaya variabel (tidak tetap) penyadaran, dihitung dengan rumus:

\[ BV = \frac{WV \times BU}{V} \]

Keterangan:

BV = Biaya variabel penyadaran (Rp/m³)
WV = Waktu variabel penyadaran per trip (jam)
BU = Biaya usaha penyadaran (Rp/jam)
V = Volume kayu yang disarad per trip (m³)

d. Biaya Penyadaran = Biaya Tetap Penyadaran + Biaya Variabel Penyadaran (Rp/m³).
e. Biaya penyadaran per m³ per hmpp

\[ \text{Biaya penyadaran} = \frac{\text{Biaya variabel penyadaran per m³}}{\text{Jarak sarad rata-rata}} \]

f. Perhitungan jarak sarad rata-rata

\[ JS = \frac{x_1 + x_2 + \ldots + x_n}{n} \]

Keterangan:

JS = jarak sarad rata-rata
\[ x_1, x_2, \ldots, x_n \] = jarak sarad pengukuran di lapangan
n = jumlah ulangan

E. Analisis Data

Untuk menduga pengaruh volume kayu yang disarad, jarak sarad dan kelerengan jalan sarad terhadap prestasi kerja dan biaya penyadaran kayu dengan geletrek dua log, digunakan analisis regresi linier berganda dengan program minitab.

Model persamaan regresi yang digunakan adalah:

\[ Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 \]

Keterangan:

Y = Prestasi kerja penyadaran (m³/jam) dan biaya penyadaran (Rp/m³)
b_0 = Koefisien regresi bagi volume kayu yang disarad
b_1 = Koefisien regresi bagi jarak sarad
b_2 = Koefisien regresi bagi kelerengan jalan sarad
$x_1 = \text{Volume kayu yang disadag (m}^3)\n\]
$x_1 = \text{Jarak sadag (Hm)}$
$x_3 = \text{Kelerengan jalan sadag (%)}$

Untuk mengetahui ada tidaknya hubungan antara volume kayu yang disadag, jarak sadag, dan kelerengan jalan sadag terhadap prestasi kerja dan biaya penyadagan dengan tingkat kepercayaan 95% dan 99%, diuji dengan hipotesis:

Ho : $x_1$, $x_2$, dan $x_3$ tidak berpengaruh terhadap prestasi kerja dan biaya penyadagan.

H$_1$ : $x_1$, $x_2$, dan/atau $x_3$ berpengaruh terhadap prestasi kerja dan biaya penyadagan.

Kriteria pengujian:
Jika $F_{hitung} \leq F_{tabel}$, terima Ho.
Jika $F_{hitung} > F_{tabel}$, terima H$_1$.

Apabila terima H$_1$, maka peubah bebas berpengaruh nyata terhadap peubah tak bebas pada tingkat kepercayaan tertentu.

**Tabel 1. Analisis Regresi Linier Berganda**

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>df</th>
<th>JK</th>
<th>KT</th>
<th>$F_{Hitung}$</th>
<th>$0.05$</th>
<th>$0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresi</td>
<td>$p$</td>
<td>JKR</td>
<td>JKR/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisa</td>
<td>$n - p - 1$</td>
<td>JKS</td>
<td>JKS/(n-p-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$n - 1$</td>
<td>JKT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

$JKT = \sum Y^2 - (\sum Y)^2/n$

$JKR = b_1 \Sigma x_1 Y + b_2 \Sigma x_2 Y + \ldots + b_k \Sigma x_k Y$

$JKS = JK (total) - JK (R.)$

$n = \text{Jumlah ulangan}$

$p = \text{Banyaknya variabel bebas}$

Apabila hasil uji F menunjukkan nyata secara statistik, maka tahap berikutnya adalah menguji keberartian koefisien regresi dengan menggunakan uji t. Hal ini bertujuan untuk mengetahui keberartian setiap koefisien regresi dalam mempengaruhi peubah tak bebasnya.

Hipotesis:

H$_0$ : $b_j = 0$ ; artinya x tidak mempunyai korelasi yang nyata dengan Y.

H$_1$ : $b_j \neq 0$ ; artinya x mempunyai korelasi yang erat terhadap Y pada tingkat kepercayaan tertentu.

Statistik uji:

$t_{hitung} = \frac{b_j}{S_j}, \quad j = 1,2,3 \ldots \ldots $
Keterangan:

bj = nilai koefisien regresi dugaan
Sj = simpangan baku dugaan koefisien regresi peubah penjelas ke-j.

Selanjutnya nilai t hitung yang diperoleh dibandingkan dengan nilai t tabel yang merupakan nilai peubah acak pada fungsi sebaran t student untuk taraf uji yang digunakan (α).

Kriteria uji:
Jika t hitung ≤ t tabel maka terima Ho.
Jika t hitung > t tabel maka tolak Ho.

Nilai korelasi dihitung dengan rumus: \( r = \sqrt{R^2} \), di mana \( R^2 = \frac{JKR}{JKT} \)

Keterangan:

\( R^2 \) = Koefisien determinasi
\( JKR \) = Jumlah Kuadrat Regresi
\( JKT \) = Jumlah Kuadrat Tengah
\( r \) = koefisien regresi

Rumus \( R^2 \) dapat memperlihatkan kemampuan variabel bebas (x) dalam menjelaskan variabel tak bebas (Y). Nilai ini akan berkisar dari 0 – 1. Nilai yang mendekati 1 menunjukkan tingkat keakuratan yang semakin tinggi di dalam menjelaskan keterkaitan antar peubahnya dalam model.
V. HASIL DAN PEMBAHASAN

A. Pelaksanaan Penelitian

Penelitian mengenai prestasi kerja dan analisis biaya kegiatan penyadaran dilakukan pada areal tebangan *Pinus merkusii* pada petak 41e, Bagian Hutan Gunung Kramat, RPH Arcamanik, BKPH Manglayang Barat, KPH Bandung Utara. Luas petak ini adalah 16,60 Ha yang dibagi dalam 4 blok yaitu Blok I sampai dengan Blok IV. Blok I memiliki luas 4,6 Ha, sedangkan Blok II, III, dan Blok IV masing-masing 4 Ha. Petak 41e merupakan tebangan D (hama penyakit) dengan Kelas Umur VI atau tahun tanam 1971. Pada tebangan tahun 2000 realisasi produksinya mencapai 776,588 m³ atau meningkat 4,9% dari target produksi berdasarkan hasil klem, yaitu 740,081 m³. Jumlah pohon keseluruhan 979, ditanam dengan jarak tanam 3 x 2 m dan sistem tanam tumpangsari.

Petak 41e memiliki kelas bonita 3 dengan jenis tanah latosol coklat dan abu-abu serta kaya akan humus.

B. Alat Penyadaran

Kegiatan penyadaran di areal hutan BKPH Manglayang Barat pada umumnya dilakukan secara manual dengan cara digulingkan tanpa alat bantu dan digelletrek. Cara-cara penyadaran manual seperti itu telah dilakukan sejak dahulu dan masih digunakan hingga sekarang karena sangat sederhana, bisa dilakukan oleh siapa saja, dan relatif murah. Gelletrek yang di RPH Arcamanik juga disebut “palen” merupakan alat penyadaran manual yang terbuat dari dua batang bambu sepanjang 2,5 - 3 m dengan diameter 1,5 cm. Bambu ini dikombinasikan dengan klep besi pada salah satu ujungnya. Klep besi ini berfungsi sebagai baut yang ditancapkan pada pusat diameter pangkal dan ujung kayu untuk dihubungkan dengan bambu sebagai kemudinya. Klep besi yang digunakan adalah klep bekas yang biasa digunakan sebagai katup bahan bakar pada truk. Klep ini berukuran panjang 15 cm dengan diameter 2 cm dan ada pula yang sedikit lebih kecil. Besar kecilnya klep yang digunakan disesuaikan dengan besar kecilnya diameter kayu yang akan disadarkan. Penyadaran dengan gelletrek dua log membutuhkan 4 buah klep dan 2 buah lempengan besi atau kayu untuk menghubungkan kedua klep. Lempengan besi atau balok kayu yang digunakan panjangnya 0,5 m, lebar 5 cm dan tebal 1,5 - 2 cm.

C. Cara Kerja Penyadaran

Penyadaran dengan gelletrek di RPH Arcamanik dilakukan secara perorangan dan beregu. Tiap regu terdiri dari 2 hingga 7 orang yang biasanya berasal dari kampung yang sama di sekitar areal tebangan. Masing-masing tenaga kerja mengerjakan pekerjaannya sendiri, dari mulai menyiapkan kayu yang akan disadarkan dan menyadarnya sampai di TPn. Jadi tidak ada pembagian kerja secara khusus, seperti misalnya 2 orang khusus menyiapkan kayu yang akan disadarkan oleh beberapa pekerja
lainnya yang khusus menyarad. Mereka bekerja bersama, bila salah satu di antaranya istirahat, yang lain turut istirahat. Masing-masing regu membuat kapling tersendiri yang terdiri dari kayu-kayu yang berdiameter relatif sama.


![Gambar 2. Penyarad dengan Geletrek Dua Log](image)

Penyarad menggunakan geletrek pada umumnya dilakukan pada lapangan yang bertopografi miring. Panjang jalan sarad di areal tebangan 41e bervariasi dari 3,5 sampai 6 hm. Panjang kayu pinus yang disarut 1,5 m dengan diameter 17 cm ke atas. Untuk penyarad satu log diameter kayu yang disarut minimal 25 cm, terutama untuk penyarad yang memiliki kemampuan dan kemauan yang besar akan selalu menyarad kayu jenis AIII (diameter 29 cm ke atas).

Kegiatan penyarad dimulai dengan berjalan kosong menuju tunggak, dilanjutkan dengan pemasangan geletrek, yaitu dengan cara menancapkan klep besi pada kedua ujung/bontos kayu. Klep besi tersebut ditancapkan di pusat diameter dengan kedalaman kurang lebih tiga perempat dari panjang klep besi. Penancapan klep dilakukan dengan bantuan batu atau balok kayu agar posisi klep mantap sehingga tidak mudah terlepas dari kayu. Pemasangan klep pada kayu sudah pasti bersamaan dengan bambu kemudinya, karena klep-klepnya sudah dipasang pada lubang-lubang yang telah sengaja dibuat pada kemudi tersebut. Setelah pemasangan geletrek, dilanjutkan dengan berjalan bermuatan, yaitu
menyarad kayu dari tunggak ke TPn Legok Nyenang. Jalan sarad dibuat dengan lebar minimal sama dengan panjang kayu yang disarad, yaitu 1,5 m.

Gambar 3. Elemen Kerja Bongkar

Gambar 4. TPn Legok Nyenang RPH Arcamanik

D. Sistem Upah Penyarad

Sistem upah yang diterapkan oleh pihak Perum Perhutani khususnya KPH Bandung Utara untuk kegiatan penyarad adalah sistem borongan berdasarkan jumlah volume kayu yang disarad. Upah dibayarkan seminggu sekali pada hari Selasa. Besarnya upah untuk penyarad adalah Rp 15.000,00/m³.
F. Waktu Kerja Penyaradan


Waktu kerja penyaradan dibagi dalam 2 bagian yaitu waktu kerja efektif dan waktu kerja tidak efektif. Waktu kerja efektif didefinisikan sebagai waktu yang digunakan untuk menyelesaikan setiap elemen kerja penyaradan. Elemen kerja penyaradan yang termasuk waktu kerja efektif adalah penyarad berjalan menunggak, memasang klep besi/geletrek pada kayu (kegiatan muat), berjalan bermuatan atau menyarad kayu, dan melepaskan geletrek dari kayu (kegiatan bongkar) sesampainya di TPa. Waktu kerja tidak efektif terdiri dari unsur kerja tidak efektif, yaitu gangguan pada saat berjalan bermuatan, seperti klep besi kendor atau terlepas dari kayu, lepasnya kayu dari geletrek hingga kayu terperosok keluar dari jalur sarad, dan waktu hilang yang disebabkan penyarad yang dilakukan oleh penyarad lain terganggu serta waktu istirahat. Total waktu yang dibutuhkan untuk menyarad kayu rata-rata sebesar 26,32 menit per trip, terdiri dari waktu tetap dan waktu variabel.

Tabel 2. Waktu Penyaradan, Waktu Rata-rata, dan Persentase Waktu Tiap Unsur Kerja

<table>
<thead>
<tr>
<th>No.</th>
<th>Unsur Kerja</th>
<th>Total Waktu (menit)</th>
<th>Rata-rata (menit)</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Unsur Kerja Efektif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Berjalan kosong</td>
<td>1.017,00</td>
<td>9,87</td>
<td>37,51</td>
</tr>
<tr>
<td></td>
<td>- Muat</td>
<td>143,16</td>
<td>1,39</td>
<td>5,28</td>
</tr>
<tr>
<td></td>
<td>- Berjalan bermuatan</td>
<td>921,72</td>
<td>8,95</td>
<td>34,00</td>
</tr>
<tr>
<td></td>
<td>- Bongkar</td>
<td>134,60</td>
<td>1,31</td>
<td>4,96</td>
</tr>
<tr>
<td>2.</td>
<td>Unsur Kerja Tidak Efektif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gangguan</td>
<td>368,12</td>
<td>3,57</td>
<td>13,58</td>
</tr>
<tr>
<td></td>
<td>- Istirahat</td>
<td>126,70</td>
<td>1,23</td>
<td>4,67</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>2.711,30</td>
<td>26,32</td>
<td>100</td>
</tr>
</tbody>
</table>

Dari Tabel 2 dapat dilihat bahwa elemen kerja penyaradan yang membutuhkan waktu terbesar adalah elemen kerja berjalan kosong menuju tunggak dengan rata-rata 9,87 menit atau 37,51% dari total waktu yang dibutuhkan dalam penyaradan. Faktor yang mempengaruhi unsur kerja ini adalah jarak sarad dan kelerengan jalan sarad. Pada saat menuju tunggak, jalan sarad yang dilalui bercorongan positif, dengan kata lain penyarad berjalan menanjak. Berlawanan dengan unsur kerja menyarad yang mengharuskan penyarad berjalan cepat mengikuti kecepatan gerak putar kayu menuju jalan sarad sehingga waktu yang diperlukan lebih sedikit daripada waktu berjalan kosong. Besarnya waktu berjalan bermuatan rata-rata 8,95 menit atau 34,0% dari waktu total penyaradan. Selain dipengaruhi oleh jarak sarad dan kelerengananya, waktu berjalan bermuatan dipengaruhi oleh volume kayu yang disarad dan keterampilan penyarad. Ada 2 kemungkinan yang terjadi bila volume kayu yang disarad makin besar, waktu yang diperlukan semakin sedikit karena gerak putar kayu lebih cepat atau waktu yang diperlukan untuk sampai di TPn lebih banyak, bila si penyarad kurang terampil dalam mengendalikan geletek dan volume kayunya lebih besar. Selisih antara waktu kerja berjalan bermuatan dengan waktu berjalan kosong sebesar 0,92 menit.

Waktu kerja efektif terendah dibutuhkan pada kegiatan bongkar dengan waktu rata-rata 1,31 menit atau 4,96% dari total waktu yang diperlukan untuk penyaradan. Waktu untuk kegiatan bongkar hanya dipengaruhi oleh keterampilan penyarad dan katu tidaknya alat bantu pengungkit dari kayu yang digunakan. Selain itu, waktu hilang yang seringkali terjadi pada elemen bongkar yaitu waktu untuk mencari pengungkit yang akan digunakan. Waktu rata-rata untuk kegiatan muat sebesar 1,39 menit atau 5,28%. Pemasangan klep pada kayu tidak boleh terlalu dangkal karena akan mudah lepas dari kayu pada saat menyaradnya. Selisih waktu antara kegiatan muat dengan kegiatan bongkar sekitar 0,08 menit. Dalam penyaradan dengan geletek 1 log, kegiatan memancing alat (muat)
memerlukan waktu rata-rata 0,45 menit dan kegiatan bongkar membutuhkan waktu rata-rata 0,36 menit. (Eriawan, 2000).

![Gambar 5. Gangguan Alat](image)

Waktu kerja tidak efektif rata-rata 4,80 menit atau 18,24% dari total waktu penyaradan, terdiri dari waktu tidak efektif hilang berupa gangguan, rata-rata 3,57 menit dan waktu istirahat rata-rata 1,23 menit. Waktu gangguan terbesar terjadi pada kegiatan berjalan bermuatan menuju TPn, yang disebabkan pemasangan klep besi yang kurang sesuai, volume kayu yang terlalu besar, jalan sarad yang kondisinya bergelombang dan waktu tunggu akibat gangguan yang terjadi pada penyarad lain.

![Gambar 6. Kondisi Jalan Sarad yang Bergelombang](image)

Jalan sarad yang bergelombang menyebabkan kayu terperangkap di antara dua gelombang atau gundukan tanah. Waktu tidak efektif ini dapat dikurangi dengan menekan faktor-faktor yang
mempengaruhinya. Waktu kerja tidak efektif lain adalah istirahat yang biasanya dilakukan setelah kegiatan bongkar sebelum memulai trip berikutnya. Waktu istirahat 4,67% dari waktu total penyarad.

F. Prestasi Kerja Penyarad

Perhitungan prestasi kerja penyarad dengan geletrek dua log didasarkan pada lamanya waktu total efektif dan waktu total aktual. Waktu total efektif bila penyarad dilakukan secara efektif tanpa gangguan, sedangkan waktu total aktual memperhitungkan waktu hilang akibat gangguan dan istirahat. Prestasi kerja efektif rata-rata tiap siklus penyarad adalah 0,39 m³/jam dan prestasi kerja aktual rata-rata hanya 0,33 m³/jam. Jarak sarad terjauh dalam penelitian ini 5,57 Hm dan jarak sarad terpendek 3,83 Hm, dengan jarak sarad rata-rata 4,77 Hm. Volume kayu disarad antara 0,08 m³ hingga 0,23 m³ dengan nilai rata-rata 0,14 m³. Untuk setiap 1 Hm jarak sarad, prestasi kerja efektif sebesar 1,88 m³/jam dan prestasi kerja aktualnya 1,57 m³/jam. Dibandingkan dengan penyarad dengan menggunakan geletrek satu log, prestasi kerja penyarad menggunakan geletrek dua log dalam penelitian ini lebih kecil. Prestasi kerja penyarad dengan geletrek satu log rata-rata sebesar 1,70 m³/jam untuk jarak sarad rata-rata 1 Hm dengan kelerengan jalan sarad –6,69% (Eriawan, 2000). Hal ini dapat dimengerti karena volume kayu yang disarad dapat lebih besar, sedangkan untuk geletrek dua log, kayu yang disarad terdiri dari dua kayu yang mempunyai volume relatif sama dan berukuran sedang (lebih kecil dari kayu yang disarad dengan geletrek satu log) karena tingkat beban dan tingkat kesulitan dalam mengendalikan alat lebih tinggi. Jalan sarad yang dilalui menurun, dengan kelerengan rata-rata –6,11%.

Gambar 7. Jalan Sarad Petak 41e RPH Arcamanik
G. Biaya Penyaranan

Biaya penyaranan merupakan penjumlahan biaya tetap sarad dengan biaya variabel sarad. Biaya tetap sarad dihitung berdasarkan perkalian waktu tetap dengan biaya usaha, sedangkan biaya variabel sarad diperoleh dari perkalian waktu variabel dengan biaya usaha. Biaya usaha penyaranan dengan geletrek merupakan penjumlahan biaya alat dan upah penyaran. Biaya alat dalam penelitian penyaranan dengan geletrek dua log bernilai nol karena geletrek yang digunakan untuk penyaranan kayu pinus di RPH Arcamanik diusahakan sendiri oleh penyaran. Biaya alat yang dikeluarkan tiap penyaran untuk membuat geletrek dua log maksimal sebesar harga 4 buah klep besi. Harga satu buah klep berukuran kecil Rp 5000,00 dan yang berukuran besar Rp 7000,00. Pada umumnya klep-klep besi itu diperoleh secara cuma-cuma dari perusahaan angkutan yang bekerjasama dengan pihak RPH. Sedangkan bambu sebagai kemudi geletrek dan balok kayu sebagai penghubung antar klep dapat diperoleh dari bambu-bambu yang banyak tumbuh di sekitar petak kerja. Dengan demikian biaya usaha yang dikeluarkan Perum Perhutani tidak lagi terdiri dari biaya alat dan upah penyaran, melainkan hanya upah penyaran yang ditentukan besarnya Rp 15.000/m³. Untuk tingkat prestasi kerja sebesar 0,33 m³/jam, biaya usaha yang dikeluarkan Rp 4950,00/jam. Pada penelitian penyaranan dengan geletrek satu log, besarnya biaya usaha rata-rata Rp 5345,91/jam. Biaya usaha penyaranan dengan geletrek dua log yang lebih rendah disebabkan prestasi kerjanya yang juga lebih kecil akibat jumlah volume kayu yang dihasilkan tiap satuan waktu tidak sebanyak volume yang dihasilkan oleh penyaranan dengan geletrek satu log, pada hal upah penyaran sebagai satu-satunya komponen dalam perhitungan biaya usaha ditentukan berdasarkan besar volume kayu yang disarad. Semakin banyak volume yang dihasilkan, semakin besar biaya usaha yang harus dikeluarkan pihak perusahaan.

Berdasarkan hasil perhitungan biaya penyaranan dengan geletrek dua log, diperoleh biaya total penyaranan rata-rata Rp 16.155,00/m³. Biaya ini lebih kecil dibandingkan biaya penyaranan menggunakan geletrek satu log yang besarnya Rp 17.868,00/m³. (Eriawan, 2000). Perbandingan biaya penyaranan menggunakan geletrek dua log pada penelitian ini dengan biaya penyaranan menggunakan satu log yang dilakukan Eriawan (2000) di KPH Garut dengan jarak sarad rata-rata 1 Hm, volume kayu rata-rata 0,14 m³, keberang -6,11% dan prestasi kerja sebesar 1,70 m³/jam dapat dilihat pada tabel 3.

<table>
<thead>
<tr>
<th>Jenis Biaya</th>
<th>Geletrek Dua Log</th>
<th>Geletrek satu Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biaya Usaha (Rp/jam)</td>
<td>4950</td>
<td>5345,91</td>
</tr>
<tr>
<td>Biaya Tetap (Rp/m³)</td>
<td>2638,98</td>
<td>3530</td>
</tr>
<tr>
<td>Biaya Variabel (Rp/m³)</td>
<td>13516</td>
<td>14245</td>
</tr>
<tr>
<td>Biaya Total Penyaranan (Rp/m3)</td>
<td>16155</td>
<td>17868</td>
</tr>
</tbody>
</table>

Biaya tetap, biaya variabel, dan biaya total penyaranan dengan geletrek satu log lebih besar karena biaya usaha yang menjadi faktor pengalinya juga lebih besar dibandingkan geletrek dua log.

Faktor-faktor yang diduga berpengaruh terhadap prestasi kerja dan biaya penyaranan menggunakan geletrek 2 log adalah volume kayu yang disarad ($X_1$), jarak sarad yang ditempuh ($X_2$) dan kelerengan jalan sarad ($X_3$). Besarnya pengaruh ketiga faktor tersebut dapat diketahui dari model persamaan regresi linier berganda yang dibuat dengan program minitab.


Hubungan antara prestasi kerja dengan ketiga faktor yang diduga berpengaruh dianalisis dengan regresi hubungan tunggal dan ganda. Analisis regresi hubungan tunggal dilakukan untuk mengetahui pengaruh masing-masing faktor terhadap variasi prestasi kerja. Dari ketiga analisis regresi hubungan tunggal diketahui bahwa kelerengan jalan sarad memiliki nilai $t$ hitung yang lebih kecil daripada $t$ tabel, yang berarti faktor kelerengan jalan sarad dapat diabaikan atau tidak berpengaruh nyata terhadap perubahan prestasi kerja pada tingkat kepercayaan 95% dan 99%. Oleh karena itu, faktor kelerengan tidak disertakan dalam pembentukan model persamaan analisis regresi hubungan ganda agar tidak terjadi bias antara faktor yang nyata berpengaruh dengan yang tidak nyata terhadap prestasi kerja penyaranan. Hasil analisis regresi hubungan tunggal secara lengkap disajikan pada lampiran 4.

Analisis regresi hubungan berganda antara prestasi kerja dengan volume dan jarak sarad menghasilkan model persamaan $Y = 0,301 + 1,95X_1 - 0,0512X_2$.

Data analisis regresi dari persamaan regresi di atas disajikan pada Tabel 4.

<table>
<thead>
<tr>
<th>Sumber</th>
<th>$Db$</th>
<th>Jumlah Kuadrat</th>
<th>Kuadrat Tengah</th>
<th>$F$ Hitung</th>
<th>$F$ Tabel</th>
<th>$95%$</th>
<th>$99%$</th>
<th>$F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresi</td>
<td>3</td>
<td>0,41415</td>
<td>0,20708</td>
<td>52,37***</td>
<td>2,74</td>
<td>4,93</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Galat</td>
<td>100</td>
<td>0,39539</td>
<td>0,00395</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>0,80954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

* nyata pada taraf nyata 0,05

** nyata pada taraf nyata 0,01

Berdasarkan analisis ragam di atas, dapat dilihat bahwa nilai $F$ hitung > $F$ tabel pada taraf nyata 0,05 dan 0,01 sehingga diambil kesimpulan bahwa volume kayu yang disarad ($X_1$) dan jarak sarad ($X_2$), berpengaruh terhadap prestasi kerja penyaranan. Untuk mengetahui keberartian masing-masing faktor tersebut terhadap prestasi kerja perlu dilakukan uji $t$. Hasil uji $t$ disajikan dalam Tabel 5.
Tabel 5. Nilai Dugaan dari Parameter yang Mempengaruhi Prestasi Kerja Penyadaran

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koefisien</th>
<th>Simpangan Baku</th>
<th>T hitung</th>
<th>T tabel 95%</th>
<th>T tabel 99%</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>0,30094</td>
<td>0,01545</td>
<td>4,64</td>
<td>1,960</td>
<td>2,576</td>
<td>0,000</td>
</tr>
<tr>
<td>Volume</td>
<td>1,9488</td>
<td>0,04856</td>
<td>9,12***</td>
<td></td>
<td></td>
<td>0,000</td>
</tr>
<tr>
<td>Jarak Sarad</td>
<td>-0,03115</td>
<td>0,00426</td>
<td>-4,33***</td>
<td></td>
<td></td>
<td>0,000</td>
</tr>
</tbody>
</table>

Keterangan : * nyata pada taraf nyata 0,05
** nyata pada taraf nyata 0,01

Dari hasil uji t diperoleh nilai t hitung untuk masing-masing faktor, yaitu t hitung untuk volume kayu yang disarad sebesar 9,12, dan jarak sarad yang ditempuh sebesar –4,33. Nilai t bersifat mutlak. Dari ketiga nilai t di atas tampak bahwa t hitung untuk volume kayu yang disarad dan jarak sarad yang ditempuh nilainya lebih besar dari t tabel. Hal ini menunjukkan bahwa faktor volume dan jarak sarad sangat berarti dan pengaruhnya tidak dapat diabaikan pada taraf nyata 0,05 dan 0,01.

Dari persamaan regresi yang terbentuk dapat diketahui bahwa setiap penambahan volume kayu sebesar 0,1 m³ akan meningkatkan prestasi kerja penyadaran sebesar 1,95 m³/jam dan penambahan jarak sarad sebesar 1 Hm akan menurunkan prestasi kerja sebesar 0,0512 m³/jam. Jadi, antara volume kayu dengan prestasi kerja penyadaran mempunyai hubungan yang bersifat positif, sedangkan jarak sarad dan prestasi kerja penyadaran mempunyai hubungan yang bersifat negatif. Pada penyadaran dengan menggunakan gelektrek satu log, penambahan 0,1 m³ kayu akan meningkatkan prestasi kerja sebesar 0,87 m³/jam dan penambahan jarak sarad sebesar 1 Hm akan menurunkan prestasi kerja sebesar 0,35 m³/jam. Dengan demikian dapat diikatakan bahwa volume kayu mempunyai pengaruh yang lebih besar terhadap prestasi kerja penyadaran dengan gelektrek dua log dibandingkan pengaruhnya pada penyadaran dengan gelektrek satu log. Sedangkan jarak sarad memberikan tingkat pengaruh yang sebaliknya.

Pengaruh faktor volume kayu, jarak sarad dan kelerengan jalan sarad terhadap prestasi kerja penyadaran dapat dijelaskan sebagai berikut :

a. Volume Kayu

Meskipun lebih sulit, penyadaran dengan gelektrek 2 log tetap dilakukan oleh beberapa penyadaran, terutama untuk kayu-kayu jenis A1 (diameter antara 10 cm dan 20 cm) dan kayu jenis AII (diameter 20 hingga 29 cm). Kayu-kayu jenis A1 dan AII tersebut mempunyai volume yang kecil sehingga apabila disarad dengan gelektrek satu log, hasil yang diperoleh tidak optimal yang menyebabkan upah penyadaran pun tidak optimal. Semakin besar volume kayu yang disarad, akan semakin meningkatkan prestasi kerja penyadaran, selama volume kayu tersebut tidak melebihi kapasitas sarad.
b. Jarak Sarad
Faktor jarak sarad sangat berpengaruh terhadap prestasi kerja penyaradan. Semakin jauh jarak sarad yang ditempuh semakin lama waktu yang diperlukan untuk berjalan menuju tunggak dan berjalan bermuatan menuju TPn. Peningkatan waktu kerja penyaradan akan menurunkan tingkat prestasi kerja.

c. Kelerengan Jalan Sarad

Dari persamaan regresi linier berganda yang terbentuk, diperoleh nilai koefisien determinasi \( R^2 \) sebesar 51,2% yang artinya bahwa 51,2% variasi prestasi kerja penyaradan dapat dijelaskan oleh faktor volume kayu yang disarad dan jarak sarad, sedangkan 48,8% variasinya dijelaskan oleh faktor lain, seperti ketrampilan penyarad dalam mengendalikan geletrek dan kondisi jalan sarad yang lebarnya hanya cukup dilalui satu log, sehingga apabila terjadi gangguan alat pada satu penyarad menyebabkan terjadinya waktu tunggu bagi penyarad lain.

Nilai koefisien korelasi \( r \) dari persamaan regresi yang terbentuk sebesar 50,2% yang berarti bahwa hubungan antara variabel bebas (volume, jarak sarad, dan kelerengan jalan sarad) dengan variabel tidak bebasnya (prestasi kerja) cukup erat.


Hubungan antara biaya penyaradan dengan ketiga faktor yang diduga berpengaruh dianalisis dengan regresi hubungan tunggal dan ganda. Analisis regresi hubungan tunggal dilakukan untuk mengetahui pengaruh masing-masing faktor terhadap variasi biaya penyaradan. Dari ketiga analisis regresi hubungan tunggal diketahui bahwa kelerengan jalan sarad memiliki nilai t hitung yang lebih kecil daripada t tabel, yang berarti faktor kelerengan jalan sarad dapat diabaikan atau tidak berpengaruh nyata terhadap variasi biaya penyaradan pada tingkat kepercayaan 95% dan 99%. Oleh karena itu, faktor kelerengan tidak disertakan dalam pembentukan model persamaan analisis regresi hubungan ganda agar tidak terjadi bias antara faktor yang nyata berpengaruh dengan yang tidak nyata terhadap biaya penyaradan. Hasil analisis regresi hubungan tunggal secara lengkap disajikan pada lampiran 4.
Analisis regresi hubungan berganda antara biaya penyarakad dengan volume dan jarak sarad menghasilkan model persamaan 
\[ Y = 18283 - 94317X_1 + 2312X_2 \]

Data analisis regresi dari persamaan di atas disajikan dalam Tabel 6.


<table>
<thead>
<tr>
<th>Sumber</th>
<th>Db</th>
<th>Jumlah Kuadrat</th>
<th>Kuadrat Tengah</th>
<th>F Hitung</th>
<th>F Hitung 95%</th>
<th>F Hitung 99%</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresi</td>
<td>3</td>
<td>94613612</td>
<td>473068062</td>
<td>44,81***</td>
<td></td>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>Galat</td>
<td>100</td>
<td>1055825056</td>
<td>10558251</td>
<td>2,74</td>
<td></td>
<td></td>
<td>0,01</td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>2001961181</td>
<td></td>
<td>4,93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan : * nyata pada taraf nyata 0,05
** nyata pada taraf nyata 0,01

Berdasarkan analisis ragam di atas, dapat dilihat bahwa nilai F hitung > F tabel pada taraf nyata 0,05 dan 0,01. Dengan demikian dapat disimpulkan bahwa volume kayu \((X_1)\) dan jarak sarad \((X_2)\) berpengaruh nyata terhadap biaya penyarakad. Dari persamaan regresi linier yang terbentuk diperoleh nilai koefisien determinasi \((R^2)\) sebesar 47,3% yang berarti bahwa 47,3% variasi biaya penyarakad dapat dijelaskan oleh faktor-faktor volume kayu dan jarak sarad. Sedangkan 52,7% dijelaskan oleh faktor lain.

Nilai koefisien korelasi \((r)\) dari persamaan tersebut sebesar 46,2% yang berarti bahwa hubungan antara variabel-variabel bebas (volume kayu dan jarak sarad) dengan variabel tidak bebasnya (biaya penyarakad) cukup erat.

Dari persamaan regresi yang terbentuk dapat diketahui bahwa setiap penambahan volume kayu sebesar 0,1 \(m^3\) akan menurunkan biaya penyarakad sebesar Rp 9431,00 dan penambahan jarak sarad sejauh 1 \(Hm\) akan meningkatkan biaya penyarakad sebesar Rp 2312,00. Jadi antara volume kayu dengan biaya penyarakad mempunyai hubungan yang negatif, sedangkan jarak sarad mempunyai hubungan yang bersifat positif dengan biaya penyarakad. Pada penyarakad dengan gelektrek satu log, penambahan volume 0,1m\(^3\) akan menurunkan biaya penyarakad sebesar Rp 7.677,60 dan penambahan 1 \(Hm\) jarak sarad akan meningkatkan biaya sebesar Rp 32.422,00.

Dari hasil uji t, diperoleh nilai t hitung untuk masing-masing faktor yaitu t hitung untuk volume kayu yang disarad sebesar \(-8,55\) dan t hitung untuk jarak sarad sebesar \(3,79\). Dari kedua nilai t hitung di atas, t hitung volume kayu dan jarak sarad lebih besar dari t tabel yang menunjukkan bahwa volume kayu dan jarak sarad sangat berarti dan pengaruhnya tidak dapat diabaikan pada taraf nyata.
0,05 dan 0,01. Tingkat keberartian tiap variabel bebas terhadap persamaan regresi di atas disajikan pada Tabel 7.

Tabel 7. Nilai Dugaan dari Parameter yang Mempengaruhi Biaya Penyaradan

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koefisien</th>
<th>Sempangan Baku</th>
<th>T Hitung</th>
<th>T Tabel 95%</th>
<th>T Tabel 99%</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>18823</td>
<td>3350</td>
<td>5,46</td>
<td>1,960</td>
<td>2,576</td>
<td>0,000</td>
</tr>
<tr>
<td>Volume</td>
<td>-94317</td>
<td>11037</td>
<td>-8,55**</td>
<td>1,960</td>
<td>2,576</td>
<td>0,000</td>
</tr>
<tr>
<td>Jarak Sarad</td>
<td>2311,6</td>
<td>609,9</td>
<td>3,79**</td>
<td>1,960</td>
<td>2,576</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Keterangan: * nyata pada taraf nyata 0,05  
** nyata pada taraf nyata 0,01

Pengaruh faktor volume kayu yang disarad dan jarak sarad dapat dijelaskan sebagai berikut:

a. Volume kayu

Semakin besar volume kayu yang dihasilkan, semakin kecil biaya penyaradan yang dikeluarkan. Meskipun dalam hal ini Perum Perhutani membayar upah penyarad berdasarkan volume kayu yang disarad sehingga semakin besar volume kayu yang diperoleh semakin besar pula upah yang harus dikeluarkan, namun pengeluaran untuk membayar upah tersebut dapat ditutup oleh banyaknya kayu yang diproduksi.

b. Jarak Sarad

Semakin jauh jarak sarad yang ditempat, maka waktu kerja penyaradan semakin tinggi. Peningkatan jarak sarad akan meningkatkan waktu variabel penyaradan sehingga akan meningkatkan pula biaya variabel penyaradan. Besar kecilnya biaya variabel mempengaruhi besar kecilnya biaya total penyaradan.

c. Kelerengan Jalan Sarad

Gangguan alat pada kegiatan penyaradan cenderung lebih sering terjadi pada kondisi jalan sarad yang mempunyai kelerengan tinggi. Apalagi bila kondisi tersebut tidak diimbangi dengan kemampuan penyarad dalam mengemudikan/mengendalikan alat. Elemen kerja berjalan kosong pada lapangan yang menanjak memakan waktu lebih lama dibandingkan dengan berjalan kosong di lapangan yang datar atau menurun. Meningkatnya waktu variabel menyebabkan meningkatnya biaya variabel penyaradan. Pada penelitian ini, faktor kelerengan jalan sarad tidak berpengaruh nyata terhadap biaya penyaradan karena tingkat kelerengannya yang relatif rendah, cenderung datar.
VI. KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan hasil penelitian prestasi kerja dan biaya penyardan kayu dengan geletrak dua log, dapat diambil kesimpulan bahwa:

1. Waktu rata-rata efektif elemen kerja penyardan dengan geletrak dua log adalah waktu berjalan kosong menuju tunggak 9,87 menit, memasang geletrak pada kayu (elemen kerja mut) 1,39 menit, berjalan bermuatan (menyandar kayu) ke TPr 8,95 menit dan elemen kerja bongkar 1,31 menit. Waktu rata-rata tidak efektif dari setiap elemen kerja terdiri dari waktu gangguan pada elemen kerja mut rata-rata sebesar 0,15 menit, gangguan pada elemen kerja berjalan bermuatan sebesar 3,18 menit, gangguan pada elemen kerja bongkar sebesar 0,25 menit dan istirahat rata-rata sebesar 1,23 menit. Waktu efektif penyardan, bila penyardan dapat dilakukan tanpa terjadi gangguan, memerlukan waktu 21,52 menit atau 4,8% lebih cepat dari waktu aktual penyardan.

2. Prestasi kerja yang dicapai penyardan rata-rata sebesar 0,33 m³/jam dengan prestasi kerja efektif sebesar 0,39 m³/jam. Jarak sarad terjauh dalam penelitian ini 5,57 Hm dan jarak sarad terpendek 3,83 Hm dengan jarak sarad rata-rata 4,77 Hm. Prestasi kerja efektif per Hm sebesar 1,88 m³/jam dan prestasi kerja aktual per Hm sebesar 1,57 m³/jam. Volume kayu yang disarad per trip berkisar antara 0,08 m³ sampai 0,23 m³ dengan nilai rata-rata 0,14 m³ per trip.

3. Biaya usaha yang dikeluarkan sebesar Rp 4950,00 berdasarkan upah penyard yang telah ditentukan yaitu Rp 15.000,00/m³ dan prestasi kerja aktual rata-rata sebesar 0,33 m³/jam. Biaya usaha penyardan dengan geletrak satu log lebih besar karena prestasi kerjanya pun lebih besar.

4. Besar biaya tetap penyadaran rata-rata Rp 2638,98/m³ atau 16,34% dari total biaya penyadaran sebesar Rp 16.155,00 dan biaya variabel penyadaran sebesar Rp 13.516,00/m³ atau 83,66% dari total biaya penyadaran. Pada penyadaran dengan geletrak satu log, ketiga jenis biaya tersebut lebih besar karena biaya usahnanya lebih besar, sebagai kompensasi besarnya volume kayu yang diperoleh.

5. Pengaruh volume kayu (X₁) dan jarak sarad (X₂) terhadap prestasi kerja penyardan (Y) dapat diduga melalui model persamaan \[ Y = 0,301 + 1,95X₁ - 0,0512X₂. \] Hasil pengujian statistik menunjukkan bahwa kedua variabel (X₁, X₂) secara bersama-sama mempunyai pengaruh yang nyata terhadap variabel tak bebasnya (Y) pada taraf nyata 0,05 dan 0,01. Faktor kelerengan tidak disertakan dalam analisis regresi hubungan ganda karena pada analisis regresi tunggal sudah menunjukkan pengaruh yang tidak nyata. Selain faktor-faktor tersebut di atas, prestasi kerja penyadaran juga dipengaruhi oleh keadaan jalan sarad yang bergelombang dan ketrampilan penyardan.
6. Biaya penyarad dipengaruhi oleh faktor volume kayu dan jarak sarad. Pengaruh kedua faktor tersebut dapat diduga melalui model persamaan \( Y = 18283 - 94317X_1 + 2312X_2 \). Kelerengan jalan sarad tidak memberikan pengaruh yang nyata sehingga tidak dimasukkan secara bersama-sama ke dalam model.

7. Pada penyarad dengan geletak satu log, volume kayu, jarak sarad dan kelerengan jalan sarad secara bersama-sama memberikan pengaruh yang nyata terhadap prestasi kerja dan biaya penyarad. Pada penyarad dengan geletak dua log, kelerengan jalan sarad tidak memberikan pengaruh yang nyata.

B. SARAN

Dari hasil penelitian ini ada beberapa saran yang dapat diberikan kepada pihak Perum Perhutani untuk perbaikan di masa yang akan datang:

1. Perlu dilakukan perataan pada jalan-jalan sarad yang bergelombang yang menyebabkan terjadinya gangguan pada saat kegiatan penyarad.

2. Perlu adanya insentif dari pihak perusahaan untuk penyarad agar penyarad mempunyai motivasi dan semangat yang besar untuk mencapai prestasi kerja yang lebih optimal karena meskipun upah penyarad Rp15.000,00/m³ sekilas cukup besar, namun untuk ukuran tenaga manusia nilai tersebut tidak sebanding. Penyarad memerlukan usaha dan waktu yang lebih besar lagi untuk menghasilkan satu m³ kayu disebabkan kapasitas alat bantu saradnya yang sangat kecil.

3. Perlu dikaji lebih lanjut sistem pengupahan yang hanya berdasarkan volume kayu (Rp/m³) mengingat kondisi areal, terutama jarak sarad, sangat berpengaruh terhadap tingkat prestasi kerja.
DAFTAR PUSTAKA


LAMPIRAN
Lampiran 1. Data Volume Kayu yang Disarad per Trip

<table>
<thead>
<tr>
<th>Trip</th>
<th>Lereng (%)</th>
<th>Jarak Sarad (Hm)</th>
<th>P (m)</th>
<th>Dp (cm)</th>
<th>Du (cm)</th>
<th>Volume (m³)</th>
<th>Volume/trip (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-7.99</td>
<td>5.44</td>
<td>1.5</td>
<td>22</td>
<td>21</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>-7.25</td>
<td>4.32</td>
<td>1.5</td>
<td>23</td>
<td>23</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>3</td>
<td>-8.08</td>
<td>5.62</td>
<td>1.5</td>
<td>23</td>
<td>20</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>4</td>
<td>-7.48</td>
<td>4.38</td>
<td>1.5</td>
<td>22</td>
<td>21</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>-7.75</td>
<td>5.40</td>
<td>1.5</td>
<td>24</td>
<td>22</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>6</td>
<td>-7.97</td>
<td>5.40</td>
<td>1.5</td>
<td>25</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>7</td>
<td>-6.72</td>
<td>4.82</td>
<td>1.5</td>
<td>26</td>
<td>25</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>8</td>
<td>-6.50</td>
<td>4.66</td>
<td>1.5</td>
<td>23</td>
<td>22</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>9</td>
<td>-7.89</td>
<td>5.57</td>
<td>1.5</td>
<td>21</td>
<td>20</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>10</td>
<td>-7.89</td>
<td>5.02</td>
<td>1.5</td>
<td>25</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>11</td>
<td>-7.52</td>
<td>4.77</td>
<td>1.5</td>
<td>25</td>
<td>23</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>12</td>
<td>-7.00</td>
<td>4.35</td>
<td>1.5</td>
<td>24</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>13</td>
<td>-6.79</td>
<td>4.04</td>
<td>1.5</td>
<td>25</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>14</td>
<td>-6.32</td>
<td>3.83</td>
<td>1.5</td>
<td>26</td>
<td>24</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>15</td>
<td>-6.40</td>
<td>3.83</td>
<td>1.5</td>
<td>26</td>
<td>25</td>
<td>0.08</td>
<td>0.18</td>
</tr>
<tr>
<td>16</td>
<td>-6.55</td>
<td>4.09</td>
<td>1.5</td>
<td>26</td>
<td>25</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>17</td>
<td>-7.04</td>
<td>4.05</td>
<td>1.5</td>
<td>28</td>
<td>28</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td>18</td>
<td>-6.00</td>
<td>3.91</td>
<td>1.5</td>
<td>24</td>
<td>23</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>19</td>
<td>-6.79</td>
<td>3.91</td>
<td>1.5</td>
<td>26</td>
<td>25</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>20</td>
<td>-5.54</td>
<td>3.94</td>
<td>1.5</td>
<td>29</td>
<td>27</td>
<td>0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>21</td>
<td>-5.54</td>
<td>3.93</td>
<td>1.5</td>
<td>24</td>
<td>22</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>22</td>
<td>-6.00</td>
<td>3.98</td>
<td>1.5</td>
<td>28</td>
<td>27</td>
<td>0.09</td>
<td>0.17</td>
</tr>
<tr>
<td>23</td>
<td>-6</td>
<td>4.00</td>
<td>1.5</td>
<td>26</td>
<td>26</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>24</td>
<td>-5.35</td>
<td>3.98</td>
<td>1.5</td>
<td>27</td>
<td>26</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>25</td>
<td>-5.26</td>
<td>3.93</td>
<td>1.5</td>
<td>21</td>
<td>20</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>26</td>
<td>-5.39</td>
<td>4.01</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>Tri</td>
<td>Lengk. (%)</td>
<td>Jarak Sarad (Hm)</td>
<td>P (m)</td>
<td>Dia (cm)</td>
<td>Du (cm)</td>
<td>Volume (m³)</td>
<td>Volumetrip (m³)</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>27</td>
<td>-5.38</td>
<td>4.02</td>
<td>28</td>
<td>26</td>
<td></td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>28</td>
<td>-5.50</td>
<td>4.09</td>
<td>27</td>
<td>25</td>
<td>26</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>29</td>
<td>-7.70</td>
<td>4.75</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>0.08</td>
<td>0.17</td>
</tr>
<tr>
<td>30</td>
<td>-7.80</td>
<td>5.05</td>
<td>29</td>
<td>27</td>
<td>26</td>
<td>0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>31</td>
<td>-7.52</td>
<td>5.20</td>
<td>28</td>
<td>26</td>
<td>25</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>32</td>
<td>-7.42</td>
<td>5.23</td>
<td>28</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>33</td>
<td>-7.87</td>
<td>5.41</td>
<td>22</td>
<td>21</td>
<td></td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>34</td>
<td>-7.90</td>
<td>5.42</td>
<td>29</td>
<td>28</td>
<td>24</td>
<td>0.06</td>
<td>0.17</td>
</tr>
<tr>
<td>35</td>
<td>-7.32</td>
<td>4.88</td>
<td>26</td>
<td>25</td>
<td></td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>36</td>
<td>-7.42</td>
<td>4.88</td>
<td>26</td>
<td>25</td>
<td>23</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>37</td>
<td>-5.17</td>
<td>3.98</td>
<td>23</td>
<td>21</td>
<td>24</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>38</td>
<td>-7.47</td>
<td>5.27</td>
<td>26</td>
<td>25</td>
<td>23</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>39</td>
<td>-7.40</td>
<td>5.40</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>40</td>
<td>-6.70</td>
<td>5.40</td>
<td>24</td>
<td>23</td>
<td>25</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>41</td>
<td>-8.65</td>
<td>4.35</td>
<td>27</td>
<td>24</td>
<td>21</td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td>42</td>
<td>-7.01</td>
<td>4.77</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>43</td>
<td>-6.59</td>
<td>4.85</td>
<td>23</td>
<td>22</td>
<td>24</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>44</td>
<td>-6.34</td>
<td>5.02</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>45</td>
<td>-5.80</td>
<td>5.00</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>46</td>
<td>-6.32</td>
<td>4.38</td>
<td>23</td>
<td>22</td>
<td>25</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>47</td>
<td>-6.40</td>
<td>5.02</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>48</td>
<td>-6.00</td>
<td>5.39</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>49</td>
<td>-6.34</td>
<td>5.11</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>50</td>
<td>-8.45</td>
<td>4.28</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>51</td>
<td>-8.35</td>
<td>5.40</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>52</td>
<td>-9.21</td>
<td>5.10</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>Trip</td>
<td>Lereng (%)</td>
<td>Jarak Sasar (m)</td>
<td>Dimensi Kayu</td>
<td>Volume (m³)</td>
<td>Volume/trip (m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>-10.27</td>
<td>5.10</td>
<td>1.5</td>
<td>25</td>
<td>23</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>54</td>
<td>-11.02</td>
<td>4.32</td>
<td>1.5</td>
<td>22</td>
<td>21</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>55</td>
<td>-11.13</td>
<td>5.11</td>
<td>1.5</td>
<td>21</td>
<td>20</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>56</td>
<td>-10.20</td>
<td>5.00</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>57</td>
<td>-7.15</td>
<td>5.15</td>
<td>1.5</td>
<td>24</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>58</td>
<td>-6.35</td>
<td>4.44</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>59</td>
<td>5.88</td>
<td>5.40</td>
<td>1.5</td>
<td>23</td>
<td>22</td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>60</td>
<td>-4.98</td>
<td>5.00</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>61</td>
<td>-6.72</td>
<td>5.20</td>
<td>1.5</td>
<td>23</td>
<td>23</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>62</td>
<td>-7.50</td>
<td>5.00</td>
<td>1.5</td>
<td>24</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>63</td>
<td>-7.89</td>
<td>5.25</td>
<td>1.5</td>
<td>20</td>
<td>19</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>64</td>
<td>-7.62</td>
<td>5.30</td>
<td>1.5</td>
<td>19</td>
<td>17</td>
<td>0.04</td>
<td>0.11</td>
</tr>
<tr>
<td>65</td>
<td>-7.00</td>
<td>4.80</td>
<td>1.5</td>
<td>19</td>
<td>18</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>66</td>
<td>-6.79</td>
<td>5.14</td>
<td>1.5</td>
<td>21</td>
<td>20</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>67</td>
<td>-6.56</td>
<td>5.10</td>
<td>1.5</td>
<td>21</td>
<td>20</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>68</td>
<td>-7.04</td>
<td>4.68</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>69</td>
<td>-6.08</td>
<td>4.72</td>
<td>1.5</td>
<td>23</td>
<td>23</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>70</td>
<td>-8.79</td>
<td>4.68</td>
<td>1.5</td>
<td>19</td>
<td>19</td>
<td>0.06</td>
<td>0.1</td>
</tr>
<tr>
<td>71</td>
<td>-5.54</td>
<td>4.35</td>
<td>1.5</td>
<td>24</td>
<td>23</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>72</td>
<td>-7.25</td>
<td>4.33</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>73</td>
<td>-7.10</td>
<td>5.40</td>
<td>1.5</td>
<td>24</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>74</td>
<td>-7.27</td>
<td>5.45</td>
<td>1.5</td>
<td>28</td>
<td>27</td>
<td>0.09</td>
<td>0.22</td>
</tr>
<tr>
<td>75</td>
<td>-6.79</td>
<td>4.24</td>
<td>1.5</td>
<td>28</td>
<td>27</td>
<td>0.09</td>
<td>0.19</td>
</tr>
<tr>
<td>76</td>
<td>-6.58</td>
<td>4.77</td>
<td>1.5</td>
<td>28</td>
<td>28</td>
<td>0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>77</td>
<td>-6.00</td>
<td>4.40</td>
<td>1.5</td>
<td>28</td>
<td>27</td>
<td>0.09</td>
<td>0.19</td>
</tr>
<tr>
<td>78</td>
<td>-6.00</td>
<td>4.45</td>
<td>1.5</td>
<td>19</td>
<td>18</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Trip</td>
<td>Lareng (%)</td>
<td>Jarak Saradi (Hm)</td>
<td>Dimerist Kaju (P) (cm)</td>
<td>Dp (cm)</td>
<td>Du (cm)</td>
<td>Volume (m³)</td>
<td>Volume trip (m³)</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>79</td>
<td>-5.70</td>
<td>5.00</td>
<td>1.5</td>
<td>19</td>
<td>19</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>80</td>
<td>-5.70</td>
<td>5.00</td>
<td>1.5</td>
<td>26</td>
<td>25</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>81</td>
<td>-5.00</td>
<td>5.20</td>
<td>1.5</td>
<td>26</td>
<td>27</td>
<td>0.08</td>
<td>0.17</td>
</tr>
<tr>
<td>82</td>
<td>-6.25</td>
<td>5.00</td>
<td>1.5</td>
<td>21</td>
<td>20</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>83</td>
<td>-6.40</td>
<td>5.04</td>
<td>1.5</td>
<td>33</td>
<td>32</td>
<td>0.12</td>
<td>0.23</td>
</tr>
<tr>
<td>84</td>
<td>-7.01</td>
<td>5.40</td>
<td>1.5</td>
<td>28</td>
<td>27</td>
<td>0.09</td>
<td>0.16</td>
</tr>
<tr>
<td>85</td>
<td>-6.85</td>
<td>4.90</td>
<td>1.5</td>
<td>32</td>
<td>31</td>
<td>0.12</td>
<td>0.23</td>
</tr>
<tr>
<td>86</td>
<td>-7.00</td>
<td>4.75</td>
<td>1.5</td>
<td>26</td>
<td>26</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>87</td>
<td>-7.05</td>
<td>5.04</td>
<td>1.5</td>
<td>28</td>
<td>27</td>
<td>0.09</td>
<td>0.19</td>
</tr>
<tr>
<td>88</td>
<td>-9.65</td>
<td>5.24</td>
<td>1.5</td>
<td>26</td>
<td>26</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>89</td>
<td>-10.25</td>
<td>5.24</td>
<td>1.5</td>
<td>23</td>
<td>22</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>90</td>
<td>-10.25</td>
<td>5.25</td>
<td>1.5</td>
<td>23</td>
<td>22</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>91</td>
<td>-10.02</td>
<td>5.25</td>
<td>1.5</td>
<td>23</td>
<td>22</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>92</td>
<td>-9.04</td>
<td>5.25</td>
<td>1.5</td>
<td>26</td>
<td>27</td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>93</td>
<td>-7.26</td>
<td>3.90</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>94</td>
<td>-7.10</td>
<td>3.90</td>
<td>1.5</td>
<td>26</td>
<td>25</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>95</td>
<td>-6.48</td>
<td>3.90</td>
<td>1.5</td>
<td>19</td>
<td>18</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>96</td>
<td>-6.25</td>
<td>3.90</td>
<td>1.5</td>
<td>26</td>
<td>20</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>97</td>
<td>-6.05</td>
<td>4.10</td>
<td>1.5</td>
<td>20</td>
<td>19</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>98</td>
<td>-5.54</td>
<td>4.70</td>
<td>1.5</td>
<td>22</td>
<td>20</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>99</td>
<td>-5.58</td>
<td>5.03</td>
<td>1.5</td>
<td>21</td>
<td>20</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>100</td>
<td>-6.00</td>
<td>5.00</td>
<td>1.5</td>
<td>25</td>
<td>24</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>101</td>
<td>-5.54</td>
<td>4.88</td>
<td>1.5</td>
<td>24</td>
<td>23</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>102</td>
<td>-5.60</td>
<td>5.17</td>
<td>1.5</td>
<td>23</td>
<td>23</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>103</td>
<td>-5.60</td>
<td>4.69</td>
<td>1.5</td>
<td>22</td>
<td>20</td>
<td>0.05</td>
<td>0.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumlah</th>
<th>-721.67</th>
<th>491.1</th>
<th>14.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rata-rata</td>
<td>-7.01</td>
<td>4.77</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Keterangan:
P : Panjang
Dp : Diameter pangkal
Du : Diameter ujung
<table>
<thead>
<tr>
<th>Trip</th>
<th>Lereng (%)</th>
<th>JS (Hm)</th>
<th>Vtrip</th>
<th>B. Kosong (menit)</th>
<th>Maat (menit)</th>
<th>B. Bermerah (menit)</th>
<th>Bongkar (menit)</th>
<th>Isirahat (menit)</th>
<th>VTP (menit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-7.94</td>
<td>5.44</td>
<td>0.12</td>
<td>9.35</td>
<td>0</td>
<td>1.33</td>
<td>0</td>
<td>7.42</td>
<td>7.17</td>
</tr>
<tr>
<td>2</td>
<td>-5.37</td>
<td>4.32</td>
<td>0.13</td>
<td>9.63</td>
<td>0</td>
<td>1.35</td>
<td>12.23</td>
<td>8.40</td>
<td>0.38</td>
</tr>
<tr>
<td>3</td>
<td>-8.18</td>
<td>5.52</td>
<td>0.12</td>
<td>10.52</td>
<td>0</td>
<td>0.78</td>
<td>9.78</td>
<td>2.92</td>
<td>0.27</td>
</tr>
<tr>
<td>4</td>
<td>-5.56</td>
<td>4.38</td>
<td>0.13</td>
<td>9.70</td>
<td>0</td>
<td>1.23</td>
<td>8.63</td>
<td>3.33</td>
<td>1.20</td>
</tr>
<tr>
<td>5</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.14</td>
<td>9.75</td>
<td>0</td>
<td>0.57</td>
<td>7.57</td>
<td>4.53</td>
<td>0.85</td>
</tr>
<tr>
<td>6</td>
<td>-7.95</td>
<td>5.40</td>
<td>0.14</td>
<td>9.30</td>
<td>0</td>
<td>1.43</td>
<td>9.30</td>
<td>1.88</td>
<td>1.72</td>
</tr>
<tr>
<td>7</td>
<td>-6.79</td>
<td>4.82</td>
<td>0.16</td>
<td>9.45</td>
<td>0</td>
<td>0.98</td>
<td>8.47</td>
<td>3.37</td>
<td>0.83</td>
</tr>
<tr>
<td>8</td>
<td>-5.68</td>
<td>4.66</td>
<td>0.13</td>
<td>9.21</td>
<td>0</td>
<td>0.94</td>
<td>8.14</td>
<td>2.59</td>
<td>1.58</td>
</tr>
<tr>
<td>9</td>
<td>-8.09</td>
<td>5.57</td>
<td>0.10</td>
<td>13.70</td>
<td>0</td>
<td>1.68</td>
<td>8.65</td>
<td>7.07</td>
<td>1.67</td>
</tr>
<tr>
<td>10</td>
<td>-7.07</td>
<td>5.02</td>
<td>0.14</td>
<td>9.42</td>
<td>0</td>
<td>0.96</td>
<td>8.23</td>
<td>0.74</td>
<td>0.98</td>
</tr>
<tr>
<td>11</td>
<td>-6.55</td>
<td>4.77</td>
<td>0.16</td>
<td>11.60</td>
<td>0</td>
<td>0.80</td>
<td>8.05</td>
<td>5.58</td>
<td>1.20</td>
</tr>
<tr>
<td>12</td>
<td>-5.56</td>
<td>4.35</td>
<td>0.14</td>
<td>7.77</td>
<td>0</td>
<td>1.40</td>
<td>6.12</td>
<td>14.15</td>
<td>0.92</td>
</tr>
<tr>
<td>13</td>
<td>-5.12</td>
<td>4.04</td>
<td>0.14</td>
<td>9.17</td>
<td>0</td>
<td>1.43</td>
<td>7.87</td>
<td>0.3</td>
<td>1.12</td>
</tr>
<tr>
<td>14</td>
<td>-5.26</td>
<td>3.83</td>
<td>0.15</td>
<td>9.16</td>
<td>0</td>
<td>1.49</td>
<td>8.38</td>
<td>0.72</td>
<td>1.23</td>
</tr>
<tr>
<td>15</td>
<td>-5.26</td>
<td>3.83</td>
<td>0.18</td>
<td>9.33</td>
<td>0</td>
<td>1.78</td>
<td>8.52</td>
<td>0.12</td>
<td>2.13</td>
</tr>
<tr>
<td>16</td>
<td>-5.20</td>
<td>4.09</td>
<td>0.15</td>
<td>7.80</td>
<td>0</td>
<td>1.37</td>
<td>7.97</td>
<td>8.18</td>
<td>1.62</td>
</tr>
<tr>
<td>17</td>
<td>-5.12</td>
<td>4.05</td>
<td>0.17</td>
<td>7.82</td>
<td>0</td>
<td>1.58</td>
<td>7.70</td>
<td>0.0</td>
<td>1.35</td>
</tr>
<tr>
<td>18</td>
<td>-5.21</td>
<td>3.91</td>
<td>0.15</td>
<td>7.67</td>
<td>0</td>
<td>1.40</td>
<td>6.95</td>
<td>1.3</td>
<td>1.55</td>
</tr>
<tr>
<td>19</td>
<td>-5.21</td>
<td>3.91</td>
<td>0.15</td>
<td>8.01</td>
<td>0</td>
<td>1.55</td>
<td>8.08</td>
<td>0.0</td>
<td>1.92</td>
</tr>
<tr>
<td>20</td>
<td>-5.25</td>
<td>3.94</td>
<td>0.19</td>
<td>7.93</td>
<td>0</td>
<td>1.40</td>
<td>7.45</td>
<td>1.43</td>
<td>1.55</td>
</tr>
<tr>
<td>21</td>
<td>-5.25</td>
<td>3.93</td>
<td>0.15</td>
<td>7.51</td>
<td>0</td>
<td>0.83</td>
<td>11.73</td>
<td>5.07</td>
<td>1.67</td>
</tr>
<tr>
<td>22</td>
<td>-5.21</td>
<td>3.98</td>
<td>0.17</td>
<td>7.82</td>
<td>0</td>
<td>1.23</td>
<td>8.10</td>
<td>2.06</td>
<td>1.13</td>
</tr>
<tr>
<td>23</td>
<td>-5.06</td>
<td>4.00</td>
<td>0.16</td>
<td>8.07</td>
<td>0</td>
<td>1.44</td>
<td>7.56</td>
<td>3.05</td>
<td>0.98</td>
</tr>
<tr>
<td>24</td>
<td>-5.21</td>
<td>3.98</td>
<td>0.15</td>
<td>7.97</td>
<td>0</td>
<td>1.13</td>
<td>8.02</td>
<td>1.56</td>
<td>1.58</td>
</tr>
<tr>
<td>25</td>
<td>-5.25</td>
<td>3.93</td>
<td>0.12</td>
<td>7.83</td>
<td>0</td>
<td>1.23</td>
<td>6.78</td>
<td>5.17</td>
<td>1.12</td>
</tr>
<tr>
<td>26</td>
<td>-5.06</td>
<td>4.01</td>
<td>0.15</td>
<td>8.75</td>
<td>0</td>
<td>1.62</td>
<td>6.97</td>
<td>1.23</td>
<td>1.25</td>
</tr>
<tr>
<td>27</td>
<td>-5.06</td>
<td>4.02</td>
<td>0.16</td>
<td>8.20</td>
<td>0</td>
<td>1.30</td>
<td>7.03</td>
<td>4.72</td>
<td>1.46</td>
</tr>
<tr>
<td>Tdp</td>
<td>Lengk (Ha)</td>
<td>JS (Hm)</td>
<td>V/trip (m³)</td>
<td>B. Kosong (menit)</td>
<td>Must (menit)</td>
<td>B. Bermuatan (menit)</td>
<td>Bongkar (menit)</td>
<td>Isi/shat (menit)</td>
<td>WIP (menit)</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>28</td>
<td>-6.20</td>
<td>4.09</td>
<td>0.15</td>
<td>8.82</td>
<td>0</td>
<td>2.25</td>
<td>0</td>
<td>8.16</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>-6.00</td>
<td>4.75</td>
<td>0.17</td>
<td>8.40</td>
<td>0</td>
<td>2.45</td>
<td>0</td>
<td>12.25</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>-6.93</td>
<td>5.05</td>
<td>0.19</td>
<td>12.78</td>
<td>0</td>
<td>3.29</td>
<td>0</td>
<td>20.54</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>-7.84</td>
<td>5.20</td>
<td>0.15</td>
<td>13.11</td>
<td>0</td>
<td>2.47</td>
<td>0</td>
<td>12.57</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>-7.85</td>
<td>5.23</td>
<td>0.15</td>
<td>12.81</td>
<td>0</td>
<td>1.46</td>
<td>0</td>
<td>10.26</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>-7.94</td>
<td>5.41</td>
<td>0.12</td>
<td>9.11</td>
<td>0</td>
<td>1.36</td>
<td>0</td>
<td>7.62</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>-7.95</td>
<td>5.42</td>
<td>0.17</td>
<td>8.87</td>
<td>0</td>
<td>0.96</td>
<td>0</td>
<td>8.29</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>-6.27</td>
<td>4.88</td>
<td>0.16</td>
<td>12.26</td>
<td>0</td>
<td>1.13</td>
<td>0</td>
<td>8.21</td>
<td>1.62</td>
</tr>
<tr>
<td>36</td>
<td>-6.27</td>
<td>4.88</td>
<td>0.16</td>
<td>11.75</td>
<td>0</td>
<td>1.49</td>
<td>0</td>
<td>8.25</td>
<td>5.67</td>
</tr>
<tr>
<td>37</td>
<td>-5.21</td>
<td>3.96</td>
<td>0.10</td>
<td>7.33</td>
<td>0</td>
<td>1.33</td>
<td>0</td>
<td>9.26</td>
<td>3.62</td>
</tr>
<tr>
<td>38</td>
<td>-7.45</td>
<td>5.27</td>
<td>0.16</td>
<td>10.73</td>
<td>0</td>
<td>1.48</td>
<td>0</td>
<td>9.52</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.16</td>
<td>12.67</td>
<td>0</td>
<td>1.33</td>
<td>0</td>
<td>9.25</td>
<td>9.01</td>
</tr>
<tr>
<td>40</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.14</td>
<td>10.21</td>
<td>0</td>
<td>1.26</td>
<td>0</td>
<td>9.41</td>
<td>5.22</td>
</tr>
<tr>
<td>41</td>
<td>-5.56</td>
<td>4.35</td>
<td>0.16</td>
<td>8.33</td>
<td>0</td>
<td>1.58</td>
<td>0</td>
<td>7.44</td>
<td>3.3</td>
</tr>
<tr>
<td>42</td>
<td>-6.55</td>
<td>4.77</td>
<td>0.15</td>
<td>9.08</td>
<td>0</td>
<td>1.27</td>
<td>0</td>
<td>8.26</td>
<td>1.28</td>
</tr>
<tr>
<td>43</td>
<td>-6.76</td>
<td>4.85</td>
<td>0.13</td>
<td>9.25</td>
<td>0</td>
<td>1.12</td>
<td>0</td>
<td>7.17</td>
<td>2.96</td>
</tr>
<tr>
<td>44</td>
<td>-4.93</td>
<td>5.02</td>
<td>0.16</td>
<td>9.37</td>
<td>0</td>
<td>1.46</td>
<td>0</td>
<td>8.68</td>
<td>0.07</td>
</tr>
<tr>
<td>45</td>
<td>-4.73</td>
<td>5.00</td>
<td>0.14</td>
<td>8.21</td>
<td>0</td>
<td>1.28</td>
<td>0</td>
<td>7.85</td>
<td>10.52</td>
</tr>
<tr>
<td>46</td>
<td>-4.69</td>
<td>4.38</td>
<td>0.13</td>
<td>8.57</td>
<td>0</td>
<td>1.33</td>
<td>0</td>
<td>7.22</td>
<td>1.48</td>
</tr>
<tr>
<td>47</td>
<td>-4.93</td>
<td>5.02</td>
<td>0.13</td>
<td>9.04</td>
<td>0</td>
<td>1.33</td>
<td>0</td>
<td>8.71</td>
<td>2.68</td>
</tr>
<tr>
<td>48</td>
<td>-7.84</td>
<td>5.39</td>
<td>0.12</td>
<td>10.23</td>
<td>0</td>
<td>1.48</td>
<td>0</td>
<td>9.02</td>
<td>5.95</td>
</tr>
<tr>
<td>49</td>
<td>-4.97</td>
<td>5.11</td>
<td>0.13</td>
<td>9.32</td>
<td>0</td>
<td>0.56</td>
<td>0</td>
<td>7.34</td>
<td>3.05</td>
</tr>
<tr>
<td>50</td>
<td>-4.81</td>
<td>4.26</td>
<td>0.12</td>
<td>9.16</td>
<td>0</td>
<td>1.11</td>
<td>0</td>
<td>7.21</td>
<td>4.59</td>
</tr>
<tr>
<td>51</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.13</td>
<td>9.76</td>
<td>0</td>
<td>0.61</td>
<td>0</td>
<td>8.82</td>
<td>0.78</td>
</tr>
<tr>
<td>52</td>
<td>-4.97</td>
<td>5.10</td>
<td>0.12</td>
<td>12.76</td>
<td>0</td>
<td>1.45</td>
<td>0</td>
<td>9.25</td>
<td>3.16</td>
</tr>
<tr>
<td>53</td>
<td>-4.97</td>
<td>5.10</td>
<td>0.15</td>
<td>12.90</td>
<td>0</td>
<td>1.36</td>
<td>0</td>
<td>10.11</td>
<td>4.66</td>
</tr>
<tr>
<td>54</td>
<td>-4.73</td>
<td>4.32</td>
<td>0.13</td>
<td>8.02</td>
<td>0</td>
<td>1.03</td>
<td>0</td>
<td>6.77</td>
<td>1.52</td>
</tr>
<tr>
<td>Trip</td>
<td>Lereng (%)</td>
<td>JS (Hm)</td>
<td>V/trip (m/s)</td>
<td>B. Kosong (menit)</td>
<td>Muat (menit)</td>
<td>B. Berusutan (menit)</td>
<td>Bongkar (menit)</td>
<td>Istirahat (menit)</td>
<td>WTP (menit)</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>55</td>
<td>-6.87</td>
<td>5.11</td>
<td>0.10</td>
<td>9.22</td>
<td>0.56</td>
<td>7.13</td>
<td>0.19</td>
<td>0.98</td>
<td>18.08</td>
</tr>
<tr>
<td>56</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.15</td>
<td>9.55</td>
<td>0.46</td>
<td>8.87</td>
<td>1.12</td>
<td>0.57</td>
<td>20.57</td>
</tr>
<tr>
<td>57</td>
<td>-7.06</td>
<td>5.15</td>
<td>0.14</td>
<td>9.78</td>
<td>1.26</td>
<td>8.92</td>
<td>0.73</td>
<td>1.52</td>
<td>22.21</td>
</tr>
<tr>
<td>58</td>
<td>-7.89</td>
<td>5.44</td>
<td>0.15</td>
<td>9.67</td>
<td>1.33</td>
<td>9.03</td>
<td>3.19</td>
<td>0.78</td>
<td>24.00</td>
</tr>
<tr>
<td>59</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.14</td>
<td>9.49</td>
<td>0.86</td>
<td>9.16</td>
<td>1.77</td>
<td>3.73</td>
<td>27.41</td>
</tr>
<tr>
<td>60</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.13</td>
<td>11.81</td>
<td>1.57</td>
<td>10.42</td>
<td>5.52</td>
<td>1.60</td>
<td>30.92</td>
</tr>
<tr>
<td>61</td>
<td>-7.10</td>
<td>5.20</td>
<td>0.14</td>
<td>10.16</td>
<td>0.56</td>
<td>8.73</td>
<td>0.17</td>
<td>1.47</td>
<td>21.09</td>
</tr>
<tr>
<td>62</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.13</td>
<td>9.78</td>
<td>1.22</td>
<td>8.92</td>
<td>1.3</td>
<td>0.88</td>
<td>24.88</td>
</tr>
<tr>
<td>63</td>
<td>-7.39</td>
<td>5.25</td>
<td>0.11</td>
<td>10.23</td>
<td>1.63</td>
<td>10.39</td>
<td>1.78</td>
<td>0.72</td>
<td>27.58</td>
</tr>
<tr>
<td>64</td>
<td>-7.38</td>
<td>5.30</td>
<td>0.11</td>
<td>11.87</td>
<td>0.83</td>
<td>11.27</td>
<td>2.51</td>
<td>0.58</td>
<td>27.33</td>
</tr>
<tr>
<td>65</td>
<td>-4.93</td>
<td>4.80</td>
<td>0.09</td>
<td>9.72</td>
<td>1.20</td>
<td>8.14</td>
<td>0.41</td>
<td>0.50</td>
<td>23.47</td>
</tr>
<tr>
<td>66</td>
<td>-5.10</td>
<td>5.14</td>
<td>0.10</td>
<td>8.42</td>
<td>1.78</td>
<td>8.47</td>
<td>0</td>
<td>1.27</td>
<td>19.94</td>
</tr>
<tr>
<td>67</td>
<td>-4.97</td>
<td>5.10</td>
<td>0.13</td>
<td>10.35</td>
<td>1.11</td>
<td>9.57</td>
<td>6.03</td>
<td>0.82</td>
<td>28.04</td>
</tr>
<tr>
<td>68</td>
<td>-4.76</td>
<td>4.66</td>
<td>0.13</td>
<td>11.16</td>
<td>1.61</td>
<td>10.26</td>
<td>2.38</td>
<td>0.68</td>
<td>34.21</td>
</tr>
<tr>
<td>69</td>
<td>-4.63</td>
<td>4.72</td>
<td>0.15</td>
<td>10.41</td>
<td>0.80</td>
<td>10.33</td>
<td>2.24</td>
<td>1.02</td>
<td>26.32</td>
</tr>
<tr>
<td>70</td>
<td>-4.82</td>
<td>4.58</td>
<td>0.10</td>
<td>8.54</td>
<td>1.15</td>
<td>8.57</td>
<td>0.79</td>
<td>0.62</td>
<td>29.28</td>
</tr>
<tr>
<td>71</td>
<td>-4.63</td>
<td>4.35</td>
<td>0.15</td>
<td>8.47</td>
<td>1.15</td>
<td>8.66</td>
<td>0.79</td>
<td>0.62</td>
<td>20.90</td>
</tr>
<tr>
<td>72</td>
<td>-4.63</td>
<td>4.33</td>
<td>0.13</td>
<td>8.21</td>
<td>1.26</td>
<td>8.05</td>
<td>0</td>
<td>2.30</td>
<td>19.82</td>
</tr>
<tr>
<td>73</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.14</td>
<td>10.67</td>
<td>2.02</td>
<td>10.12</td>
<td>1.2</td>
<td>1.92</td>
<td>34.60</td>
</tr>
<tr>
<td>74</td>
<td>-7.94</td>
<td>5.45</td>
<td>0.22</td>
<td>11.23</td>
<td>2.36</td>
<td>10.78</td>
<td>3.5</td>
<td>3.71</td>
<td>48.00</td>
</tr>
<tr>
<td>75</td>
<td>-4.92</td>
<td>4.24</td>
<td>0.19</td>
<td>9.16</td>
<td>1.88</td>
<td>7.53</td>
<td>7.25</td>
<td>1.52</td>
<td>32.87</td>
</tr>
<tr>
<td>76</td>
<td>-5.71</td>
<td>4.77</td>
<td>0.19</td>
<td>10.31</td>
<td>1.67</td>
<td>8.05</td>
<td>0.1</td>
<td>0.40</td>
<td>20.53</td>
</tr>
<tr>
<td>77</td>
<td>-5.00</td>
<td>4.30</td>
<td>0.19</td>
<td>11.47</td>
<td>1.34</td>
<td>10.62</td>
<td>3.03</td>
<td>1.90</td>
<td>30.38</td>
</tr>
<tr>
<td>78</td>
<td>-5.52</td>
<td>4.45</td>
<td>0.08</td>
<td>9.21</td>
<td>1.52</td>
<td>6.98</td>
<td>0</td>
<td>1.68</td>
<td>19.13</td>
</tr>
<tr>
<td>79</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.09</td>
<td>9.05</td>
<td>3.35</td>
<td>8.08</td>
<td>1.5</td>
<td>0.96</td>
<td>20.58</td>
</tr>
<tr>
<td>80</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.16</td>
<td>9.33</td>
<td>1.15</td>
<td>8.57</td>
<td>0.87</td>
<td>0.45</td>
<td>20.87</td>
</tr>
<tr>
<td>81</td>
<td>-7.10</td>
<td>5.20</td>
<td>0.17</td>
<td>10.25</td>
<td>1.36</td>
<td>9.87</td>
<td>0.48</td>
<td>4.02</td>
<td>37.08</td>
</tr>
<tr>
<td>Trip</td>
<td>Lerend (%)</td>
<td>J (Hm)</td>
<td>V/trip (hs)</td>
<td>B. Kosong (menit)</td>
<td>Muat (menit)</td>
<td>B. Bermuan (menit)</td>
<td>Bongkar (menit)</td>
<td>Istirahat (menit)</td>
<td>WTP (menit)</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>82</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.10</td>
<td>10.67</td>
<td>0</td>
<td>1.58</td>
<td>9.95</td>
<td>1.42</td>
<td>0.23</td>
</tr>
<tr>
<td>83</td>
<td>-6.50</td>
<td>5.04</td>
<td>0.17</td>
<td>8.79</td>
<td>0</td>
<td>1.46</td>
<td>7.55</td>
<td>0.75</td>
<td>4.48</td>
</tr>
<tr>
<td>84</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.16</td>
<td>11.61</td>
<td>0</td>
<td>1.76</td>
<td>11.22</td>
<td>7.29</td>
<td>1.77</td>
</tr>
<tr>
<td>85</td>
<td>-4.93</td>
<td>4.90</td>
<td>0.19</td>
<td>10.33</td>
<td>0</td>
<td>1.47</td>
<td>11.89</td>
<td>1.92</td>
<td>1.21</td>
</tr>
<tr>
<td>86</td>
<td>-5.70</td>
<td>4.75</td>
<td>0.16</td>
<td>12.47</td>
<td>0</td>
<td>2.23</td>
<td>11.63</td>
<td>7.62</td>
<td>4.27</td>
</tr>
<tr>
<td>87</td>
<td>-6.50</td>
<td>5.04</td>
<td>0.19</td>
<td>11.63</td>
<td>0</td>
<td>2.11</td>
<td>10.26</td>
<td>9.1</td>
<td>2.11</td>
</tr>
<tr>
<td>88</td>
<td>-7.39</td>
<td>5.24</td>
<td>0.16</td>
<td>10.65</td>
<td>0</td>
<td>1.78</td>
<td>10.08</td>
<td>9.66</td>
<td>1.95</td>
</tr>
<tr>
<td>89</td>
<td>-7.39</td>
<td>5.24</td>
<td>0.12</td>
<td>10.08</td>
<td>0</td>
<td>1.40</td>
<td>9.57</td>
<td>2.59</td>
<td>1.30</td>
</tr>
<tr>
<td>90</td>
<td>-7.39</td>
<td>5.25</td>
<td>0.12</td>
<td>11.21</td>
<td>0</td>
<td>1.22</td>
<td>10.27</td>
<td>3.78</td>
<td>0.88</td>
</tr>
<tr>
<td>91</td>
<td>-7.39</td>
<td>5.25</td>
<td>0.12</td>
<td>10.58</td>
<td>0</td>
<td>2.01</td>
<td>10.30</td>
<td>9.76</td>
<td>1.12</td>
</tr>
<tr>
<td>92</td>
<td>-7.39</td>
<td>5.25</td>
<td>0.15</td>
<td>11.14</td>
<td>0</td>
<td>1.47</td>
<td>10.33</td>
<td>1.13</td>
<td>1.62</td>
</tr>
<tr>
<td>93</td>
<td>-4.87</td>
<td>3.90</td>
<td>0.12</td>
<td>10.43</td>
<td>0</td>
<td>2.23</td>
<td>8.10</td>
<td>4.93</td>
<td>0.68</td>
</tr>
<tr>
<td>94</td>
<td>-4.97</td>
<td>3.90</td>
<td>0.12</td>
<td>9.08</td>
<td>0</td>
<td>0.98</td>
<td>8.06</td>
<td>0.97</td>
<td>0</td>
</tr>
<tr>
<td>95</td>
<td>-4.93</td>
<td>3.90</td>
<td>0.10</td>
<td>10.27</td>
<td>0</td>
<td>1.16</td>
<td>8.13</td>
<td>0.2</td>
<td>1.27</td>
</tr>
<tr>
<td>96</td>
<td>-4.77</td>
<td>3.90</td>
<td>0.12</td>
<td>9.76</td>
<td>0</td>
<td>0.93</td>
<td>8.76</td>
<td>0.10</td>
<td>0</td>
</tr>
<tr>
<td>97</td>
<td>-4.97</td>
<td>4.10</td>
<td>0.12</td>
<td>8.68</td>
<td>0</td>
<td>2.56</td>
<td>8.18</td>
<td>2.98</td>
<td>1.07</td>
</tr>
<tr>
<td>98</td>
<td>-4.89</td>
<td>4.70</td>
<td>0.12</td>
<td>12.13</td>
<td>0</td>
<td>1.44</td>
<td>11.46</td>
<td>1.28</td>
<td>1.27</td>
</tr>
<tr>
<td>99</td>
<td>-6.50</td>
<td>5.03</td>
<td>0.09</td>
<td>10.20</td>
<td>0</td>
<td>1.67</td>
<td>9.26</td>
<td>5.1</td>
<td>1.43</td>
</tr>
<tr>
<td>100</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.14</td>
<td>11.44</td>
<td>0</td>
<td>1.22</td>
<td>9.87</td>
<td>4.02</td>
<td>1.75</td>
</tr>
<tr>
<td>101</td>
<td>-6.23</td>
<td>4.98</td>
<td>0.14</td>
<td>10.56</td>
<td>0</td>
<td>0.98</td>
<td>8.78</td>
<td>1.42</td>
<td>2.01</td>
</tr>
<tr>
<td>102</td>
<td>-5.16</td>
<td>5.17</td>
<td>0.12</td>
<td>12.36</td>
<td>0</td>
<td>1.27</td>
<td>9.92</td>
<td>2.57</td>
<td>1.68</td>
</tr>
<tr>
<td>103</td>
<td>-5.79</td>
<td>4.69</td>
<td>0.11</td>
<td>9.12</td>
<td>0</td>
<td>2.01</td>
<td>7.55</td>
<td>0.88</td>
<td>0</td>
</tr>
<tr>
<td>Jumlah</td>
<td>-629.72</td>
<td>491.1</td>
<td>14.48</td>
<td>1,017.00</td>
<td>0</td>
<td>143.16</td>
<td>15.25</td>
<td>921.72</td>
<td>327.31</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>-6.11</td>
<td>4.77</td>
<td>0.14</td>
<td>9.87</td>
<td>0</td>
<td>1.39</td>
<td>8.95</td>
<td>3.18</td>
<td>1.31</td>
</tr>
</tbody>
</table>

**Keterangan:**
- **JS**: Jarak Sarad
- **V/trip**: Volume per trip
- **B. Kosong**: Berjalan kosong
- **B. Bermuan**: Berjalan bermuan
- **WTP**: Waktu Total Penyaradan
<table>
<thead>
<tr>
<th>No.</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>P (mm)</th>
<th>B (mm)</th>
<th>M (mm)</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>P (mm)</th>
<th>B (mm)</th>
<th>M (mm)</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>P (mm)</th>
<th>B (mm)</th>
<th>M (mm)</th>
<th>L (mm)</th>
<th>W (mm)</th>
<th>P (mm)</th>
<th>B (mm)</th>
<th>M (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.44</td>
<td>0.12</td>
<td>1.88</td>
<td>1.69</td>
<td>25.94</td>
<td>4.44</td>
<td>0.12</td>
<td>1.88</td>
<td>1.69</td>
<td>25.94</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.43</td>
<td>0.13</td>
<td>1.86</td>
<td>1.86</td>
<td>31.91</td>
<td>5.43</td>
<td>0.13</td>
<td>1.86</td>
<td>1.86</td>
<td>31.91</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.18</td>
<td>0.12</td>
<td>2.22</td>
<td>2.17</td>
<td>21.35</td>
<td>5.18</td>
<td>0.12</td>
<td>2.22</td>
<td>2.17</td>
<td>21.35</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.86</td>
<td>0.13</td>
<td>2.18</td>
<td>2.43</td>
<td>24.76</td>
<td>6.86</td>
<td>0.13</td>
<td>2.18</td>
<td>2.43</td>
<td>24.76</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7.24</td>
<td>0.14</td>
<td>2.18</td>
<td>2.43</td>
<td>24.76</td>
<td>7.24</td>
<td>0.14</td>
<td>2.18</td>
<td>2.43</td>
<td>24.76</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.75</td>
<td>0.10</td>
<td>1.93</td>
<td>1.86</td>
<td>20.37</td>
<td>6.75</td>
<td>0.10</td>
<td>1.93</td>
<td>1.86</td>
<td>20.37</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.99</td>
<td>0.10</td>
<td>1.93</td>
<td>1.86</td>
<td>20.37</td>
<td>8.99</td>
<td>0.10</td>
<td>1.93</td>
<td>1.86</td>
<td>20.37</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9.07</td>
<td>0.14</td>
<td>2.35</td>
<td>2.17</td>
<td>24.76</td>
<td>9.07</td>
<td>0.14</td>
<td>2.35</td>
<td>2.17</td>
<td>24.76</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8.55</td>
<td>0.14</td>
<td>2.35</td>
<td>2.17</td>
<td>24.76</td>
<td>8.55</td>
<td>0.14</td>
<td>2.35</td>
<td>2.17</td>
<td>24.76</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.17</td>
<td>0.16</td>
<td>2.69</td>
<td>2.37</td>
<td>27.37</td>
<td>5.17</td>
<td>0.16</td>
<td>2.69</td>
<td>2.37</td>
<td>27.37</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5.17</td>
<td>0.16</td>
<td>2.69</td>
<td>2.37</td>
<td>27.37</td>
<td>5.17</td>
<td>0.16</td>
<td>2.69</td>
<td>2.37</td>
<td>27.37</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td>5.24</td>
<td>0.13</td>
<td>2.93</td>
<td>2.43</td>
<td>29.88</td>
<td></td>
</tr>
<tr>
<td>No. Trip</td>
<td>L (%)</td>
<td>JS(Hm)</td>
<td>V(m3)</td>
<td>WV (menit)</td>
<td>WTP (menit)</td>
<td>P (m³/min)</td>
<td>Pr/mpp</td>
<td>BT (Rpm/°)</td>
<td>BV (Rpm/°)</td>
<td>RJP (Rpm/°)</td>
<td>BP/mpp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>5.20</td>
<td>4.09</td>
<td>0.15</td>
<td>26.35</td>
<td>3.47</td>
<td>20.45</td>
<td>29.82</td>
<td>0.44</td>
<td>0.30</td>
<td>2.10</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6.00</td>
<td>4.75</td>
<td>0.17</td>
<td>30.78</td>
<td>5.41</td>
<td>24.03</td>
<td>36.19</td>
<td>0.42</td>
<td>0.28</td>
<td>2.02</td>
<td>1.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.93</td>
<td>5.05</td>
<td>0.19</td>
<td>33.32</td>
<td>6.26</td>
<td>38.63</td>
<td>39.58</td>
<td>0.30</td>
<td>0.29</td>
<td>1.41</td>
<td>1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>7.84</td>
<td>5.20</td>
<td>0.15</td>
<td>25.68</td>
<td>4.25</td>
<td>29.93</td>
<td>29.93</td>
<td>0.30</td>
<td>0.30</td>
<td>1.43</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>8.65</td>
<td>5.23</td>
<td>0.15</td>
<td>23.19</td>
<td>2.24</td>
<td>25.31</td>
<td>25.43</td>
<td>0.36</td>
<td>0.35</td>
<td>1.70</td>
<td>1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>7.94</td>
<td>5.41</td>
<td>0.12</td>
<td>30.14</td>
<td>4.50</td>
<td>19.06</td>
<td>34.64</td>
<td>0.38</td>
<td>0.21</td>
<td>1.80</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>7.95</td>
<td>5.42</td>
<td>0.17</td>
<td>24.42</td>
<td>2.11</td>
<td>19.27</td>
<td>26.53</td>
<td>0.53</td>
<td>0.38</td>
<td>2.52</td>
<td>1.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6.27</td>
<td>4.88</td>
<td>0.16</td>
<td>22.09</td>
<td>2.43</td>
<td>22.90</td>
<td>24.52</td>
<td>0.42</td>
<td>0.39</td>
<td>2.00</td>
<td>1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6.27</td>
<td>4.88</td>
<td>0.16</td>
<td>25.67</td>
<td>6.39</td>
<td>22.99</td>
<td>32.06</td>
<td>0.42</td>
<td>0.30</td>
<td>1.99</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>5.21</td>
<td>3.96</td>
<td>0.10</td>
<td>20.21</td>
<td>1.61</td>
<td>18.20</td>
<td>21.82</td>
<td>0.33</td>
<td>0.27</td>
<td>1.57</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>7.45</td>
<td>5.27</td>
<td>0.16</td>
<td>20.25</td>
<td>2.68</td>
<td>22.93</td>
<td>22.93</td>
<td>0.42</td>
<td>0.42</td>
<td>2.00</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>7.94</td>
<td>5.40</td>
<td>0.16</td>
<td>30.93</td>
<td>3.46</td>
<td>25.38</td>
<td>34.39</td>
<td>0.38</td>
<td>0.28</td>
<td>1.80</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>7.94</td>
<td>5.40</td>
<td>0.14</td>
<td>24.84</td>
<td>5.56</td>
<td>21.50</td>
<td>30.52</td>
<td>0.38</td>
<td>0.28</td>
<td>1.83</td>
<td>1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>5.56</td>
<td>4.35</td>
<td>0.16</td>
<td>19.07</td>
<td>2.03</td>
<td>17.80</td>
<td>21.10</td>
<td>0.54</td>
<td>0.45</td>
<td>2.57</td>
<td>2.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>6.55</td>
<td>4.77</td>
<td>0.15</td>
<td>18.62</td>
<td>2.56</td>
<td>19.90</td>
<td>21.18</td>
<td>0.45</td>
<td>0.42</td>
<td>2.16</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6.76</td>
<td>4.85</td>
<td>0.13</td>
<td>19.36</td>
<td>2.35</td>
<td>18.77</td>
<td>21.73</td>
<td>0.42</td>
<td>0.36</td>
<td>1.98</td>
<td>1.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4.93</td>
<td>5.02</td>
<td>0.16</td>
<td>18.12</td>
<td>4.29</td>
<td>20.62</td>
<td>22.41</td>
<td>0.47</td>
<td>0.43</td>
<td>2.22</td>
<td>2.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4.73</td>
<td>5.00</td>
<td>0.14</td>
<td>26.58</td>
<td>2.33</td>
<td>18.39</td>
<td>28.91</td>
<td>0.46</td>
<td>0.29</td>
<td>2.18</td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4.69</td>
<td>4.38</td>
<td>0.13</td>
<td>17.27</td>
<td>4.03</td>
<td>17.72</td>
<td>21.30</td>
<td>0.44</td>
<td>0.37</td>
<td>2.10</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>4.93</td>
<td>5.02</td>
<td>0.13</td>
<td>20.43</td>
<td>3.60</td>
<td>19.70</td>
<td>24.03</td>
<td>0.39</td>
<td>0.32</td>
<td>1.88</td>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>7.84</td>
<td>5.39</td>
<td>0.12</td>
<td>25.20</td>
<td>2.65</td>
<td>21.90</td>
<td>27.85</td>
<td>0.33</td>
<td>0.28</td>
<td>1.57</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>4.97</td>
<td>5.11</td>
<td>0.13</td>
<td>19.71</td>
<td>1.63</td>
<td>18.29</td>
<td>21.34</td>
<td>0.43</td>
<td>0.37</td>
<td>2.03</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4.81</td>
<td>4.26</td>
<td>0.12</td>
<td>20.96</td>
<td>4.82</td>
<td>18.92</td>
<td>25.78</td>
<td>0.38</td>
<td>0.29</td>
<td>1.82</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>7.94</td>
<td>5.40</td>
<td>0.13</td>
<td>19.36</td>
<td>0.84</td>
<td>19.42</td>
<td>20.20</td>
<td>0.40</td>
<td>0.39</td>
<td>1.92</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>4.97</td>
<td>5.10</td>
<td>0.12</td>
<td>25.17</td>
<td>2.00</td>
<td>24.01</td>
<td>27.17</td>
<td>0.30</td>
<td>0.28</td>
<td>1.43</td>
<td>1.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>4.97</td>
<td>5.10</td>
<td>0.15</td>
<td>27.67</td>
<td>6.77</td>
<td>24.84</td>
<td>34.44</td>
<td>0.36</td>
<td>0.26</td>
<td>1.73</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>4.73</td>
<td>4.32</td>
<td>0.13</td>
<td>14.79</td>
<td>2.55</td>
<td>17.34</td>
<td>17.34</td>
<td>0.45</td>
<td>0.45</td>
<td>2.15</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. Tri</td>
<td>L (%)</td>
<td>JS (Hm)</td>
<td>Vims</td>
<td>WV (menit)</td>
<td>WTB (menit)</td>
<td>P (m³/jam)</td>
<td>P (m³/jam)</td>
<td>BT (Rp/m³)</td>
<td>BT (Rp/m³)</td>
<td>BV (Rp/m³)</td>
<td>BV (Rp/m³)</td>
<td>BP/Hmpp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.10</td>
<td>22.04</td>
<td>4.71</td>
<td>22.43</td>
<td>26.75</td>
<td>0.27</td>
<td>0.22</td>
<td>1.28</td>
<td>1.07</td>
<td>3886</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>-6.50</td>
<td>5.04</td>
<td>0.23</td>
<td>17.09</td>
<td>5.94</td>
<td>22.23</td>
<td>23.03</td>
<td>0.62</td>
<td>0.60</td>
<td>2.95</td>
<td>2.86</td>
<td>2131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>-7.94</td>
<td>5.40</td>
<td>0.16</td>
<td>30.12</td>
<td>3.53</td>
<td>26.36</td>
<td>33.65</td>
<td>0.36</td>
<td>0.29</td>
<td>1.74</td>
<td>1.36</td>
<td>1820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>-4.93</td>
<td>4.90</td>
<td>0.23</td>
<td>24.11</td>
<td>2.68</td>
<td>24.90</td>
<td>26.82</td>
<td>0.55</td>
<td>0.51</td>
<td>2.64</td>
<td>2.45</td>
<td>961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>-5.70</td>
<td>4.75</td>
<td>0.16</td>
<td>31.72</td>
<td>6.50</td>
<td>30.60</td>
<td>38.22</td>
<td>0.31</td>
<td>0.25</td>
<td>1.50</td>
<td>1.20</td>
<td>3352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>-6.50</td>
<td>5.04</td>
<td>0.19</td>
<td>30.99</td>
<td>6.50</td>
<td>26.11</td>
<td>37.49</td>
<td>0.44</td>
<td>0.30</td>
<td>2.08</td>
<td>1.45</td>
<td>2822</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>-7.39</td>
<td>5.24</td>
<td>0.16</td>
<td>30.39</td>
<td>8.88</td>
<td>24.46</td>
<td>36.97</td>
<td>0.39</td>
<td>0.25</td>
<td>1.87</td>
<td>1.18</td>
<td>4424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>-7.39</td>
<td>5.24</td>
<td>0.12</td>
<td>22.24</td>
<td>2.70</td>
<td>22.35</td>
<td>24.94</td>
<td>0.32</td>
<td>0.29</td>
<td>1.54</td>
<td>1.38</td>
<td>1856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>-7.39</td>
<td>5.25</td>
<td>0.12</td>
<td>25.26</td>
<td>4.25</td>
<td>23.58</td>
<td>29.51</td>
<td>0.31</td>
<td>0.24</td>
<td>1.46</td>
<td>1.16</td>
<td>2922</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>-7.39</td>
<td>5.25</td>
<td>0.12</td>
<td>30.64</td>
<td>3.13</td>
<td>24.01</td>
<td>33.77</td>
<td>0.30</td>
<td>0.21</td>
<td>1.43</td>
<td>1.02</td>
<td>2152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>-7.39</td>
<td>5.25</td>
<td>0.15</td>
<td>22.60</td>
<td>3.09</td>
<td>24.56</td>
<td>25.69</td>
<td>0.37</td>
<td>0.35</td>
<td>1.75</td>
<td>1.67</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>-4.87</td>
<td>3.90</td>
<td>0.12</td>
<td>23.46</td>
<td>2.91</td>
<td>21.44</td>
<td>26.37</td>
<td>0.34</td>
<td>0.27</td>
<td>1.60</td>
<td>1.30</td>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>-4.97</td>
<td>3.90</td>
<td>0.12</td>
<td>17.14</td>
<td>2.95</td>
<td>20.09</td>
<td>20.09</td>
<td>0.36</td>
<td>0.36</td>
<td>1.71</td>
<td>1.71</td>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>-4.93</td>
<td>3.90</td>
<td>0.10</td>
<td>18.60</td>
<td>5.50</td>
<td>20.83</td>
<td>24.10</td>
<td>0.29</td>
<td>0.25</td>
<td>1.37</td>
<td>1.19</td>
<td>4538</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>-4.77</td>
<td>3.90</td>
<td>0.12</td>
<td>18.52</td>
<td>2.03</td>
<td>20.55</td>
<td>20.55</td>
<td>0.35</td>
<td>0.35</td>
<td>1.67</td>
<td>1.67</td>
<td>1396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>-4.97</td>
<td>4.10</td>
<td>0.09</td>
<td>19.82</td>
<td>6.50</td>
<td>20.47</td>
<td>26.32</td>
<td>0.26</td>
<td>0.21</td>
<td>1.26</td>
<td>0.98</td>
<td>5956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>-4.69</td>
<td>4.70</td>
<td>0.12</td>
<td>24.87</td>
<td>9.96</td>
<td>26.30</td>
<td>34.83</td>
<td>0.27</td>
<td>0.21</td>
<td>1.31</td>
<td>0.99</td>
<td>6848</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>-5.50</td>
<td>5.03</td>
<td>0.09</td>
<td>24.56</td>
<td>10.73</td>
<td>22.56</td>
<td>35.29</td>
<td>0.24</td>
<td>0.15</td>
<td>1.14</td>
<td>0.73</td>
<td>9636</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-6.33</td>
<td>5.00</td>
<td>0.14</td>
<td>25.33</td>
<td>5.30</td>
<td>24.28</td>
<td>30.63</td>
<td>0.35</td>
<td>0.27</td>
<td>1.65</td>
<td>1.31</td>
<td>3123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>-6.23</td>
<td>4.98</td>
<td>0.14</td>
<td>20.76</td>
<td>14.62</td>
<td>22.33</td>
<td>35.38</td>
<td>0.38</td>
<td>0.24</td>
<td>1.79</td>
<td>1.13</td>
<td>8615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>-5.16</td>
<td>5.17</td>
<td>0.12</td>
<td>24.85</td>
<td>6.40</td>
<td>25.23</td>
<td>31.25</td>
<td>0.29</td>
<td>0.23</td>
<td>1.36</td>
<td>1.10</td>
<td>4400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>-5.79</td>
<td>4.69</td>
<td>0.11</td>
<td>16.67</td>
<td>14.11</td>
<td>19.56</td>
<td>30.78</td>
<td>0.34</td>
<td>0.21</td>
<td>1.61</td>
<td>1.02</td>
<td>10583</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah</td>
<td>-629.72</td>
<td>491.1</td>
<td>14.64</td>
<td>2,266.03</td>
<td>445.27</td>
<td>2,216.48</td>
<td>2,711.30</td>
<td>40.59</td>
<td>33.91</td>
<td>193.63</td>
<td>161.75</td>
<td>271815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>-6.11</td>
<td>4.77</td>
<td>0.14</td>
<td>22.00</td>
<td>4.32</td>
<td>21.52</td>
<td>26.32</td>
<td>0.39</td>
<td>0.33</td>
<td>1.88</td>
<td>1.57</td>
<td>2639</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Keterangan*:

JS : Jarak Sarad
L : Kelebaran Jalan Sarad
V : Volume
WV : Waktu Variabel
WT : Waktu Tetap
WTP : Waktu Total Penyadaran
BT : Biaya Total Penyadaran
P : Prestasi Kerja Penyadaran
BP/Hmpp : Biaya Penyadaran per Hmpp
BV : Biaya Variabel
BT : Biaya tetap

A. Hubungan Prestasi Kerja dengan Tiap-tiap Variabel

1. Prestasi Kerja dengan Volume

\[
\text{Prestasi Kerja} = 0.0528 + 1.98 \text{ Volume}
\]

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.0528</td>
<td>0.03297</td>
<td>1.60</td>
<td>0.112</td>
</tr>
<tr>
<td>Volume</td>
<td>1.9792</td>
<td>0.2315</td>
<td>8.55</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[ S = 0.06819 \quad R-Sq = 42.0\% \quad R-Sq(adj) = 41.4\% \]

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>0.33987</td>
<td>0.33987</td>
<td>73.09</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>101</td>
<td>0.46966</td>
<td>0.00465</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>0.80954</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unusual Observations

<table>
<thead>
<tr>
<th>Obs</th>
<th>Volume</th>
<th>Prestasi</th>
<th>Fit</th>
<th>StDev</th>
<th>Residual</th>
<th>St Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.190</td>
<td>0.58000</td>
<td>0.42885</td>
<td>0.01350</td>
<td>0.15115</td>
<td>2.26R</td>
</tr>
<tr>
<td>30</td>
<td>0.190</td>
<td>0.29000</td>
<td>0.42885</td>
<td>0.01350</td>
<td>-0.13885</td>
<td>-2.08R</td>
</tr>
<tr>
<td>54</td>
<td>0.130</td>
<td>0.15000</td>
<td>0.31010</td>
<td>0.00706</td>
<td>0.13990</td>
<td>2.06R</td>
</tr>
<tr>
<td>74</td>
<td>0.220</td>
<td>0.38000</td>
<td>0.48823</td>
<td>0.01983</td>
<td>-0.10823</td>
<td>-1.66X</td>
</tr>
<tr>
<td>83</td>
<td>0.230</td>
<td>0.60000</td>
<td>0.50802</td>
<td>0.02202</td>
<td>0.09198</td>
<td>1.43X</td>
</tr>
<tr>
<td>85</td>
<td>0.230</td>
<td>0.51000</td>
<td>0.50802</td>
<td>0.02202</td>
<td>0.00198</td>
<td>0.03X</td>
</tr>
</tbody>
</table>

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

2. Prestasi Kerja dengan Jarak Sarad

\[
\text{Prestasi Kerja} = 0.589 - 0.0547 \text{ Jarak Sarad}
\]

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.58949</td>
<td>0.07622</td>
<td>7.73</td>
<td>0.000</td>
</tr>
<tr>
<td>Jarak Sarad</td>
<td>-0.05469</td>
<td>0.01589</td>
<td>-3.44</td>
<td>0.001</td>
</tr>
</tbody>
</table>

\[ S = 0.08470 \quad R-Sq = 10.5\% \quad R-Sq(adj) = 9.6\% \]

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>0.084984</td>
<td>0.084984</td>
<td>11.85</td>
<td>0.001</td>
</tr>
<tr>
<td>Error</td>
<td>101</td>
<td>0.724552</td>
<td>0.007174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>0.809536</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unusual Observations

<table>
<thead>
<tr>
<th>Obs</th>
<th>Jarak Sarad</th>
<th>Prestasi</th>
<th>Fit</th>
<th>StDev</th>
<th>Residual</th>
<th>St Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3.94</td>
<td>0.58000</td>
<td>0.37402</td>
<td>0.01558</td>
<td>0.20598</td>
<td>2.47R</td>
</tr>
</tbody>
</table>
3. Prestasi Kerja dengan Kelerengan Jalan Sarad

\text{Prestasi Kerja} = 0.401 + 0.0118 \text{ Kelerengan}

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.40111</td>
<td>0.04655</td>
<td>8.62</td>
<td>0.000</td>
</tr>
<tr>
<td>Kelerengan</td>
<td>0.011838</td>
<td>0.007479</td>
<td>1.58</td>
<td>0.117</td>
</tr>
</tbody>
</table>

\( S = 0.08844 \quad R-Sq = 2.4\% \quad R-Sq(adj) = 1.5\%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>0.019594</td>
<td>0.019594</td>
<td>2.51</td>
<td>0.117</td>
</tr>
<tr>
<td>Error</td>
<td>101</td>
<td>0.789942</td>
<td>0.007821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>0.809536</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R denotes an observation with a large standardized residual

B. Hubungan Biaya Penyaradan dengan Tiap-tiap Variabel

1. Biaya Penyaradan dengan Volume

\( \text{Biaya} = 29496 - 95690 \text{ Volume} \)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>29496</td>
<td>1672</td>
<td>17.65</td>
<td>0.000</td>
</tr>
<tr>
<td>Volume</td>
<td>-95690</td>
<td>11738</td>
<td>-8.15</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\( S = 3458 \quad R-Sq = 39.7\% \quad R-Sq(adj) = 39.1\%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>794469447</td>
<td>794469447</td>
<td>66.45</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>101</td>
<td>1207491734</td>
<td>11955364</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>2001961181</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R denotes an observation with a large standardized residual
85  0.230  9620   7487 1117 2133  0.65X
99  0.090  32349 20884  673 11465 3.38R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

2. Biaya Penyaranan dengan Jarak Sarad

Biaya = 4318 + 2483 Jarak Sarad

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>4318</td>
<td>3827</td>
<td>1.13</td>
<td>0.262</td>
</tr>
<tr>
<td>Jarak Sarad</td>
<td>2482.6</td>
<td>797.8</td>
<td>3.11</td>
<td>0.002</td>
</tr>
</tbody>
</table>

S = 4253 R-Sq = 8.7% R-Sq(adj) = 7.8%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>175127060</td>
<td>175127060</td>
<td>9.68</td>
<td>0.002</td>
</tr>
<tr>
<td>Error</td>
<td>101</td>
<td>1826634121</td>
<td>18087467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>2001961181</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unusual Observations

<table>
<thead>
<tr>
<th>Obs</th>
<th>Jarak Sarad</th>
<th>Biaya</th>
<th>Fit</th>
<th>StDev Fit</th>
<th>Residual</th>
<th>St Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5.57</td>
<td>27035</td>
<td>18146</td>
<td>765</td>
<td>8889</td>
<td>2.12R</td>
</tr>
<tr>
<td>67</td>
<td>5.10</td>
<td>25703</td>
<td>16979</td>
<td>496</td>
<td>6724</td>
<td>2.07R</td>
</tr>
<tr>
<td>70</td>
<td>4.58</td>
<td>24156</td>
<td>15688</td>
<td>445</td>
<td>8468</td>
<td>2.00R</td>
</tr>
<tr>
<td>83</td>
<td>5.04</td>
<td>28261</td>
<td>16830</td>
<td>472</td>
<td>-8569</td>
<td>-2.03R</td>
</tr>
<tr>
<td>97</td>
<td>4.10</td>
<td>24127</td>
<td>14497</td>
<td>678</td>
<td>9630</td>
<td>2.29R</td>
</tr>
<tr>
<td>99</td>
<td>5.03</td>
<td>32349</td>
<td>16806</td>
<td>468</td>
<td>15543</td>
<td>3.68R</td>
</tr>
</tbody>
</table>

R denotes an observation with a large standardized residual

3. Biaya Penyaranan dengan Kelerengan Jalan Sarad

Biaya = 13429 - 446 Kelerengan

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>13429</td>
<td>2327</td>
<td>5.77</td>
<td>0.000</td>
</tr>
<tr>
<td>Kelerengan</td>
<td>-445.9</td>
<td>373.9</td>
<td>-1.19</td>
<td>0.236</td>
</tr>
</tbody>
</table>

S = 4421 R-Sq = 1.4% R-Sq(adj) = 0.4%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>1</td>
<td>27801314</td>
<td>27801314</td>
<td>1.42</td>
<td>0.236</td>
</tr>
<tr>
<td>Error</td>
<td>101</td>
<td>1974159867</td>
<td>19546137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>2001961181</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unusual Observations

<table>
<thead>
<tr>
<th>Obs</th>
<th>Kelerengan</th>
<th>Biaya</th>
<th>Fit</th>
<th>StDev</th>
<th>StDev</th>
<th>Residual</th>
<th>St Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-8.09</td>
<td>27035</td>
<td>17036</td>
<td>858</td>
<td>9999</td>
<td>2.31R</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>-4.97</td>
<td>25703</td>
<td>15645</td>
<td>610</td>
<td>10058</td>
<td>2.30R</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>-6.50</td>
<td>32349</td>
<td>16327</td>
<td>459</td>
<td>16022</td>
<td>3.64R</td>
<td></td>
</tr>
</tbody>
</table>

R denotes an observation with a large standardized residual.

C. Analisis Regresi antara Volume dan Jarak Sarad dengan Prestasi Kerja dan Biaya Penyaraian

1. Prestasi Kerja = 0.301 + 1.95 Volume - 0.0512 Jarak Sarad

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.30094</td>
<td>0.05482</td>
<td>4.64</td>
<td>0.000</td>
</tr>
<tr>
<td>Volume</td>
<td>1.9488</td>
<td>0.2136</td>
<td>9.12</td>
<td>0.000</td>
</tr>
<tr>
<td>Jarak Sarad</td>
<td>-0.05115</td>
<td>0.01180</td>
<td>-4.33</td>
<td>0.000</td>
</tr>
</tbody>
</table>

S = 0.06288    R-Sq = 51.2%    R-Sq(adj) = 50.2%

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2</td>
<td>0.41415</td>
<td>0.20708</td>
<td>52.37</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>100</td>
<td>0.39539</td>
<td>0.00395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>0.80954</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unusual Observations

<table>
<thead>
<tr>
<th>Obs</th>
<th>Volume</th>
<th>Prestasi</th>
<th>Fit</th>
<th>StDev</th>
<th>StDev</th>
<th>Residual</th>
<th>St Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>0.220</td>
<td>0.38000</td>
<td>0.45089</td>
<td>0.02021</td>
<td>-0.07089</td>
<td>-1.15X</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>0.230</td>
<td>0.60000</td>
<td>0.49135</td>
<td>0.02067</td>
<td>0.10865</td>
<td>1.83X</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>0.230</td>
<td>0.51000</td>
<td>0.49851</td>
<td>0.02042</td>
<td>0.01149</td>
<td>0.19X</td>
<td></td>
</tr>
</tbody>
</table>

X denotes an observation whose X value gives it large influence.

2. Biaya = 18283 - 94317 Volume + 2312 Jarak Sarad

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>18283</td>
<td>3350</td>
<td>5.46</td>
<td>0.000</td>
</tr>
<tr>
<td>Volume</td>
<td>-94317</td>
<td>11037</td>
<td>-8.55</td>
<td>0.000</td>
</tr>
<tr>
<td>Jarak Sarad</td>
<td>2311.6</td>
<td>609.9</td>
<td>3.79</td>
<td>0.000</td>
</tr>
</tbody>
</table>

S = 3249    R-Sq = 47.3%    R-Sq(adj) = 46.2%
### Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>2</td>
<td>946136125</td>
<td>473068062</td>
<td>44.81</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>100</td>
<td>1055825056</td>
<td>10558251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>102</td>
<td>2001961181</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Seq SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>1</td>
<td>794469447</td>
</tr>
<tr>
<td>Jarak Sarad</td>
<td>1</td>
<td>151666678</td>
</tr>
</tbody>
</table>

### Unusual Observations

<table>
<thead>
<tr>
<th>Obs</th>
<th>Volume</th>
<th>Biaya</th>
<th>Fit</th>
<th>StDev Fit</th>
<th>Residual</th>
<th>St Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>0.220</td>
<td>12975</td>
<td>10131</td>
<td>1044</td>
<td>2844</td>
<td>0.92X</td>
</tr>
<tr>
<td>83</td>
<td>0.230</td>
<td>8261</td>
<td>8240</td>
<td>1068</td>
<td>21</td>
<td>0.01X</td>
</tr>
<tr>
<td>85</td>
<td>0.230</td>
<td>9620</td>
<td>7917</td>
<td>1055</td>
<td>1703</td>
<td>0.55X</td>
</tr>
<tr>
<td>99</td>
<td>0.090</td>
<td>32349</td>
<td>21422</td>
<td>648</td>
<td>10927</td>
<td>3.43R</td>
</tr>
</tbody>
</table>

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.
### Lampiran 5. Data Lapangan Jalan Sarad RPH Arcamanik

<table>
<thead>
<tr>
<th>Titik Pengukuran</th>
<th>Azimuth (°)</th>
<th>Kelerengan (%)</th>
<th>Lebar (m)</th>
<th>Jarak Element Sarad (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>270</td>
<td>3</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>2-3</td>
<td>320</td>
<td>4</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3-4</td>
<td>290</td>
<td>5</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4-5</td>
<td>310</td>
<td>7</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5-6</td>
<td>300</td>
<td>6</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>6-7</td>
<td>295</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>7-8</td>
<td>325</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>8-9</td>
<td>335</td>
<td>3</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>9-10</td>
<td>325</td>
<td>10</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>10-11</td>
<td>340</td>
<td>9</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>11-12</td>
<td>350</td>
<td>2</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>12-13</td>
<td>325</td>
<td>10</td>
<td>3</td>
<td>17.5</td>
</tr>
<tr>
<td>13-14</td>
<td>360</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>14-15</td>
<td>360</td>
<td>11</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>15-16</td>
<td>340</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>16-17</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>17-18</td>
<td>335</td>
<td>3</td>
<td>3</td>
<td>17.5</td>
</tr>
<tr>
<td>18-19</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>19-20</td>
<td>30</td>
<td>5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>20-21</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>21-22</td>
<td>360</td>
<td>5</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>22-23</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>23-24</td>
<td>360</td>
<td>4</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>24-25</td>
<td>340</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>25-26</td>
<td>330</td>
<td>3</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>26-27</td>
<td>340</td>
<td>3</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>27-28</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>28-29</td>
<td>35</td>
<td>5</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>29-30</td>
<td>45</td>
<td>7</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>30-31</td>
<td>15</td>
<td>5</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>31-32</td>
<td>20</td>
<td>12</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>27-A</td>
<td>80</td>
<td>19</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>A-B</td>
<td>108</td>
<td>19</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>B-C</td>
<td>90</td>
<td>21</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>C-D</td>
<td>90</td>
<td>21</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>D-E</td>
<td>90</td>
<td>23</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>E-F</td>
<td>105</td>
<td>23</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>27-a</td>
<td>270</td>
<td>21</td>
<td>3</td>
<td>17.5</td>
</tr>
<tr>
<td>a-b</td>
<td>290</td>
<td>19</td>
<td>3</td>
<td>20</td>
</tr>
</tbody>
</table>