Gambar 6 Posisi primer AF05 dan AF08 pada mtDNA *Dogania subplana* (nomor akses AF366350).

Perunutan (Sequencing) DNA produk PCR

Perunutan DNA merupakan tahap akhir untuk memperoleh data urutan nukleotida dari fragmen DNA hasil amplifikasi. Perunutan DNA dilakukan menggunakan jasa Biologi Molekuler CHAROEN POPKHAND Indonesia menggunakan metode *Big Dye Termination* dalam mesin ABI PRISM. Produk PCR yang berupa pita tunggal (*single band*) dijadikan sampel dalam reaksi perunutan nukleotida. Perunutan nukleotida dilakukan menggunakan primer AF08.

Analisis Urutan Nukleotida dan Analisis Filogeni

HASIL

Hasil Amplifikasi dan Visualisasi Fragmen DNA

Hasil amplifikasi *O. borneensis* dan *H. annandalei* menggunakan primer AF05 dan AF08 menunjukkan fragmen DNA berukuran sekitar 1500 bp (Gambar 7). Hal ini menunjukkan panjang DNA yang dihasilkan berada di antara gen 12S dan 16S rRNA. Amplifikasi *C. amboinensis*, *S. crassicolis* dan *C. dentata* tidak menghasilkan pita pada gel elektroforesis sehingga dari ketiga spesies ini tidak dilakukan perunutan nukleotida pada lembaga Biologi Molekuler CHAROEN POPKHAND.

Hasil Perunutan (Sequencing) DNA produk PCR

Perunutan DNA dilakukan dari arah primer AF08. Setelah diedit menghasilkan panjang DNA sebesar 681 nt untuk *O. borneensis* (Gambar 8) dan 673 nt untuk *H. annandalei* (Gambar 9).

Hasil Penjajaran (Alignment) DNA

Setelah disejajarkan, panjang DNA yang diperbandingkan sebesar 695 nt untuk *O. borneensis* dan 696 nt untuk *H. annandalei*. Terdiri dari 317 basis yang sama (conserved) dan 359 basis yang berbeda (variabel). Dari 359 basis yang berbeda terdapat 211 basis parsimony dan 143 basis tunggal (singleton). Untuk selanjutnya, basis yang digunakan untuk analisis merupakan basis yang bersifat parsimony (Gambar 10). Komposisi nukleotida *H. annandalei* didominasi oleh nukleotida T sebesar 42.0%, kemudian berturut-turut diikuti oleh nukleotida G (21.7%), A (21.4%) dan C (14.9%). Nilai perbandingan antara A/T dan G/C yaitu 63.4% :36.6%. Komposisi
nukleotida O. borneensis didominasi oleh nukleotida T sebesar 43.4%, kemudian berturut-turut diikuti oleh nukleotida G (23.3%), A (19.9%) dan C (13.4%). Nilai perbandingan antara A/T dan G/C yaitu 63.3% :36.7%. Dari Tabel 2 dapat dilihat bahwa sebagian besar spesies memiliki pola komposisi nukleotida yang sama yaitu T>G>A>C.

Tabel 1 Spesies Testudines yang diperoleh dari Genbank

<table>
<thead>
<tr>
<th>Spesies</th>
<th>Famili</th>
<th>Subordo</th>
<th>No. Akses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimneyes reevesi</td>
<td>Emydidae</td>
<td>Cryptodira</td>
<td>AY676201</td>
</tr>
<tr>
<td>Chrysemys picta</td>
<td>Emydidae</td>
<td>Cryptodira</td>
<td>AF069423</td>
</tr>
<tr>
<td>Trachemys scripta</td>
<td>Emydidae</td>
<td>Cryptodira</td>
<td>L28077</td>
</tr>
<tr>
<td>Chelonia mydas</td>
<td>Chelomidae</td>
<td>Cryptodira</td>
<td>AB012104</td>
</tr>
<tr>
<td>Chelydra serpentine</td>
<td>Chelydidae</td>
<td>Cryptodira</td>
<td>DQ283320</td>
</tr>
<tr>
<td>Dogania subplana</td>
<td>Trionychidae</td>
<td>Cryptodira</td>
<td>AF366350</td>
</tr>
<tr>
<td>Pelodiscus sinensis</td>
<td>Trionychidae</td>
<td>Cryptodira</td>
<td>AY687385</td>
</tr>
<tr>
<td>Tryonyx australis</td>
<td>Trionychidae</td>
<td>Cryptodira</td>
<td>AY583695</td>
</tr>
<tr>
<td>Palea steindachneri</td>
<td>Trionychidae</td>
<td>Cryptodira</td>
<td>AY743418</td>
</tr>
<tr>
<td>Caretoechis insculpta</td>
<td>Chelomidae</td>
<td>Cryptodira</td>
<td>Puspa (2005)</td>
</tr>
<tr>
<td>Indotestudo elongata</td>
<td>Testudinidae</td>
<td>Cryptodira</td>
<td>DQ656607</td>
</tr>
<tr>
<td>Emydura subglobosa</td>
<td>Chelidae</td>
<td>Pleurodira</td>
<td>unpub. data</td>
</tr>
<tr>
<td>Pelomedusa subrufa</td>
<td>Pelomedusida</td>
<td>Pleurodira</td>
<td>NC001947</td>
</tr>
</tbody>
</table>

Tabel 2 Komposisi nukleotida gen 16S rRNA pada beberapa spesies Testudines

<table>
<thead>
<tr>
<th>Nama Spesies</th>
<th>Komposisi Nukleotida (%)</th>
<th>Jumlah Nukleotida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orlitia borneensis</td>
<td>43.4 13.4 19.9 23.3</td>
<td>643</td>
</tr>
<tr>
<td>Hieremys annandalei</td>
<td>42.0 14.9 21.4 21.7</td>
<td>645</td>
</tr>
<tr>
<td>Chimneyes reevesi</td>
<td>40.8 14.6 21.1 23.5</td>
<td>650</td>
</tr>
<tr>
<td>Chrysemys picta</td>
<td>42.9 14.5 21.3 21.3</td>
<td>648</td>
</tr>
<tr>
<td>Trachemys scripta</td>
<td>42.6 14.0 21.9 21.5</td>
<td>648</td>
</tr>
<tr>
<td>Chelonia mydas</td>
<td>42.5 14.2 22.1 21.3</td>
<td>643</td>
</tr>
<tr>
<td>Chelydra serpentine</td>
<td>41.2 13.9 23.8 21.1</td>
<td>648</td>
</tr>
<tr>
<td>Dogania subplana</td>
<td>43.3 14.3 19.9 22.5</td>
<td>649</td>
</tr>
<tr>
<td>Pelodiscus sinensis</td>
<td>43.9 14.3 21.0 20.8</td>
<td>644</td>
</tr>
<tr>
<td>Tryonix australis</td>
<td>43.9 13.8 22.4 19.9</td>
<td>644</td>
</tr>
<tr>
<td>Palea steindachneri</td>
<td>43.7 14.3 20.2 21.8</td>
<td>643</td>
</tr>
<tr>
<td>Caretoechis insculpta</td>
<td>42.0 15.4 22.0 21.9</td>
<td>640</td>
</tr>
<tr>
<td>Indotestudo elongata</td>
<td>42.7 14.4 20.9 22.0</td>
<td>640</td>
</tr>
<tr>
<td>Emydura subglobosa</td>
<td>43.2 14.7 23.0 19.1</td>
<td>653</td>
</tr>
<tr>
<td>Pelomedusa subrufa</td>
<td>40.1 15.3 20.9 23.7</td>
<td>641</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>42.5 14.4 21.3 21.7</td>
<td>645.8</td>
</tr>
</tbody>
</table>

Ket: Data selain O. borneensis dan H. annandalei diperoleh dari analisis data dari Genbank sesuai Tabel 1
<table>
<thead>
<tr>
<th>Organism</th>
<th>Gen 16S rRNA Angkada</th>
<th>Gen 16S rRNA Angkada</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. reevesi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. annandalei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. borneensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. subrufa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. subglobusa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. elongata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. insculpta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. steindachneri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. axenaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. sinensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. subplana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. serpentine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. mydas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. scripta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. picta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 8. Hasil perumuman DNA 16S rRNA, menunjukkan posisi mutasi pada gen 16S rRNA, Angkada di dalam tanda **[]**.
Hasil Analisis Filogeni

Jarak genetik dari gen 16S rRNA berkisar antara 0,005 sampai 0,869. Nilai jarak genetik terkecil ditemukan antara *Trachemys scripta* dan *Chrysemys picta* dan antara *D. subplana* dan *T. scripta* sedangkan nilai jarak genetik terbesar ditemukan antara *Pelomedusa subrufa* dan *Emydura subglobosa*. Rata-rata rasio transisi terhadap transvers (ts/tv) adalah 1,308 dengan selang antara 0,67 sampai 6,75. Perbandingan nilai ts/tv terbesar ditemukan antara *C. picta* dan *T. scripta* sedangkan nilai ts/tv terkecil ditemukan antara *D. subplana* dan *Carettochelis insculpta* (Tabel 3).

Tabel 3 Jarak genetik (di bawah diagonal) dan rasio transisi terhadap transversi (ts/tv) (di atas diagonal) *O. borneensis* dan *H. annandalei* dengan 13 spesies Testudines berdasarkan gen 16S rRNA

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. borneensis</td>
<td></td>
</tr>
<tr>
<td>H. annandalei</td>
<td>0.254</td>
<td></td>
<td>1.9</td>
<td>1.6</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>0.7</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
<td>0.7</td>
<td>1.6</td>
</tr>
<tr>
<td>C. reevesi</td>
<td>0.287</td>
<td>0.009</td>
<td>1.8</td>
<td>1.9</td>
<td>2.3</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
<td>0.7</td>
<td>1.2</td>
<td>1.5</td>
<td>0.8</td>
<td>2.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>C. picta</td>
<td>0.199</td>
<td>0.054</td>
<td>0.078</td>
<td>6.8</td>
<td>1.9</td>
<td>1.7</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.7</td>
<td>0.9</td>
<td>1.6</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>T. scripta</td>
<td>0.142</td>
<td>0.054</td>
<td>0.076</td>
<td>0.005</td>
<td>1.7</td>
<td>1.7</td>
<td>0.9</td>
<td>1.2</td>
<td>1.2</td>
<td>1.5</td>
<td>0.8</td>
<td>1.6</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>C. mydas</td>
<td>0.313</td>
<td>0.090</td>
<td>0.109</td>
<td>0.016</td>
<td>0.036</td>
<td>-</td>
<td>2.1</td>
<td>1.2</td>
<td>1.6</td>
<td>1.4</td>
<td>1.7</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>C. serpentina</td>
<td>0.271</td>
<td>0.045</td>
<td>0.033</td>
<td>0.040</td>
<td>0.043</td>
<td>0.045</td>
<td>-</td>
<td>1.1</td>
<td>1.4</td>
<td>1.4</td>
<td>1.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>D. subplana</td>
<td>0.126</td>
<td>0.060</td>
<td>0.095</td>
<td>0.012</td>
<td>0.005</td>
<td>0.054</td>
<td>0.074</td>
<td>-</td>
<td>1.3</td>
<td>1.2</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. subrufa</td>
<td>0.244</td>
<td>0.131</td>
<td>0.178</td>
<td>0.027</td>
<td>0.036</td>
<td>0.028</td>
<td>0.114</td>
<td>0.033</td>
<td>-</td>
<td>1.8</td>
<td>2.1</td>
<td>0.8</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>T. steindachneri</td>
<td>0.358</td>
<td>0.266</td>
<td>0.313</td>
<td>0.085</td>
<td>0.109</td>
<td>0.059</td>
<td>0.089</td>
<td>0.116</td>
<td>0.031</td>
<td>-</td>
<td>1.8</td>
<td>0.7</td>
<td>1.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>E. subglobosa</td>
<td>0.150</td>
<td>0.116</td>
<td>0.168</td>
<td>0.028</td>
<td>0.026</td>
<td>0.064</td>
<td>0.130</td>
<td>0.012</td>
<td>0.016</td>
<td>0.078</td>
<td>-</td>
<td>0.9</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>C. picta</td>
<td>0.311</td>
<td>0.071</td>
<td>0.128</td>
<td>0.088</td>
<td>0.100</td>
<td>0.130</td>
<td>0.178</td>
<td>0.074</td>
<td>0.102</td>
<td>0.237</td>
<td>0.081</td>
<td>-</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>I. elongata</td>
<td>0.074</td>
<td>0.057</td>
<td>0.085</td>
<td>0.054</td>
<td>0.029</td>
<td>0.126</td>
<td>0.098</td>
<td>0.021</td>
<td>0.105</td>
<td>0.230</td>
<td>0.054</td>
<td>0.098</td>
<td>-</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>P. mydas</td>
<td>0.762</td>
<td>0.347</td>
<td>0.385</td>
<td>0.204</td>
<td>0.271</td>
<td>0.216</td>
<td>0.271</td>
<td>0.259</td>
<td>0.150</td>
<td>0.109</td>
<td>0.259</td>
<td>0.306</td>
<td>0.458</td>
<td>-</td>
<td>0.9</td>
</tr>
<tr>
<td>P. subrufa</td>
<td>0.340</td>
<td>0.121</td>
<td>0.102</td>
<td>0.306</td>
<td>0.271</td>
<td>0.404</td>
<td>0.228</td>
<td>0.278</td>
<td>0.473</td>
<td>0.712</td>
<td>0.396</td>
<td>0.282</td>
<td>0.178</td>
<td>0.869</td>
<td>-</td>
</tr>
</tbody>
</table>
Gambar 11 Hasil rekonstruksi pohon filogeni 15 spesies Testudines berdasarkan urutan nukleotida 16S rRNA menggunakan metode (a) ME (b) NJ (c) MP.