KECERNAAN IN VITRO DAN IN SACCO KULIT KAYU
YANG MENDAPAT PERLAKUAN
NaOH DAN UREA

SKRIPSI
WIDIA ASTUTI

JURUSAN ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2001
ABSTRACT

Widia Astuti. 2001. *In Vitro* and *In Sacco* Digestibility of Bark Treated with NaOH and Urea. Department of Nutrition and Feed Science. Faculty of Animal Science. Bogor Agricultural University.

Advisor : Dr. Ir. Toto Toharmat, M. Agr. Sc
Co Advisor : Elizabeth Wina, M. Sc

Bark is the main by-product of wood processing which is available around the year in Indonesia. Accumulation of bark creates environmental problem. Utilization of bark as an animal feed is one of the methods to solve the problem. Bark has crude protein and lignin content of 5.61 - 6.78% and 25.03 - 36.33%, respectively. The objectives of the present experiments were to evaluate the nutritive value of bark treated with NaOH and urea and to determine the level of bark substitution to Napier grass (*Pennisetum purpureum*) based ration.

Four experiments were carried out at the Balai Penelitian Ternak Ciawi, Bogor. The bark was obtained from East Kalimantan. Five types of bark used in the experiment were: (1) fresh mixed-bark of *Acacia mangium* and *Gmelina arborea*, (2) old aged mixed bark, (3) tannin-extracted residue of mixed bark, (4) bark of *Acacia mangium*, (5) tannin-extracted residue of *Acacia mangium*.

Three *in vitro* experiments were conducted to determine the digestibility of bark treated either with NaOH or urea solution (moisturing method), bark treated with NaOH solution (soaking method), and bark-Napier grass ration. An *in sacco* experiment was carried out to determine the degradation rate of bark compared to Napier grass incubated in goat rumen for 0, 6, 12, 24, 48, and 72 h.

The result showed that NaOH treatment significantly increased (P < 0.01) dry matter and organic matter digestibilities of bark. Soaking method more effectively improved the digestibility of bark than the moisturing method. Tannin-extracted residue of *Acacia mangium* had the highest digestibility. Soaking bark of *A. mangium* in 4% NaOH solution increased its digestibility by 49.26% of dry matter and 45.11% of organic matter. Bark soaked in 4% NaOH solution had high solubility, but its insoluble parts was not degraded by rumen microbes. *In sacco* experiment proved that degradation of dry matter, organic matter and NDF components of bark incubated for 72 h were not significantly different (P > 0.05) from those of bark incubated for 0 h. Gas production of bark was much lower than Napier grass, which showed that bark itself could not be used as the main ingredient of fiber source. Bark could be used to substitute Napier grass (*P. purpureum*) up to the level of 30%. Bark in ration reduced dry matter digestibility (P < 0.05), organic matter, NDF digestibility and *in vitro* gas production.

Digestibility of bark could be improved by soaking in NaOH solution. Substitution of bark to Napier grass was optimum at the level of 30%.
RINGKASAN

Pembimbing Utama : Dr. Ir. Toto Tohamat, M. Agr. Sc
Pembimbing Anggota : Elizabeth Wina, M. Sc

Di Indonesia kulit kayu banyak dijumpai pada pusat kegiatan pemanenan kayu. Limbah kayu dalam jumlah besar akan menimbulkan masalah lingkungan. Salah satu cara untuk memanfaatkan kulit kayu yaitu dengan menjadikannya sebagai pakan ternak. Kulit kayu mengandung protein kasar 5,61-6,78% dan lignin 25,03-36,33%.

Sampel kulit kayu yang digunakan dalam penelitian ini ada 5 macam yaitu: (1) kulit kayu segar campuran (Acacia mangium dan Gmelina arborea), (2) kulit kayu campuran yang telah lama tertimbun di tempat pembuangan akhir, (3) sisa ekstrak tanin kulit kayu campuran, (4) kulit kayu A. mangium, dan (5) sisa ekstrak tanin kulit kayu A. mangium. Kulit kayu berasal dari PT. Sumalindo Lestari Jaya di Kalimantan Timur.

Penelitian terdiri dari 4 percobaan yaitu 3 percobaan in vitro dan 1 percobaan in sacco. Percobaan in vitro terdiri dari penentuan kecernaan kulit kayu dengan perlakuan urea dan NaOH dengan cara kering, perlakuan NaOH dengan cara perendaman, substitusi kulit kayu pada rumput gajah dan termasuk pengukuran produksi gas. Percobaan in sacco yaitu menentukan degradasi komponen pakan kulit kayu dan rumput gajah dengan waktu inkubasi selama 0, 6, 12, 24, 48 dan 72 jam.

Hasil analisis menunjukkan bahwa perlakuan alkali (NaOH) pada kulit kayu nyata (P < 0,01) meningkatkan kecernaan bahan kering dan bahan organik. Peningkatan kecernaan dengan cara perendaman pada larutan NaOH lebih efektif jika dibandingkan dengan cara kering. Jenis kulit kayu yang terbaik adalah kulit kayu A. mangium yang telah diekstrak taninnya. Perlakuan kulit kayu terbaik adalah cara perendaman dalam larutan NaOH 4%. Kulit kayu A. mangium yang telah diekstrak taninnya dan mendapat perlakuan perendaman dalam NaOH 4% mempunyai rataan kecernaan bahan kering 49,26% dan bahan organik 45,11%.

Kulit kayu yang mendapat perlakuan perendaman dalam NaOH 4% mempunyai tingkat kelarutan yang tinggi, sedangkan bagian yang tidak terlarut sulit didegradasi oleh mikroba rumen. Hal ini terbukti dari percobaan in sacco yang menyatakan bahwa degradasi bahan kering, bahan organik dan NDF kulit kayu yang diinkubasi selama 72 jam tidak berbeda nyata (P > 0,05) dengan 0 jam. Produksi gas
kulit kayu lebih rendah dibandingkan dengan rumput gajah, ini menunjukkan bahwa kulit kayu tidak bisa dijadikan sebagai komponen utama pakan.

Substitusi kulit kayu dalam campuran dengan rumput gajah dapat dilakukan sampai 30%. Peningkatan persentase kulit kayu dalam campuran menyebabkan penurunan kecergaan bahan kering, bahan organik, NDF dan produksi gas *in vitro*.
KECERNAAN IN VITRO DAN IN SACCO KULIT KAYU YANG MENDAPAT PERLAKUAN NaOH DAN UREA

Skripsi ini merupakan salah satu syarat untuk memperoleh gelar Sarjana Peternakan pada Fakultas Peternakan Institut Pertanian Bogor

Oleh :
WIDIA ASTUTI
D02496047

JURUSAN ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2001
KECERNAAN IN VITRO DAN IN SACCO KULIT KAYU
YANG MENDAPAT PERLAKUAN
NaOH DAN UREA

Oleh
WIDIA ASTUTI
D02496047

Skripsi ini telah disetujui dan disidangkan dihadapan Komisi Ujian Lisan pada
tanggal 30 Mei 2001

Menyetujui,

Pembimbing Utama
Dr. Ir. Toto Toharmat, M. Agr. Sc.

Pembimbing Anggota
Elizabeth Wina, M. Sc.

Mengetahui,

Ketua Jurusan
Ilmu Nutrisi dan Makanan
Fakultas P Emirates
Institut Pertanian Bogor

Dekan
Fakultas P Emirates
Institut Pertanian Bogor

Dr. Ir. Nahrowi Ramli, M. Sc.
Prof. Dr. Ir. Soedarmadi H., M. Sc.
RIWAYAT HIDUP

Pada tahun 1996 penulis diterima menjadi mahasiswa Institut Pertanian Bogor, Fakultas Peternakan, Jurusan Ilmu Nutrisi dan Makanan Ternak melalui jalur USMI (Undangan Seleksi Masuk IPB).
KATA PENGANTAR

Puji dan syukur dipanjatkan kepada Tuhan Yesus Kristus atas cinta kasih dan berkat yang melimpah dalam kehidupan penulis, sehingga penulis dapat menyusun dan menyelesaikan skripsi ini.

Pada kesempatan ini penulis menyampaikan ucapan terima kasih kepada Dr. Ir. Toto Toharmat, M. Agr. Sc dan Elizabeth Wina, M. Sc atas kesabaran dan bimbingan yang telah diberikan dari awal hingga selesainya skripsi ini.

Terima kasih kepada Dr. Ir. Erika Budiarti L., MS atas saran dan kritik sebagai dosen penilai pada saat seminar serta Prof. Dr. Ir. Lily Amalia Sofyan, MS dan Drh. Dudung Supandi sebagai dosen penguji pada saat ujian sidang.

Terima kasih kepada keluargaku yang tercinta Bapak, Ibu, Mas Wahyu dan adikku Bowo atas cinta kasih, perhatian, doa dan dukungannya selama ini. Diana, Elsa dan Wito yang telah menjadi teman, sahabat dan saudaraku selama ini. Terima kasih atas doa, kasih sayang, kesabaran, nasehat, bantuan dan semua yang telah diberikan selama di IPB.

Terima kasih banyak kepada pegawai BPT Ciawi: mbak Nila, mbak Sri, Bu Tress, Bu Emi, Bu Ema, Pak Helmi, Pak Dadang, Pak Tias, Pak Udin, Pak Gunawan dan Usin atas bantuan dan dukungan selama penelitian.

Penulis berharap skripsi ini dapat bermanfaat bagi perkembangan usaha peternakan, perusahaan industri dan pengolahan kayu, serta para pembaca.

Bogor, Mei 2001
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAC</td>
<td>i</td>
</tr>
<tr>
<td>RINGKASAN</td>
<td>ii</td>
</tr>
<tr>
<td>RIWAYAT HIDUP</td>
<td>iv</td>
</tr>
<tr>
<td>KATA PENGANTAR</td>
<td>v</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>ix</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>x</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>xi</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan Penelitian</td>
<td>2</td>
</tr>
<tr>
<td>Manfaat Penelitian</td>
<td>2</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td>3</td>
</tr>
<tr>
<td>Acacia mangium</td>
<td>3</td>
</tr>
<tr>
<td>Gmeliana arborea</td>
<td>4</td>
</tr>
<tr>
<td>Teknologi Pengolahan Pakan Berserat</td>
<td>4</td>
</tr>
<tr>
<td>Perlakuan NaOH</td>
<td>6</td>
</tr>
<tr>
<td>Perlakuan Urea</td>
<td>8</td>
</tr>
<tr>
<td>Penggunaan Kayu dan Limbah Kayu Sebagai Pakan Ternak</td>
<td>9</td>
</tr>
<tr>
<td>MATERI DAN METODE</td>
<td></td>
</tr>
<tr>
<td>Materi</td>
<td>11</td>
</tr>
<tr>
<td>Metode</td>
<td>12</td>
</tr>
<tr>
<td>Nomor</td>
<td>Deskripsi</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>Efek Perlakuan NaOH pada Kecernaan In Vitro Kayu Keras</td>
</tr>
<tr>
<td>2.</td>
<td>Perlakuan Urea dan NaOH dengan Cara Kering</td>
</tr>
<tr>
<td>3.</td>
<td>Perlakuan NaOH dengan Cara Perendaman</td>
</tr>
<tr>
<td>4.</td>
<td>Komposisi Kimia Kulit Kayu yang Digunakan dalam Penelitian..</td>
</tr>
<tr>
<td>5.</td>
<td>Rataan Kecernaan Bahan Kering dan Bahan Organik Kulit Kayu dengan Perlakuan Urea dan NaOH Cara Kering</td>
</tr>
<tr>
<td>6.</td>
<td>Rataan Degradasi dan Laju Degradasi Bahan Kering (BK) dan NDF Rumput Gajah dan Kulit Kayu</td>
</tr>
<tr>
<td>7.</td>
<td>Rataan Kecernaan Bahan Kering (BK), Bahan Organik (BO), NDF Campuran Antara Rumput Gajah dan Kulit Kayu Sisa Ekstrak Tanin A. mangium dengan Perendaman NaOH 4%</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kecernaan BK (%) Kulit kayu Dengan Cara Perendaman Pada Berbagai Taraf NaOH (%)</td>
<td>23</td>
</tr>
<tr>
<td>2.</td>
<td>Kecernaan BO (%) Kulit kayu Dengan Cara Perendaman Pada Berbagai Taraf NaOH (%)</td>
<td>24</td>
</tr>
<tr>
<td>3.</td>
<td>Pola Degradasi BO Kulit Kayu (c = 0) dan Rumput Gajah (P = 15,422 + 89,243 (1 − e^{-0.003t}))</td>
<td>27</td>
</tr>
<tr>
<td>4.</td>
<td>Produksi Gas Rumput Gajah dan Kulit Kayu</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td>Produksi Gas Campuran Rumput Gajah dan Kulit Kayu</td>
<td>30</td>
</tr>
<tr>
<td>Nomor</td>
<td>Daftar Lampiran</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan Bahan Kering Kulit Kayu dengan Cara Kering</td>
<td>37</td>
</tr>
<tr>
<td>2.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan Bahan Organik Kulit Kayu dengan Cara Kering</td>
<td>38</td>
</tr>
<tr>
<td>3.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan Bahan Kering Kulit Kayu dengan Cara Perendaman</td>
<td>39</td>
</tr>
<tr>
<td>4.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan Bahan Organik Kulit Kayu dengan Cara Perendaman</td>
<td>40</td>
</tr>
<tr>
<td>5.</td>
<td>Grafik Kecernaan Bahan Kering dengan Cara Perendaman</td>
<td>41</td>
</tr>
<tr>
<td>6.</td>
<td>Grafik Kecernaan Bahan Organik dengan Cara Perendaman</td>
<td>41</td>
</tr>
<tr>
<td>7.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan In Sacco Bahan Kering Rumput Gajah</td>
<td>42</td>
</tr>
<tr>
<td>8.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan In Sacco Bahan Organik Rumput Gajah</td>
<td>42</td>
</tr>
<tr>
<td>9.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan In Sacco Bahan NDF Rumput Gajah</td>
<td>43</td>
</tr>
<tr>
<td>10.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan In Sacco Bahan Kering Kulit Kayu</td>
<td>44</td>
</tr>
<tr>
<td>11.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan In Sacco Bahan Organik Kulit Kayu</td>
<td>44</td>
</tr>
<tr>
<td>12.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan In Sacco Bahan NDF Kulit Kayu</td>
<td>44</td>
</tr>
<tr>
<td>13.</td>
<td>Analisis Sidik Ragam Rataan Kecernaan Bahan Kering Campuran antara Rumput Gajah dan Kulit Kayu</td>
<td>45</td>
</tr>
</tbody>
</table>
15. Analisis Sidik Ragam Rataan Kecernaan NDF Kombinasi antara Rumput Gajah dan Kulit Kayu

16. Rataan Produksi Gas Rumput Gajah dan Kulit Kayu Secara In Vitro

17. Analisis Sidik Ragam Rataan Produksi Gas Rumput Gajah dan Kulit Kayu pada Waktu Inkubasi 72 Jam

18. Bahan Kimia untuk Buffer In Vitro
PENDAHULUAN

Latar Belakang

Ketersediaan hijauan yang berfluktuasi terutama pada musim kemarau dapat menyebabkan masalah yang serius bagi ternak khususnya ruminansia, karena hijauan merupakan salah satu pakan yang sangat umum digunakan. Untuk mengatasi masalah tersebut diperlukan pakan lain yang ketersediaannya terus menerus dan tidak tergantung pada musim.

Kulit kayu dapat dijadikan sebagai salah satu alternatif pengganti rumput. Di Indonesia kulit kayu banyak dijumpai pada pusat kegiatan pemanenan kayu dan industri pengolahan kayu. Limbah kayu dalam jumlah besar akan menimbulkan masalah lingkungan yang perlu mendapat perhatian serius. Acacia mangium merupakan penghasil kayu yang cukup baik. Menurut EUSU (1996), kayu A. mangium mempunyai densitas antara 410-530 kg/m³ dengan persentase kayunya berkisar antara 30-50% dan bagian kulit berkisar antara 10,5-12,1%. Besarnya densitas persentase kayu dan kulit tergantung pada umur dan asal tumbuhan tersebut.

Limbah kayu yang dihasilkan seperti kulit kayu umumnya dibuang atau dijadikan bahan bakar. Salah satu cara untuk memanfaatkan dan meningkatkan nilai tambah limbah kayu khususnya kulit kayu yaitu dengan menjadikannya sebagai pakan ternak. Kulit kayu mengandung protein kasar sebesar 5,61- 6,78%, kulit kayu mengandung lignin yang tinggi (25.03 - 36,33%). Untuk mengatasi kelemahan tersebut perlu dilakukan pengolahan sebelum bahan tersebut diberikan kepada ternak.

Tujuan Penelitian

Penelitian ini bertujuan untuk meningkatkan nilai nutrisi kulit kayu dengan perlakuan NaOH dan urea sebagai komponen pakan ruminansia dan menentukan tingkat substitusi kulit kayu terhadap rumput gajah.

Manfaat Penelitian

Penelitian ini diharapkan dapat menyumbangkan informasi tentang perlakuan yang baik dalam upaya meningkatkan keceraaan kulit kayu sehingga dapat digunakan sebagai sumber serat dalam ransum ternak ruminansia. Pemanfaatan kulit kayu sebagai sumber pakan diharapkan dapat mengurangi limbah pengolahan kayu.
TINJAUAN PUSTAKA

Acacia mangium

Acacia mangium termasuk kedalam family leguminosae, sub family mimosoidae. Secara alami jenis ini dapat ditemui di Australia bagian timur laut (Queensland), Papua Nugini, Maluku Selatan, Seram Barat dan Irian Jaya terutama daerah Agra (Babo) dan di Tomage (Rokas). A. mangium dengan nama asli Indonesia Mangi-mangi gunong (Ambon), merupakan pohon yang pertumbuhannya cepat dan dapat tumbuh dengan baik pada berbagai tipe tanah dan iklim. Salah satu faktor pembatas utama adalah ketinggian, tanaman ini tidak dapat tumbuh baik pada ketinggian lebih dari 300 m dari permukaan laut/dpl (DHTI, 1989).

Kayu Acacia potensial untuk digunakan sebagai kayu gergaji, mebel, veneer, arang, kayu bakar, papan partikel dan pulp kertas. Sedangkan kulit kayu yang dihasilkan umumnya dibuang atau dijadikan bahan bakar. Menurut Pari et al. (1992), salah satu cara untuk memanfaatkan atau menaikkan nilai tambah dari kulit kayu tersebut adalah dijadikan sumber bahan tanin dengan cara diekstrak.
Gmelina arborea

Gmelina arborea termasuk dalam family Verbenaceae dengan genus Gmelina, berasal dari India, dan beberapa daerah di sekitarnya seperti Bangladesh, Burma, Srilanka, Thailand, Laos, hingga sampai daratan cina. Jenis G. arborea adalah jenis terbaik dari genusnya dengan pertumbuhan pohon yang cepat.

Pohon Gmelina dapat mencapai tinggi 30 m serta bagian batang bebas cabang 15 m. Apabila kulit sudah tua akan mengelupas berkeping-keping sehingga bagian bawahnya akan terlihat lebih cerah, kayu berwarna putih sampai krem.

Tanaman ini dapat tumbuh pada ketinggian 90-900 m dpl, namun di daerah lembah Srilanka dapat tumbuh hingga sampai 1500 m dpl (DHTI, 1992). Secara alami kondisi tempat tumbuh Gmelina mempunyai variasi temperatur maksimum dari 37\(^\circ\)C sampai 48\(^\circ\)C dan minimum dari -1\(^\circ\)C sampai 16\(^\circ\)C dengan curah hujan antara 760-4600 mm atau lebih. Kondisi optimum bagi pertumbuhan Gmelina pada daerah dengan waktu bulan kering 3-5 bulan dan kelembaban relatif kurang dari 40%. Temperatur bulanan antara 18\(^\circ\)C-35\(^\circ\)C dan curah hujan antara 1750-2300 mm (Lamprench, 1989).

Teknologi Pengolahan Pakan Berserat

Kelompok pakan yang tinggi fraksi seratnya memerlukan pengolahan terlebih untuk meningkatkan fermentabilitasnya. Pengolahan tersebut untuk memutuskan ikatan lignoselulosa yang sulit dicerna oleh mikroba rumen. Peningkatan fermentabilitas pakan serat dapat dilakukan dengan praperlakuan (Doyle et al., 1986):
secara fisik (dipotong-potong, digiling, perendaman, perebusan, pellet, gamma irradiasi), secara kimia (alkali, asam, garam, senyawa klorida, senyawa sulfat dan senyawa peroksida lainnya), dan secara biologi (penambahan enzim, menumbuhkan jamur atau bakteri).

Pengolahan secara fisik bertujuan untuk mengubah struktur fisik. Persentasinya (dari yang panjang menjadi pendek atau tepung) tetapi tidak mengubah komposisi kimianya. Pengolahan ini bertujuan untuk mengurangi ukuran partikel sehingga mudah dicerna oleh mikroba rumen (Doyle et al., 1986).

Perlakuan secara biologi bertujuan untuk mengubah struktur fisik melalui delignifikasi (penghancuran lignin) oleh mikroorganisme dan meningkatkan protein bahan makanan dengan protein mikroba (Doyle et al, 1986). Kelemahannya yaitu perlakuan ini memerlukan waktu yang lama, dan biaya lebih mahal.
Perlakuan NaOH

Senyawa alkali terutama basa kuat yang umum digunakan untuk meningkatkan keceraan bahan pakan berserat adalah NaOH. Perlakuan NaOH dapat meningkatkan keceraan hijauan berkualitas rendah, misalnya jerami padi pada ruminansia (Tillman et al., 1998). Jayasurya (1979), menyatakan bahwa NaOH dapat melarutkan lignin, silika dan hemiselulosa tetapi tidak melarutkan selulosa.

Keceraan komponen serat sangat dipengaruhi oleh lignin. Peningkatan kadar lignin menyebabkan penurunan keceraan komponen selulosa dan hemiselulosa (Fiest et al., 1970, Reeves, 1985).

Lignin sangat tahan terhadap degradasi kimia, tetapi dapat didegradasi secara enzimatik oleh mikroba penghasil lignase. Peningkatan keceraan disebabkan oleh pemecahan ikatan antara lignin dan hemiselulosa atau selulosa tanpa menghilangkan lignin itu sendiri (Rexen dan Thomsen, 1976). Beberapa penelitian telah memperlihatkan bahwa limbah dari spesies tanaman yang berbeda memberikan respon yang berbeda terhadap perlakuan kimia, karena setiap tanaman mempunyai komposisi kimia yang berbeda-beda, terutama kandungan lignin. Keceraan zat makanan secara in vitro sebelum diberi perlakuan NaOH jauh berbeda walaupun kandungan ligninnya sama (20 %) dalam jenis kayu yang berbeda (Tabel 1).
Tabel 1. Efek Perlakuan NaOH pada Kecernaan In Vitro Kayu Kerasa

<table>
<thead>
<tr>
<th>Jenis</th>
<th>Kandungan lignin (%)</th>
<th>Kecernaan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sebelum perlakuan</td>
</tr>
<tr>
<td>Quaking aspen (Populus tremuloides)</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>American basswood (Tilia americana)</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>American elm (Ulmus americana)</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>Silver maple (Acer saccharinum)</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Red Oak (Quercus rubra)</td>
<td>24</td>
<td>3</td>
</tr>
</tbody>
</table>

a5 gr kayu dengan 1% NaOH dalam larutan 100 ml selama 1 jam
Sumber: NRC (1983)

Pengolahan atau perlakuan awal alkali pada bahan pakan dapat dibagi dalam dua cara, yaitu (Ibrahim, 1982) : (1) Cara perendaman atau pembasahan dikenal sebagai metode "Beckmann", (2) Cara kering atau penyemprotan.

Wanapat et al., (1985) mencoba melakukan berbagai metode diantaranya metode Beckman dan metode perendaman untuk meningkatkan kecernaan jerami
padi dengan perlakuan alkali. Metode Beckman yaitu sebagai berikut: jerami direndam dalam larutan NaOH 1,5% selama 1 malam kemudian dicuci dengan air, meningkatkan kecernaan bahan kering (50,8% menjadi 72,8%) dan kecernaan bahan organik (52,4% menjadi 75,7%). Metode perendaman, jerami direndam dalam larutan NaOH 1,4–1,5% selama 30 menit, kemudian disimpan selama 5 hari. Perlakuan tersebut juga meningkatkan kecernaan bahan kering (50,8% menjadi 74,8%) dan kecernaan bahan organik (50,8% menjadi 73,6%).

Penggunaan alkali dalam jumlah minimal hanya untuk pembasahan yang merata, ratio antara larutan alkali dengan bahan adalah 1:1. Keuntungan dari metode ini adalah menghindari kehilangan bahan kering akibat pencucian (Ibrahim, 1982).

Perlakuan Urea

Perlakuan kimia pada bahan pakan dengan menggunakan urea dikenal sebagai proses amoniasi karena dalam rumen urea akan dihidrolisa menjadi CO₂ dan NH₃ dengan bantuan air dan enzim urease yang dihasilkan oleh mikroorganisme rumen. Urea biasanya digunakan dalam ransum untuk menutupi kekurangan protein pada penggunaan bahan makanan berupa limbah (O’Donovan, 1978). Urea sebagai senyawa nitrogen nir protein (NPN) akan diubah menjadi protein mikroba di dalam rumen yang kemudian akan digunakan oleh ruminansia tersebut.

Penggunaan urea berlebih dapat menyebabkan keracunan, konsumsi pakan menurun, kegagalan reproduksi (Doyle et al., 1986). Penggunaan urea lebih dari 4% akan menghasilkan kenaikan kecernaan relatif kecil, walaupun penggunaan urea
sampai 6 % untuk amoniasi jerami padi dan diberikan pada sapi, tidak menunjukkan keracunan (Ibrahim dan Pearce, 1983).

Jayasurya (1979) mengemukakan bahwa silase jerami padi dengan urea 4 % selama 3 minggu meningkatkan nilai kecernaannya sebesar 10-12 unit. Ini juga didukung oleh percobaan yang dilakukan di Sri Lanka yang menggunakan urea 4 % pada berbagai varietas jerami padi, hasilnya kecernaannya in vitro bahan organiknya meningkat dari 43 % menjadi 51 % (Ibrahim dan Pearce, 1983). Perbandingan air dan jerami sebesar 1 : 1 dan disimpan selama 7 hari. Waktu penyimpanan sangat besar pengaruhnya dalam meningkatkan kecernaan. Disimpulkan bahwa penambahan taraf urea dan waktu penyimpanan dapat meningkatkan kecernaan bahan kering dan bahan organik in vitro. /

Umumnya pakan berserat mempunyai kandungan nitrogen rendah dan kandungan serat yang tinggi. Proses amoniasi diharapkan dapat mengatasi kendala tersebut karena selain meningkatkan kecernaan serat juga dapat meningkatkan degradasi protein yang berkaitan dengan dinding sel (Hvelplund, 1989).

Pemanfaatan Kayu dan Limbah Kayu Sebagai Pakan Ternak

Pemanfaatan kayu dan limbah kayu sebagai pakan ternak sebelumnya telah dicoba oleh para peneliti. Kayu yang akan digunakan dalam percobaan diberi perlakuan kimia terlebih dahulu seperti penambahan NaOH, sulfat, pemanasan dan tekanan tinggi. Limbah kayu yang digunakan berasal dari limbah pengolahan pulp.

Drevjany et al. (1984) dalam percobaannya menggunakan kayu Poplar yang telah diproses dengan pemanasan dan tekanan yang tinggi dan dibuat dalam bentuk
pellet, kemudian dicampur sampai 80 % dalam ransum komplit sapi Holstein. Pertambahan bobot badan maksimum (1,4 kg/hari) dicapai pada 30 % kayu dalam ransum. Percobaan lain yaitu dengan membandingkan 2 jenis ransum yang mengandung: 70 % kayu yang telah di proses dengan sulfit dan 78 % ampas bir, hasilnya 2 jenis ransum tidak berbeda nyata meningkatkan pertambahan bobot badan sapi Hereford (Clerke dan Dyer, 1973).

Lemieux dan Wilson (1979) dalam penelitiannya menyatakan bahwa keceraan bahan kering tertinggi pada 23 % limbah pulp dalam ransum komplit yaitu sebesar 77,5 %. Keceraan NDF dan ADF tertinggi pada 60 % limbah pulp yaitu 75,5 % dan 73,6 %. Keceraan protein tidak berbeda nyata pada kontrol, 20 %, 23 %, 40 %, 60 %, 67 % limbah pulp. Sedangkan keceraan in vitro bahan kering tertinggi pada 23 % limbah pulp dalam ransum komplit yaitu sebesar 88,5 %. Komposisi kimia limbah pulp yang digunakan adalah sebagai berikut: protein 1,2 %, NDF 95,4 %, ADF 86,4 %, lignin 4,1 %, dan abu 1,5 %.

Croy dan Rode (1988) juga melakukan uji keceraan in vivo (kambing) dan in sacco pada beberapa macam limbah pulp. Komposisi limbah pulp yang digunakan yaitu bahan kering (BK) 15,6-35,2 %, bahan organik (BO) 42,5-96,3 %, dan lignin 2,2-50,7 %. Keceraan in sacco semua bahan limbah pulp ini lebih dari 50 %. Dalam ransum kambing, substitusi 48 % limbah pulp mempunyai tingkat keceraan BK, BO, dan NDF tertinggi yaitu berturut-turut sebagai berikut 79,7 %, 84.0 %, dan 95,7 %.
MATERI DAN METODE

Waktu dan Tempat

Materi

Penelitian ini terdiri dari tiga percobaan in vitro dan satu percobaan in sacco. Materi yang digunakan dalam penelitian ini adalah sampel kulit kayu dan rumput gajah dan untuk in vitro digunakan cairan rumen yang berasal dari 3 ekor kambing jantan peranakan Etawah berfistula yang diberi pakan rumput gajah dan konsentrat. Kulit kayu berasal dari PT. Sumalindo Lestari Jaya di Kalimantan Timur. Sampel kulit kayu yang digunakan dalam penelitian ini ada 5 macam yaitu: (1) kulit kayu segar campuran (Acacia mangium dan Gmelina arborea), (2) kulit kayu campuran yang telah lama tertimbun di tempat pembuangan akhir, (3) sisa ekstrak tanin kulit kayu campuran, (4) kulit kayu A. mangium yang telah lama tertimbun, dan (5) sisa ekstrak tanin kulit kayu A. mangium. Sebelum digunakan dalam penelitian, rumput gajah dan kulit kayu dikeringkan kemudian digiling dengan ukuran 1 mm.
Metode

Percobaan 1 : Kecernaan Kulit Kayu dengan Perlakuan Urea dan NaOH Cara Kering

Sampel yang digunakan adalah kulit kayu campuran yang segar dan lama. Masing-masing perlakuan adalah sebagai berikut: (1) kulit kayu + air, (2) kulit kayu + larutan urea 4% dan (3) kulit kayu + larutan NaOH 4% dengan perbandingan air atau larutan dan sampel 1 : 1 (b/v). Sampel 100 g dimasukkan ke dalam larutan NaOH (4 g NaOH dalam 100 ml air) atau larutan urea 4% (4 g urea dalam 100 ml air), kemudian diaduk sampai merata.

Tabel 2. Perlakuan Urea dan NaOH dengan Cara Kering

<table>
<thead>
<tr>
<th>Sampel (Faktor A)</th>
<th>Perlakuan (Faktor B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulit kayu segar campuran</td>
<td>Tanpa perlakuan, 0 minggu</td>
</tr>
<tr>
<td></td>
<td>Air, 4 minggu</td>
</tr>
<tr>
<td>Kulit kayu lama campuran</td>
<td>Urea 4%, 0 dan 4 minggu</td>
</tr>
<tr>
<td></td>
<td>NaOH 4%, 0 dan 4 minggu</td>
</tr>
</tbody>
</table>
Percobaan menggunakan Rancangan Acak Lengkap dengan pola Faktorial (RAL Faktorial) 2 x 6 dengan ulangan 3 kali. Dianalisis dengan sidik ragam atau Analysis of Variance (ANOVA) dan uji Duncan. Model matematik rancangan percobaan tesebut adalah sebagai berikut:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk} \]

*Y*_{ijk} = Hasil pengamatan untuk faktor jenis sampel (A) level ke-i, faktor perlakuan (B) level ke-j dan ulangan ke-k

μ = Nilai tengah umum

α_i = Pengaruh jenis sampel (A) pada level ke-i

β_j = Pengaruh perlakuan (B) pada level ke-j

(αβ)_{ij} = Interaksi AB pada level ke-i, level ke-j

ε_{ijk} = Galat percobaan untuk (A) level ke-i, (B) level ke-j, dan ulangan ke-k

Peubah yang diamati adalah kecernaan bahan kering dan bahan organik

Pengukuran Kecernaan Dengan Metode In Vitro (Tilley and Terry, 1963)

Tabung polypropilen berkapasitas 100 ml diisi dengan 0,5 g sampel yang telah digiling dengan saringan ukuran 1 mm. 10 ml rumen dan 40 ml larutan buffer dengan perbandingan 1 : 4. Cairan rumen berasal dari 3 ekor kambing berfistula. Larutan buffer yang digunakan terdiri dari: 40 ml H₂O, 0,1 ml larutan mikromineral, 200 ml larutan buffer rumen, 200 ml larutan makromineral dan 40 ml larutan pereduksi. Larutan buffer diaduk hingga tercampur merata, kemudian dialiri gas CO₂ sampai mencapai pH 6,9.

Residu bahan pakan hasil penyaringan dikeringkan dalam oven 105°C selama 24 jam, kemudian ditimbang untuk mendapatkan nilai bahan kering. Selanjutnya untuk memperoleh bahan organik dilakukan dengan pengabuan residu dalam tanur 500-600°C selama ± 6 jam.

Variasi cairan rumen dikurangi dengan menggunakan blangko. Kecernaan zat makanan dapat dihitung dengan rumus sebagai berikut:

\[
KZM (\%) = \frac{ZM_{pakan} - (ZM_{residu} - ZM_{blangko})}{ZM_{pakan}} \times 100\
\]

KZM = Kecernaan zat makanan (%)

ZM = Berat zat makanan (gram)
Percobaan 2 : Kecernaan Kulit Kayu dengan Perlakuan NaOH Cara Perendaman

Sampel yang digunakan adalah kulit kayu campuran yang lama, sisa ekstrak tanin kulit kayu campuran, kulit kayu *Acacia mangium* yang lama, dan sisa ekstrak tanin kulit kayu *A. mangium*. Setiap sampel masing-masing 50 g dimasukkan ke dalam kantong nilon yang diberi pemberat kelereng. Kemudian direndam 24 jam di dalam air sebanyak 2500 ml dengan level NaOH 0, 1, 2, 3, 4% dan dijemur di bawah sinar matahari. Setelah 24 jam, sampel diangkat, diperas untuk menghilangkan larutan berwarna coklat gelap akibat perendaman kemudian sampel digantung dalam suhu ruang selama 5 hari. Keringkan sampel dalam oven 60ºC selama 2-3 hari dan sampel siap digunakan untuk analisis. Pengukuran kecernaan menggunakan metode Tilley and Terry (1963). Perlakuan NaOH dengan cara basah disajikan pada Tabel 3.

Tabel 3. Perlakuan NaOH dengan cara perendaman

<table>
<thead>
<tr>
<th>Sampel (Faktor A)</th>
<th>Perlakuan NaOH (%) (Faktor B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulit kayu lama campuran</td>
<td>0</td>
</tr>
<tr>
<td>Sisa ekstrak tanin kulit kayu campuran</td>
<td>1</td>
</tr>
<tr>
<td>Kulit kayu lama A. mangium</td>
<td>2</td>
</tr>
<tr>
<td>Sisa ekstrak tanin kulit kayu A. mangium</td>
<td>3</td>
</tr>
</tbody>
</table>

Rancangan menggunakan Rancangan Acak Lengkap dengan pola Faktorial 4 x 5 dengan ulangan 3 kali. Data dianalisis dengan sidik ragam atau *Analysis of Variance* (ANOVA) dan uji kontras polinomial ortogonal. Model matematik rancangan percobaan tersebut adalah sebagai berikut:
\[Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk} \]

\(Y_{ijk} \) = Hasil pengamatan untuk faktor jenis sampel (A) level ke-\(i \), faktor perlakuan (B) level ke-\(j \) dan ulangan ke-\(k \)

\(\mu \) = nilai tengah umum

\(\alpha_i \) = pengaruh jenis sampel (A) pada level ke-\(i \)

\(\beta_j \) = pengaruh perlakuan (B) pada level ke-\(j \)

\((\alpha \beta)_{ij} \) = interaksi AB pada level ke-\(i \), level ke-\(j \)

\(\epsilon_{ijk} \) = galat percobaan untuk (A) level ke-\(i \), (B) level ke-\(j \) dan ulangan ke-\(k \)

Peubah yang diamati adalah kececeran bahan kering dan bahan organik.

Percobaan 3: Degradasi Komponen Rumput Gajah dan Kulit Kayu Berdasarkan Metode In Sacco

Bahan pakan yang diukur laju degradasi bahan keringnya di dalam rumen kambing berfistula adalah rumput gajah dan kulit kayu yang mempunyai tingkat kececeran terbaik dari percobaan in vitro. Kantong nilon berukuran 9 x 16 cm dengan ukuran pori-pori 40-60 mikron diinkubasi dalam rumen sebanyak 3 g sampel dimasukkan kedalam kantong nilon yang telah diketahui beratnya dan diberi pemberat kelereng, kemudian diikat dengan tali nilon dan diinkubasi selama 0, 6, 12, 24, 48 dan 72 jam. Pemasukan kantong nilon dilakukan secara serentak dan diangkat sesuai dengan waktu yang telah ditentukan.

Setelah inkubasi selesai, kantong diangkat dan dicuci sampai air bekas cucianya jernih. Kantong beserta sisa pakan dikeringkan dalam oven 60°C selama 48 jam. Sisa pakan diambil dari kantong dengan membilas isi kantong dengan air
hangat dan disaring dengan cawan penyaring menggunakan pompa vakum.
Kemudian dikerlingkan dalam oven 105°C selama 24 jam dan ditimbang. Laju
degradasi bahan kering, bahan organik dan NDF dihitung dengan rumus (Orskov dan
McDonald, 1979):

\[
P = a + b \left(1 - e^{-ct}\right)
\]

\(P\) = Persentase komponen bahan yang didegradasi setelah waktu \(t\) (%)

\(a\) = Porsii bahan yang mudah larut (konstanta)

\(b\) = Komponen yang tidak larut tetapi dapat didegradasi (konstanta)

\(c\) = Laju degradasi komponen \(b\) (konstanta)

\(t\) = Waktu inkubasi (jam)

Percobaan 4 : Substitusi Kulit Kayu pada Rumput Gajah

Sampel kulit kayu yang mempunyai tingkat kecernaan terbaik dari percobaan 1
dan percobaan 2 digunakan dalam percobaan ini. Kulit kayu sisa ekstrak tanin
A. mangium dikombinasikan dengan rumput dengan perbandingan sebagai berikut:

0 % (0,00 g) sampel : 100% (0,50 g) rumput gajah

10% (0,05 g) sampel : 90% (0,45 g) rumput gajah

20% (0,10 g) sampel : 80% (0,40 g) rumput gajah

30% (0,15 g) sampel : 70% (0,35 g) rumput gajah

40% (0,20 g) sampel : 60% (0,30 g) rumput gajah

Percobaan menggunakan Rancangan Acak Lengkap (RAL) dengan ulangan 3
kali, dengan model matematik sebagai berikut:

\[Y_{ij} = \mu + \tau_i + \epsilon_{ij} \]
\[Y_{ij} = \text{Hasil pengamatan perlakuan ke-}i \text{ dan ulangan ke-}j \]

\[\mu = \text{Nilai rataan umum} \]

\[\tau_i = \text{Pengaruh perlakuan ke-}i \]

\[\varepsilon_{ij} = \text{Galat perlakuan ke-}i \text{ dan ulangan ke-}j \]

Parameter yang diamati adalah kecernaan bahan kering, bahan organik dan NDF.

Pengukuran kecernaan menggunakan metode Tilley and Terry (1963).

Metode Pengukuran Produksi Gas (Menke et al., 1979)

Pengukuran produksi gas secara *in vitro* menggunakan *syringe* dengan kapasitas 100 ml. Timbang sampel sebanyak 0,5 gram kemudian dimasukkan ke dalam *syringe*. Campurkan larutan buffer yang terdiri dari 630 ml larutan buffer rumen, 315 ml larutan makromineral, 0,16 ml larutan mikromineral, 1,6 ml resazurin, dan 975 ml aquades, diaduk menggunakan pengaduk dan dialiri CO_2 selama 5 menit.

Tambahkan larutan pereduksi sebanyak 60 ml dan tetap dialiri CO_2 kemudian masukkan 660 ml cairan rumen. *Syringe* yang berisi sampel dan 40 ml campuran buffer dan cairan rumen di inkubasi di dalam penangas air bersuhu 39°C.

Pengamatan produksi gas dilakukan pada 0, 2, 4, 6, 8, 10, 12, 24, 48, 72 jam.
HASIL DAN PEMBAHASAN

Potensi Kulit Kayu

Kayu dan limbah kayu adalah sumber energi yang potensial untuk ruminansia karena mengandung 70-80% karbohidrat, tetapi limbah kayu tidak dapat digunakan dengan baik oleh ruminansia karena kecENAan komponen karbohidratnya rendah (Fiest et al., 1970). Kulit kayu mempunyai kandungan serat kasar yang tinggi, terutama lignin. Lignin kulit kayu lebih rendah dibandingkan dengan pod kakao (38,38%).

Kulit kayu yang digunakan dalam penelitian ini mempunyai kandungan protein yang lebih tinggi daripada jenis limbah pertanian lain yang sering digunakan sebagai sumber serat selain rumput diantaranya seperti jerami padi (protein kasar 4,5%), bagas tebu (protein kasar 1,6%) dan serat sawit (protein kasar 5,93%). Komposisi kimia kulit kayu yang digunakan dalam penelitian ini disajikan pada Tabel 4.

Tabel 4. Komposisi Kimia Kulit Kayu yang Digunakan dalam Penelitian

<table>
<thead>
<tr>
<th>Jenis Sampel</th>
<th>PK</th>
<th>Lemak</th>
<th>Abu</th>
<th>NDF</th>
<th>ADF</th>
<th>Selulosa</th>
<th>Lignin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulit kayu segar campuran</td>
<td>6,61</td>
<td>0,91</td>
<td>6,91</td>
<td>75,68</td>
<td>71,86</td>
<td>35,44</td>
<td>34,06</td>
</tr>
<tr>
<td>Kulit kayu lama campuran</td>
<td>6,78</td>
<td>0,90</td>
<td>5,82</td>
<td>87,16</td>
<td>78,53</td>
<td>40,10</td>
<td>36,31</td>
</tr>
<tr>
<td>Sisa ekstrak tanin campuran</td>
<td>6,12</td>
<td>0,82</td>
<td>3,11</td>
<td>81,31</td>
<td>79,85</td>
<td>36,77</td>
<td>36,33</td>
</tr>
<tr>
<td>Kulit kayu lama A. mangium</td>
<td>5,61</td>
<td>1,18</td>
<td>13,54</td>
<td>63,63</td>
<td>58,62</td>
<td>30,87</td>
<td>25,03</td>
</tr>
<tr>
<td>Sisa ekstrak tanin A. mangium</td>
<td>5,68</td>
<td>1,18</td>
<td>5,04</td>
<td>76,70</td>
<td>74,18</td>
<td>35,73</td>
<td>35,29</td>
</tr>
</tbody>
</table>
Percobaan 1: Kecernaan Kulit Kayu Dengan Perlakuan Urea dan NaOH Cara Kering

Perlakuan urea dan NaOH pada kulit kayu dengan cara kering berpengaruh nyata (P < 0,01) terhadap kecernaan bahan kering dan bahan organik (Tabel 5). Rataan kecernaan bahan kering dan bahan organik kulit kayu dengan perlakuan urae dan NaOH cara kering terdapat pada Tabel 5.

Tabel 5. Rataan Kecernaan Bahan Kering dan Bahan Organik Kulit Kayu Dengan Perlakuan Urea dan NaOH Cara Kering

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Bahan Kering</th>
<th></th>
<th>Bahan Organik</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Segar</td>
<td>Lama</td>
<td>Segar</td>
<td>Lama</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Tanpa Perlakuan</td>
<td>16,05 (bc)</td>
<td>16,16 (bc)</td>
<td>13,22 (cd)</td>
<td>15,51 (bc)</td>
</tr>
<tr>
<td>Air, 4 minggu</td>
<td>9,24 (c)</td>
<td>10,83 (dc)</td>
<td>7,86 (f)</td>
<td>10,79 (de)</td>
</tr>
<tr>
<td>Urea 4%, 0 minggu</td>
<td>12,84 (cde)</td>
<td>10,63 (de)</td>
<td>13,38 (cd)</td>
<td>12,72 (cd)</td>
</tr>
<tr>
<td>Urea 4%, 4 minggu</td>
<td>11,61 (dc)</td>
<td>9,26 (c)</td>
<td>13,30 (cd)</td>
<td>11,32 (dc)</td>
</tr>
<tr>
<td>NaOH 4%, 0 minggu</td>
<td>17,10 (b)</td>
<td>22,02 (a)</td>
<td>16,53 (ab)</td>
<td>18,82 (a)</td>
</tr>
<tr>
<td>NaOH 4%, 4 minggu</td>
<td>13,27 (cd)</td>
<td>9,70 (de)</td>
<td>17,42 (ab)</td>
<td>9,76 (ef)</td>
</tr>
</tbody>
</table>

Rataan dengan superskrip berbeda pada kolom yang sama menunjukkan berbeda nyata (P<0,01)

Nilai kecernaan kulit kayu sangat kecil meskipun sudah mendapat perlakuan, hal ini kemungkinan disebabkan karena tingginya kandungan lignin dalam kulit kayu (34,06 – 36,31%). Ikatan lignin dengan selulosa dan hemiselulosa merupakan penghambat kecernaan dinding sel tanaman. Semakin banyak lignin terdapat dalam dinding sel maka nilai kecernaan hijauan tersebut makin rendah karena di dalam rumen tidak diproduksi enzim lignase untuk merombak lignin. Van Soest (1985)
menyatakan bahwa lignin dapat menghambat 2,4 sampai 3,4 kali tingkat keceraan dinding sel tanaman oleh mikroba rumen. Tebalnya lapisan lignin yang menyelubungi selulosa dan hemiselulosa juga dapat menyebabkan bagian tersebut sukar ditembus oleh enzim mikroba rumen sehingga nilai keceraan menjadi kecil. Nilai keceraan yang kecil dan bervariasi pada kulit kayu dapat disebabkan pula karena kurangnya zat makanan yang diperlukan bagi pertumbuhan mikroba rumen.

Data dalam Tabel 5 menunjukkan bahwa perlakuan NaOH 4% dengan penyimpanan 0 minggu mempunyai keceraan bahan kering dan keceraan bahan organik kulit kayu yang tinggi. Peningkatan nilai keceraan disebabkan oleh larutan NaOH mempunyai pH sangat tinggi (diatas pH 8) sehingga dapat meningkatkan kelarutan hemiselulosa dan selulosa.

Perlakuan urea 4% tidak meningkatkan keceraan kulit kayu. Urea merupakan basa lemah sehingga daya hidrolisis larutan tersebut rendah. Hal ini menyebabkan komponen dinding sel tidak banyak mengalami perubahan, akibatnya matrik dinding sel sukar ditembus oleh mikroba rumen. Daya hidrolisis urea pada jerami dan kulit kayu berbeda, ini kemungkinan disebabkan karena jerami mempunyai rongga sehingga pada dosis urea 4% keceraannya meningkat (Jayasurya, 1979) sedangkan kulit kayu lebih padat. Akan tetapi apabila penggunaan urea ditingkatkan lebih dari 4% akan menghasilkan kenaikan keceraan yang relatif kecil (Ibrahim, 1983). Dari hasil ini dapat dinyatakan bahwa perlakuan urea 4% belum efektif dalam meningkatkan keceraan kulit kayu.

Kulit kayu yang mendapat perlakuan air atau alkali yang dilanjutkan dengan penyimpanan selama 4 minggu, cenderung menurunkan keceraan bahan kering dan
Percobaan 2 : Kecernaan Kulit Kayu Dengan Perlakuan NaOH Cara Perendaman

Perendaman dengan berbagai taraf NaOH sangat nyata (P < 0,01) meningkatkan kecernaan bahan kering dan bahan organik kulit kayu (Gambar 1 dan Gambar 2). Kulit kayu *A. mangium* yang telah diekstrak taninnya dan mendapat perlakuan perendaman dalam larutan NaOH 4% mempunyai nilai kecernaan kecernaan lebih tinggi dibandingkan kulit kayu *A. mangium* yang tidak diekstrak taninnya.

Gambar 1 dan Gambar 2 juga menunjukkan bahwa kecernaan bahan kering dan bahan organik terbaik dari beberapa sampel terdapat pada perlakuan NaOH 4%. Oleh karena itu, jenis kulit kayu yang digunakan dalam percobaan selanjutnya (percobaan 3 dan 4) dalam menentukan tingkat substitusi kulit kayu pada rumput gajah adalah kulit kayu *A. mangium* yang sudah diekstrak taninnya yang telah mendapat perlakuan perendaman dalam larutan NaOH 4%.

Gambar 1. Kecernaan BK (%) Kulit Kayu Dengan Cara Perendaman Pada Berbagai Taraf NaOH (%) (Keterangan : S. E. T. Camp = Sisa Ekstrak Tanin Campuran, S. E. T. *A. mangium* = Sisa Ekstrak Tanin *Acacia mangium*)

Peningkatan nilai kecernaan kemungkinan disebabkan oleh adanya perombakan struktur dinding sel. Senyawa NaOH mampu merusak atau memutuskan ikatan antara lignin dengan selulosa atau hemiselulosa, selain itu juga dapat menyebabkan pembengkakan matrik selulosa dan hemiselulosa yang telah terputus dengan ikatan lignin sehingga lebih mudah dicerna oleh mikroba rumen.

Proses perendaman dengan NaOH dapat melarutkan tanin yang terdapat dalam kulit kayu, hal ini terlihat dari larutan sisa perendaman kulit kayu yang berwarna coklat pekat. Adanya tanin dalam bahan pakan berpengaruh negatif bagi ternak ruminansia karena di dalam rumen tanin dapat membentuk kompleks dengan protein sehingga sukar didegradasi oleh mikroba rumen.
Percobaan 3: Degradasi Komponen Rumput Gajah dan Kulit Kayu Berdasarkan Metode In Sacco

Waktu inkubasi selama 72 jam berpengaruh nyata ($P < 0.05$) meningkatkan persentase rataan degradasi bahan kering, bahan organik dan NDF rumput gajah, tetapi tidak berpengaruh nyata ($P > 0.05$) pada kulit kayu *A. mangium* yang telah diekstrak taninnya dengan perendaman NaOH 4%. Data persentase rataan degradasi bahan kering, bahan organik dan NDF rumput gajah dan kulit kayu dapat dilihat pada Tabel 6 dan Gambar 3.

Pada waktu inkubasi 0 jam, kulit kayu mempunyai persentase degradasi bahan kering tinggi, hal ini menggambarkan bahwa kulit kayu mempunyai tingkat kelarutan yang tinggi. Apabila salah satu komponen yang terlarut tersebut adalah senyawa antinutrisi seperti tanin, maka besar kemungkinan tanin akan mematikan atau menghambat pertumbuhan mikroba rumen.

Waktu inkubasi selama 72 jam tidak nyata ($P > 0.05$) meningkatkan degradasi bahan kering kulit kayu, walaupun terjadi peningkatan dari 44,239% menjadi 49,699% (Tabel 6). Kecilnya peningkatan degradasi kulit kayu menunjukkan bahwa komponen pakan yang tertinggal atau tidak larut sukar dicerna oleh bakteri rumen.

Tingkat degradasi NDF rumput gajah selama 72 jam meningkat dari 13,012% menjadi 44,073%, sedangkan kulit kayu meningkat dari 14,424% menjadi 21,980%. Tingginya kandungan serat kasar jika dibandingkan dengan rumput gajah menyebabkan kulit kayu lebih sulit didegradasi. Degradasi NDF sangat terbatas atau tidak terjadi peningkatan secara nyata ($P > 0.05$) dalam waktu inkubasi selama 72 jam.
<table>
<thead>
<tr>
<th>Komponen Pakan</th>
<th>Sampel</th>
<th>Waktu Inkubasi (Jam)</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>BK</td>
<td>Rumput</td>
<td>23,503<sup>b</sup></td>
<td>25,753<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Kulit kayu</td>
<td>44,239</td>
<td>44,940</td>
</tr>
<tr>
<td>NDF</td>
<td>Rumput</td>
<td>13,012<sup>b</sup></td>
<td>15,922<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Kulit kayu</td>
<td>14,424</td>
<td>14,240</td>
</tr>
</tbody>
</table>

Rataan dengan superskrip berbeda pada baris yang sama menunjukkan berbeda nyata ($P < 0,05$); parameter a, b, c adalah komponen persamaan $P = a + b (1 - e^{-c})$.
Gambar 3. Pola Degradasi BO Kulit Kayu (c = 0) dan Rumput Gajah
\(P = 15,422 + 89,243 \times (1 - e^{-0.005t})\)

Tingkat degradasi bahan organik erat kaitannya dengan tingkat degradasi bahan kering, karena sebagian besar bahan kering terdiri dari bahan organik. Perbedaan keduanya terletak pada kandungan abu (Sutardi, 1980). Waktu inkubasi tidak nyata
\((P > 0,05)\) meningkatkan persentase degradasi bahan organik kulit kayu (Gambar 3).

Laju degradasi bahan kering, bahan organik dan NDF terdapat dalam Tabel 6
dan Gambar 3. Nilai laju degradasi (c) bahan kering, bahan organik dan NDF erat
kaitannya dengan kualitas suatu bahan makanan, semakin mudah suatu bahan
terdegradasi dalam waktu yang relatif cepat maka semakin baik sifat keceraan bahan
tersebut. Kulit kayu mempunyai laju degradasi 0 \((c = 0)\), hal ini menunjukkan bahwa
kulit kayu sangat sulit didegradasi di dalam rumen.

Pengaruh pemberian rumput gajah dan kulit kayu terhadap aktifitas mikroba
rumen, dapat dilihat dari produksi gas yang dihasilkan secara in vitro pada Gambar 4.
Produksi gas yang dihasilkan menunjukkan terjadinya proses fermentasi bahan pakan
oleh mikroba rumen, yaitu menghidrolisis karbohidrat menjadi monosakarida dan
disakarida yang kemudian difermentasi lebih lanjut menjadi asam lemak terbang atau
volatile fatty acid (VFA) terutama asam asetat, asam propionat dan asam butirat serta gas metan (CH₄) dan karbon dioksida (CO₂). VFA merupakan sumber energi utama bagi ternak rumiansia (Mc. Donald et al, 1988).

Gambar 4. Produksi Gas Rumput gajah dan Kulit kayu

Semakin tingginya produksi gas yang dihasilkan oleh mikroba rumen, ini berarti bahwa produksi VFA juga meningkat. Pemberian kulit kayu menghasilkan produksi gas yang sangat rendah jika dibandingkan dengan rumput gajah. ini kemungkinan disebabkan karena aktivitas dan pertumbuhan mikroba rumen terhambat. Terhambatnya aktivitas mikroba kemungkinan disebabkan oleh kurangnya zat makanan dalam bahan pakan untuk pertumbuhan mikroba rumen dan adanya zat antinutrisi. Hasil ini menunjukkan bahwa kulit kayu tidak bisa dijadikan sebagai komponen (sumber serat) utama dalam pakan ternak rumiansia, oleh karena itu harus dicampur dengan sumber serat lain seperti rumput gajah.
Percobaan 4: Substitusi Kulit Kayu pada Rumput Gajah

Kecernaan bahan kering, bahan organik dan NDF dari berbagai kombinasi antara rumput gajah dan kulit kayu *A. mangium* yang telah dickstrak taninnya yang telah mengalami perendaman dengan NaOH 4% disajikan pada Tabel 7. Peningkatan persentase kulit kayu dalam campuran nyata (P < 0,05) menurunkan kecernaan bahan kering, bahan organik dan NDF.

<table>
<thead>
<tr>
<th>Perlakuan Campuran</th>
<th>Rataan Kecernaan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BK</td>
</tr>
<tr>
<td>100% Rumput Gajah</td>
<td>57,60<sup>ab</sup> ± 2,03</td>
</tr>
<tr>
<td>90% Rumput, 10% Kulit Kayu</td>
<td>58,41<sup>a</sup> ± 0,91</td>
</tr>
<tr>
<td>80% Rumput, 20% Kulit Kayu</td>
<td>55,97<sup>bc</sup> ± 0,71</td>
</tr>
<tr>
<td>70% Rumput, 30% Kulit Kayu</td>
<td>55,25<sup>c</sup> ± 1,82</td>
</tr>
<tr>
<td>60% Rumput, 40% Kulit Kayu</td>
<td>52,58<sup>d</sup> ± 1,14</td>
</tr>
</tbody>
</table>

Rataan dengan superskrip berbeda pada kolom yang sama menunjukkan berbeda nyata (P < 0,05)

Pengaruh persentase kulit kayu dalam campuran terhadap mikroba rumen dapat dilihat pada Gambar 5. Volume produksi gas campuran rumput gajah dan kulit kayu menunjukkan perbedaan ($P < 0,01$) pada saat waktu inkubasi 72 jam. Semakin meningkat jumlah kulit kayu dalam campuran, produksi gas semakin menurun. Penurunan produksi gas ini kemungkinan disebabkan oleh peningkatan jumlah komponen serat kulit kayu yang sukar dicerna dalam campuran dan reaksi antinutrisi dalam kulit kayu yang mematikan mikroba rumen. Berkurangnya jumlah mikroba rumen dapat juga disebabkan oleh kurangnya zat makanan dalam campuran.

Gambar 5. Produksi Gas Campuran Rumput Gajah dan Kulit Kayu
DISKUSI UMUM

Peningkatan keceraan dengan cara perendaman NaOH (percobaan 2) lebih efektif jika dibandingkan dengan cara kering (percobaan 1), ini terlihat dari tingginya nilai keceraan bahan kering dan bahan organik. Perendaman kulit kayu dalam larutan NaOH 4% kemungkinan dapat memutuskan ikatan antara lignin dengan selulosa dan hemiselulosa, menyebabkan pembengkakan matrik selulosa dan hemiselulosa, serta meningkatan kelarutan hemiselulosa dan selulosa sehingga lebih mudah didegradasi oleh mikroba rumen.

Percobaan in sacco (percobaan 3) membuktikan bahwa tingginya keceraan bahan kering dan bahan organik kulit kayu disebabkan oleh tingkat kelarutan yang tinggi pada 0 jam. Komponen kulit kayu yang tidak larut sulit didegradasi oleh mikroba rumen meskipun telah mengalami perlakuan perendaman dalam larutan NaOH 4%. Produksi gas kulit kayu lebih rendah bila dibandingkan dengan rumput gajah, ini menunjukkan bahwa kulit kayu tidak dapat dijadikan sebagai komponen utama pakan.

Substitusi kulit kayu sampai 30% dalam campuran nyata menurunkan keceraan bahan kering, bahan organik dan NDF (percobaan 4). Peningkatan jumlah kulit kayu dalam campuran dengan rumput gajah juga menyebabkan penurunan produksi gas, hal ini menggambarkan bahwa aktivitas dan pertumbuhan mikroba rumen agak terhambat. Penurunan produksi gas dapat ditutupi dengan penambahan bahan pakan bernutrien yang mudah didegradasi oleh mikroba rumen.
KESIMPULAN DAN SARAN

Kesimpulan

Kulit kayu mengandung serat kasar yang tinggi. Kecernaan kulit kayu dapat ditingkatkan dengan perlakuan perendaman dalam larutan NaOH. Jenis kulit kayu yang terbaik adalah kulit kayu *A. mangium* yang telah diriskan taninnya pada perlakuan perendaman dalam larutan NaOH 4 %, dengan nilai kecernaan bahan kering 49,26 % dan bahan organik 45,11 %. Kulit kayu dapat mensubstitusi sampai 30 % dalam campuran dengan rumput gajah sebagai sumber serat bagi ruminansia.

Saran

Penelitian ini perlu dilanjutkan dengan uji palatabilitas dan uji kecernaan pakan secara *in vivo*. Pakan yang diberikan kepada ternak sebaiknya dalam bentuk pakan komplit untuk menghindari terhambatnya aktivitas mikroba rumen.
DAFTAR PUSTAKA

Jayasurya, M. C. N. 1979. The Utilization of Fibrous Residues in South Asia. Proceeding of Workshop on Bioconversion of Lignocellulotic and Carbohydrate Residues in Rural Communities. LIPI.

LAMPIRAN
Lampiran 1. Analisis Sidik Ragam Rataan Kecernaan Bahan Kering Kulit Kayu dengan Cara Kering

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel 0.05</th>
<th>F tabel 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampel</td>
<td>1</td>
<td>0.568</td>
<td>0.568</td>
<td>0.247*</td>
<td>4.26</td>
<td>7.82</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>5</td>
<td>429.318</td>
<td>85.863</td>
<td>37.449**</td>
<td>2.62</td>
<td>3.90</td>
</tr>
<tr>
<td>Interaksi</td>
<td>5</td>
<td>74.315</td>
<td>14.863</td>
<td>6.482**</td>
<td>2.62</td>
<td>3.90</td>
</tr>
<tr>
<td>Error</td>
<td>24</td>
<td>55.026</td>
<td></td>
<td>2.292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>559.227</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**) Sangat Berbeda Nyata ($P < 0.01$)
tn) Tidak Berbeda Nyata ($P > 0.05$)

Uji Jarak Duncan Rataan Kecernaan Bahan Kering Kulit Kayu

<table>
<thead>
<tr>
<th>No</th>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>16.10</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>10.03</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>11.73</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>10.44</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>19.56</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>11.48</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Sampel</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Segar</td>
<td>13.35</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Lama</td>
<td>13.10</td>
<td>A</td>
</tr>
</tbody>
</table>
Lampiran 2. Analisis Sidik Ragam Rataan Kecernaan Bahan Organik Kulit Kayu dengan Cara Kering

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Sampel</td>
<td>1</td>
<td>1.927</td>
<td>1.927</td>
<td>1.332in</td>
<td>4.26</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>5</td>
<td>222.990</td>
<td>44.598</td>
<td>30.834**</td>
<td>2.62</td>
</tr>
<tr>
<td>Interaksi</td>
<td>5</td>
<td>121.240</td>
<td>24.248</td>
<td>16.764**</td>
<td>2.62</td>
</tr>
<tr>
<td>Error</td>
<td>24</td>
<td>34.712</td>
<td>1.446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>380.870</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**) Sangat Berbeda Nyata (P < 0.01)
in) Tidak Berbeda Nyata (P > 0.05)

Uji Jarak Duncan Rataan Kecernaan Bahan Organik Kulit Kayu

<table>
<thead>
<tr>
<th>No</th>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>14.36</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>9.33</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>13.05</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>12.31</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>17.67</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>13.59</td>
<td>B</td>
</tr>
</tbody>
</table>

No | Jenis Sampel | Rata-rata | Superskrip |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Segar</td>
<td>13.62</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Lama</td>
<td>13.15</td>
<td>A</td>
</tr>
</tbody>
</table>
Lampiran 3. Analisis Sidik Ragam Rataan Kecernaan Bahan Kering Kulit Kayu dengan Perendaman

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel 0.05</th>
<th>F tabel 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampel</td>
<td>3</td>
<td>480.351</td>
<td>160.117</td>
<td>39.249**</td>
<td>2.84</td>
<td>4.31</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>18218.807</td>
<td>4554.701</td>
<td>1116.491**</td>
<td>2.61</td>
<td>3.83</td>
</tr>
<tr>
<td>Linier</td>
<td>1</td>
<td>16503.930</td>
<td>16503.930</td>
<td>4045.598**</td>
<td>4.08</td>
<td>7.31</td>
</tr>
<tr>
<td>Kuadratik</td>
<td>1</td>
<td>1020.186</td>
<td>1020.186</td>
<td>250.077**</td>
<td>4.08</td>
<td>7.31</td>
</tr>
<tr>
<td>Kubik</td>
<td>1</td>
<td>632.959</td>
<td>632.959</td>
<td>155.157**</td>
<td>4.08</td>
<td>7.31</td>
</tr>
<tr>
<td>Kuartik</td>
<td>1</td>
<td>61.731</td>
<td>61.731</td>
<td>15.132**</td>
<td>4.08</td>
<td>7.31</td>
</tr>
<tr>
<td>Interaksi</td>
<td>12</td>
<td>816.374</td>
<td>68.031</td>
<td>16.676**</td>
<td>2.00</td>
<td>2.66</td>
</tr>
<tr>
<td>Error</td>
<td>40</td>
<td>163.179</td>
<td></td>
<td>4.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>19678.713</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**) Sangat Berbeda Nyata (P < 0.01)

Rataan Kecernaan Bahan Kering Kulit Kayu

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Sampel</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lc</td>
<td>35.88</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>ETc</td>
<td>30.61</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>L.Am</td>
<td>29.04</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>ET.Am</td>
<td>34.76</td>
<td>A</td>
</tr>
</tbody>
</table>
Lampiran 4. Analisis Sidik Ragam Rataan Kecernaan Bahan Organik Kulit Kayu dengan Perendaman

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Sampel</td>
<td>3</td>
<td>449.210</td>
<td>149.736</td>
<td>47.409**</td>
<td>2.84</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>17705.812</td>
<td>4426.453</td>
<td>1401.484**</td>
<td>2.61</td>
</tr>
<tr>
<td>Linier</td>
<td>1</td>
<td>14997.245</td>
<td>14997.245</td>
<td>4748.364**</td>
<td>4.08</td>
</tr>
<tr>
<td>Kuadratik</td>
<td>1</td>
<td>2295.708</td>
<td>2295.7084</td>
<td>726.857**</td>
<td>4.08</td>
</tr>
<tr>
<td>Kubik</td>
<td>1</td>
<td>39.693</td>
<td>39.693</td>
<td>12.567**</td>
<td>4.08</td>
</tr>
<tr>
<td>Kuartik</td>
<td>1</td>
<td>373.165</td>
<td>373.165</td>
<td>118.149**</td>
<td>4.08</td>
</tr>
<tr>
<td>Interaksi</td>
<td>12</td>
<td>570.241</td>
<td>47.520</td>
<td>15.045**</td>
<td>2.00</td>
</tr>
<tr>
<td>Error</td>
<td>40</td>
<td>126.336</td>
<td>3.158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>18851.599</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**) Sangat Berbeda Nyata (P < 0.01)

Rataan Kecernaan Bahan Organik Kulit Kayu

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Sampel</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Le</td>
<td>34.61</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>ETc</td>
<td>28.91</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>L.Am</td>
<td>27.50</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>ET.Am</td>
<td>31.79</td>
<td>B</td>
</tr>
</tbody>
</table>
Lampiran 5. Kecernaan Bahan Kering dengan Cara Perendaman

\[y = -2.4642x^2 + 21.584x + 4.192 \]
\[R^2 = 0.9619 \]

Taraf NaOH (%)

Lampiran 6. Kecernaan Bahan Organik dengan Cara Perendaman

\[y = -3.6966x^2 + 25.966x + 0.9523 \]
\[R^2 = 0.9767 \]

Taraf NaOH (%)

41
Lampiran 7. Analisis Sidik Ragam Rataan Kecernaan *In Sacco* Bahan Kering Rumput Gajah

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jam</td>
<td>5</td>
<td>1386.992</td>
<td>277.398</td>
<td>4.253*</td>
<td>3.11</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>782.630</td>
<td>65.219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>2169.622</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Berbeda Nyata (P < 0.05)

Uji Jarak Duncan Rataan Kecernaan *In Sacco* Bahan Kering Rumput Gajah

<table>
<thead>
<tr>
<th>No</th>
<th>Perlakuan (Jam)</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>48.88</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>40.60</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>31.38</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>29.85</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>25.75</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>23.50</td>
<td>B</td>
</tr>
</tbody>
</table>

Lampiran 8. Analisis Sidik Ragam Rataan Kecernaan *In Sacco* Bahan Organik Rumput Gajah

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jam</td>
<td>5</td>
<td>1419.333</td>
<td>283.866</td>
<td>4.162*</td>
<td>3.11</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>818.366</td>
<td>68.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>2237.699</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Berbeda Nyata (P < 0.05)
Uji Jarak Duncan Rataan Kecernaan *In Sacco* Bahan Organik Rumput Gajah

<table>
<thead>
<tr>
<th>No</th>
<th>Perlakuan (Jam)</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>40.60</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>32.92</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>24.81</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>20.68</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>17.18</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>15.63</td>
<td>B</td>
</tr>
</tbody>
</table>

Lampiran 9. Analisis Sidik Ragam Rataan Kecernaan *In Sacco* NDF Rumput Gajah

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Jam</td>
<td>5</td>
<td>2145.350</td>
<td>429.070</td>
<td>4.558*</td>
<td>3.11</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>1129.462</td>
<td>94.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>3274.812</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Berbeda Nyata (P < 0.05)

Uji Jarak Duncan Rataan Kecernaan *In Sacco* NDF Rumput Gajah

<table>
<thead>
<tr>
<th>No</th>
<th>Perlakuan (Jam)</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>44.04</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>35.43</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>24.38</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>20.63</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>15.92</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>13.01</td>
<td>B</td>
</tr>
</tbody>
</table>
Lampiran 10. Analisis Sidik Ragam Rataan Kecernaan *In sacco* Bahan Kering Kulit Kayu

<table>
<thead>
<tr>
<th></th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jam</td>
<td>5</td>
<td>67.259</td>
<td>13.451</td>
<td>2.106th</td>
<td>3.11</td>
</tr>
<tr>
<td>Eror</td>
<td>12</td>
<td>76.614</td>
<td>6.384</td>
<td></td>
<td>5.06</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>143.874</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tn) Tidak Berbeda Nyata (P > 0.05)

Lampiran 11. Analisis Sidik Ragam Rataan Kecernaan *In Sacco* Bahan Organik Kulit Kayu

<table>
<thead>
<tr>
<th></th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jam</td>
<td>5</td>
<td>60.987</td>
<td>12.197</td>
<td>1.677th</td>
<td>3.11</td>
</tr>
<tr>
<td>Eror</td>
<td>12</td>
<td>87.272</td>
<td>7.272</td>
<td></td>
<td>5.06</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>148.259</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tn) Tidak Berbeda Nyata (P > 0.05)

Lampiran 12. Analisis Sidik Ragam Rataan Kecernaan *In Sacco* NDF Kulit Kayu

<table>
<thead>
<tr>
<th></th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jam</td>
<td>5</td>
<td>156.606</td>
<td>31.321</td>
<td>1.579th</td>
<td>3.11</td>
</tr>
<tr>
<td>Eror</td>
<td>12</td>
<td>238.019</td>
<td>19.834</td>
<td></td>
<td>5.06</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>394.626</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tn) Tidak Berbeda Nyata (P > 0.05)
Lampiran 13. Analisis Sidik Ragam Rataan Kecernaan Bahan Kering Campuran antara Rumput Gajah dan Kulit Kayu

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>61.759</td>
<td>15.440</td>
<td>10.787**</td>
<td>3.48</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>14.314</td>
<td>1.421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>76.072</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Tidak Berbeda Nyata (P > 0.05)

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>82.481</td>
<td>20.620</td>
<td>3.507*</td>
<td>3.48</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>58.797</td>
<td>5.879</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>141.278</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Berbeda Nyata (P > 0.01)

Lampiran 15. Analisis Sidik Ragam Rataan Kecernaan NDF Campuran antara Rumput Gajah dan Kulit Kayu.

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>609.782</td>
<td>152.445</td>
<td>3.725*</td>
<td>3.48</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>409.207</td>
<td>40.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>1018.990</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Berbeda Nyata (P > 0.01)
Lampiran 16. Rataan Produksi Gas Rumput Gajah Dan Kulit Kayu Secara In Vitro

<table>
<thead>
<tr>
<th>Sampel</th>
<th>Waktu Inkubasi (Jam)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>100 R</td>
<td>0</td>
</tr>
<tr>
<td>90R10K</td>
<td>0</td>
</tr>
<tr>
<td>80R20K</td>
<td>0</td>
</tr>
<tr>
<td>70R30K</td>
<td>0</td>
</tr>
<tr>
<td>60R40K</td>
<td>0</td>
</tr>
<tr>
<td>100S</td>
<td>0</td>
</tr>
</tbody>
</table>

Keterangan:
R : Rumput Gajah
K : Kulit kayu *A. mangium* sisa ekstrak tanin, perendaman NaOH 4%.

Lampiran 17. Analisis Sidik Ragam Rataan Produksi Gas Rumput Gajah dan Kulit Kayu pada Waktu Inkubasi 72 Jam

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2056.609</td>
<td>514.152</td>
<td>78.59**</td>
<td>3.48</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>65.42</td>
<td>6.542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>2122.029</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***) Berbeda sangat nyata (P < 0.01)
Uji Jarak Duncan Rataan Produksi Gas Rumpit Gajah dan Kulit Kayu pada Waktu Inkubasi 72 Jam

<table>
<thead>
<tr>
<th>No</th>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Superskrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100% R. Gajah</td>
<td>102.1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>90% R. Gajah, 10% Kulit kayu</td>
<td>93.6</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>80% R. Gajah, 20% Kulit kayu</td>
<td>85.2</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>70% R. Gajah, 30% Kulit kayu</td>
<td>76.1</td>
<td>D</td>
</tr>
<tr>
<td>5</td>
<td>60% R. Gajah, 40% Kulit kayu</td>
<td>69.5</td>
<td>D</td>
</tr>
</tbody>
</table>

Lampiran 18. Bahan Kimia untuk Buffer *In Vitro*

1. Larutan mikromineral
 1,32 gr CaCl$_2$. 2 H$_2$O
 1,0 gr Mn Cl$_2$. 4 H$_2$O
 0,1 gr CoCl$_2$. 6 H$_2$O
 0,8 gr FeCl$_3$. 6 H$_2$O
tambahkan H$_2$O sampai 10 ml.

2. Larutan buffer rumen
 7,8 gr NaHCO$_3$
tambahkan H$_2$O sampai 200 ml

3. Larutan makromineral
 5,7 gr NaHPO$_4$ anhydrous
 6,2 gr KH$_2$PO$_4$ anhydrous
 0,6 gr MgSO$_4$. 7 H$_2$O
tambahkan H$_2$O sampai 1000 ml.

4. Larutan pereduksi
 2,0 ml NaOH 1 N
 312,5 mg Na$_2$S . 9 H$_2$O
 47,5 ml H$_2$O