KAJIAN FORMULASI BUMBU CUMI-CUMI (*Loligo edulis*) KERTAS PADA BEBERAPA KOMBINASI PENGEPRESAN DAN PENGERINGAN OVEN

Oleh:

DEWI HARYUNI NOOR ROSLIM
C03496051

SKRIPSI

Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor

PROGRAM STUDI TEKNOLOGI HASIL PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2001
Ya Tuhan kami
Janganlah Engkau bukum kami karena lupa atau bersalah
Ya Tuhan kami
Janganlah Engkau bebanakan pada kami beban yang berat
Sebagaimana telah Engkau bebanakan kepada
Orang-orang sebelum kami
Ya Tuhan kami
Janganlah Engkau pukulkan kepada kami
Apa-apa yang tidak sanggup kami untuk menikulinya
Beri maaflah kami
Ampuni kami, dan
Rahmatilah kami
Engkauulah Penolong kami, maka
Tolonglah kami dari orang-orang yang membangah (kafir)
(QS. Al Baqra : 286)

(Umar bin Khattab)

Atas berkat rahmat Allah SWT
Kupерsembahkan karya ini kepada Papa dan Mama tercinta
Serta Kakak dan Adikku
RINGKASAN

Penelitian ini terdiri dari dua tahap, yaitu penelitian pendahuluan dan penelitian utama. Penelitian pendahuluan dilakukan untuk menentukan formulasi konsentrasi gula (5%, 10%, dan 15%) yang terbaik untuk produk cumi-cumi kertas rasa manis, dan konsentrasi bubuk cabai merah (3%, 5%, dan 7%) yang terbaik untuk produk cumi-cumi kertas rasa pedas. Sedangkan penelitian utama dilakukan untuk mendapatkan produk cumi-cumi kertas yang disukai dengan dua rasa yang berbeda (manis dan pedas), pada kombinasi teknik pengolahan yang tepat dengan memperhatikan faktor jenis cumi-cumi, lama pengeringan, dan tingkat pengepresan.

Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap pola faktorial dengan dua kali ulangan yang terdiri dari tiga faktor, yaitu faktor jenis cumi-cumi, lama pengeringan, dan tingkat pengepresan dengan selang kepercayaan 95%. Sedangkan uji statistik untuk organoleptik adalah statistik non parametrik menggunakan uji Kruskal Wallis yang dilanjutkan dengan uji multiple comparison.

Hasil penelitian pendahuluan menunjukkan bahwa untuk formulasi bumbu masing-masing produk yang dianggap dapat mewakili selera dan disukai panelis
adalah konsentrasi gula 15% untuk produk cumi-cumi kertas rasa manis, dan konsentrasi bubuk cabai merah 5% untuk produk cumi-cumi kertas rasa pedas.

Pada penelitian utama dari masing-masing perlakuan yang diberikan, dilakukan analisa mikrobioiologi, kimia, dan fisik terhadap kedua macam produk cumi-cumi kertas. Pada produk cumi-cumi kertas rasa manis, terdiri dari \(4 \times 10^2 - 9,15 \times 10^2\) koloni/gr (TPC), kapang-khamir (negatif), 179,92 -305,065 mgN/100 gr bahan (TVB), 6,945-12,855 % (kadar air), 0,43-0,5505 \(A_w\), 0,016-0,046 kg/mm\(^2\) (Tekstur/kekerasan). Sedangkan untuk produk cumi-cumi kertas rasa pedas terdiri dari \(4 \times 10^5 - 4,9 \times 10^5\) koloni/gr (TPC), kapang-khamir (negatif), 141,965-254,3 mgN/100gr bahan (TVB), 9,34-21,85 % (kadar air), 0,4895-0,661 \(A_w\), dan 0,017-0,046 kg/mm\(^2\) (Tekstur/kekerasan).

Cumi-cumi kertas terpilih diperoleh berdasarkan hasil penilaian uji organoleptik mutu hedonik dan penilaian umum yaitu untuk produk cumi-cumi kertas rasa manis pada perlakuan A1M37 (jenis cumi tawar buatan, lama pengeringan 35 menit pada suhu 100\(^\circ\)C, serta tingkat pengepresan dengan jarak renggang dua roll penggiling silinder pengepres sebesar 0,75 mm pada frekuensi pengepresan tujuh kali(L2P7)). Sedangkan, untuk produk cumi-cumi kertas rasa pedas perlakuan yang terbaik adalah A1P35 (jenis cumi tawar buatan, lama pengeringan 35 menit pada suhu 100\(^\circ\)C, serta tingkat pengepresan dengan jarak renggang dua roll penggiling silinder pengepres sebesar 0,70 mm pada frekuensi pengepresan lima kali (L1P5)).

Kriteria yang diperoleh pada masing-masing produk terpilih, diantaranya pada perlakuan A1M37 untuk warna (merah coklat), penampakan (utuh, rapi, permukaan kurang rata, ketebalan kurang rata), tekstur (agak liat, agak padat), aroma (agak harum, spesifik jenis, tanpa rasa tambahan, terasa bumbu), dan penilaian umum (disukai). Sedangkan, pada perlakuan A1M35 untuk warna (coklat kekuningan), penampakan (utuh, kurang rapi, permukaan rata, ketebalan rata), tekstur (agak liat, agak padat), aroma (agak harum, spesifik jenis, tanpa rasa tambahan, terasa bumbu), dan penilaian umum (disukai).

Produk cumi-cumi kertas rasa manis (A1M37) terpilih mempunyai kandungan air sebesar 8,05 %, protein 71,43 %, abu 6,70 %, lemak 2,14 %, kadar karbohidrat 19,72 %, kadar garam 2,6 %, \(A_w\) 0,545, TVB 264,98 mgN/100 gr bahan, TPC 5,2x10\(^2\) koloni/gr, dan kekerasan 0,016 kg/mm\(^2\). Sedangkan, untuk produk rasa pedas (A1P35) mempunyai kandungan air sebesar 9,34 %, protein 72,63 %, abu 5,88 %, lemak 2,20 %, karbohidrat 17,55 %, kadar garam 1,78 %, \(A_w\) 0,4895, TVB 205,29 mgN/100 gr bahan, TPC 1,35x10\(^5\) koloni/gr, dan kekerasan 0,0385 kg/mm\(^2\).
SKRIPSI

Judul Skripsi : Kajian Formulasi Bumbu Cumi-Cumi (Loligo edulis) Kertas pada Beberapa Kombinasi Penepisan dan Pengeringan Oven
Nama Mahasiswa : Dewi Haryuni Noor Roslim
NRP : C03496051
Program Studi : Teknologi Hasil Perikanan

Disetujui,

I. Komisi Pembimbing,

Ir. Rudy R. Nitibaskara, M.Sc
Ketua

Ir. Widi Trilaksani, M.Sc
Anggota

II. Fakultas Perikanan dan Ilmu Kelautan,

Ir. Ruddy Suwandi, MS, M. Phil
Ketua Program Studi

Dr. Ir. Indra Jaya, M.Sc
Pembantu Dekan I

Tanggal Lulus : 7 Juni 2001
RIWAYAT HIDUP

DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR TABEL</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>1. PENDAHULUAN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Tujuan</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3 Waktu dan Tempat Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>2. TINJAUAN PUSTAKA</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1 Cumi-cumi (Loligo sp)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Deskripsi cumi-cumi</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Klasifikasi dan jenis cumi-cumi</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Komposisi gizi cumi-cumi</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Pemanfaatan cumi-cumi</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2 Gula</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.3 Bubuk Cabai Merah</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.4 Bumbu</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.5 Pengeringan</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.6 Pemanggangan</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.7 Pengepresan</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.8 Pengaruh Pengolahan terhadap Nilai Gizi</td>
<td>16</td>
</tr>
<tr>
<td>3. METODOLOGI</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3.1 Bahan dan Alat</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3.2 Metode Pengolahan</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Penelitian pendahuluan</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Penelitian utama</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Pembuatan produk cumi-cumi kertas</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>3.2.4 Analisis produk</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2.4.1 Kadar air</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.2.4.2 Kadar abu</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3.2.4.3 Kadar protein</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3.2.4.4 Kadar lemak</td>
<td>24</td>
</tr>
</tbody>
</table>
3.2.4.5 Kadar karbohidrat ... 25
3.2.4.6 Kadar garam ... 25
3.2.4.7 Aktivitas air (A_w) .. 25
3.2.4.8 Tekstur atau kekerasan ... 26
3.2.4.9 Total Volatile Base (TVB) ... 26
3.2.4.10 Total Plate Count (TPC) ... 26
3.2.4.11 Total kapang-khamir ... 27
3.2.4.12 Uji organoleptik .. 27
3.2.5 Rancangan percobaan .. 28

4. HASIL DAN PEMBAHASAN ... 30
4.1 Penelitian Pendahuluan ... 30
 4.1.1 Warna ... 30
 4.1.2 Penampakan ... 31
 4.1.3 Tekstur .. 31
 4.1.4 Aroma ... 32
 4.1.5 Rasa ... 32
4.2 Penelitian Utama ... 36
 4.2.1 Kadar air ... 36
 4.2.2 Aktivitas air (A_w) .. 38
 4.2.3 Total Volatile Base (TVB) .. 41
 4.2.4 Total kapang-khamir ... 43
 4.2.5 Total Plate Count (TPC) .. 43
 4.2.6 Tekstur atau kekerasan .. 45
 4.2.7 Uji organoleptik ... 47
 4.2.7.1 Warna ... 47
 4.2.7.2 Penampakan ... 48
 4.2.7.3 Tekstur .. 48
 4.2.7.4 Aroma ... 49
 4.2.7.5 Rasa ... 49
 4.2.7.6 Penilaian umum ... 50
 4.2.8 Komposisi gizi produk terpilih dan kadar garam 52

5. KESIMPULAN DAN SARAN .. 55
 5.1 Kesimpulan ... 55
 5.2 Saran ... 56

DAFTAR PUSTAKA ... 57

LAMPIRAN ... 61
<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Komposisi kimia cephalopoda</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>Persentase kandungan air, protein. Lemak, abu, dan berat lemak dari jaringan otot mantel beberapa jenis cumi-cumi (squid)</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Formulasi bumbu cumi-cumi kertas rasa manis dan cumi-cumi kertas rasa pedas per 100 gram air</td>
<td>22</td>
</tr>
<tr>
<td>5.</td>
<td>Hasil penilaian rata-rata terhadap parameter uji organoleptik masing-masing perlakuan produk cumi-cumi kertas pada penelitian pendahuluan</td>
<td>33</td>
</tr>
<tr>
<td>6.</td>
<td>Nilai rata-rata jumlah TVB pada produk cumi-cumi kertas</td>
<td>42</td>
</tr>
<tr>
<td>7.</td>
<td>Rata-rata jumlah TPC pada produk cumi-cumi kertas</td>
<td>44</td>
</tr>
<tr>
<td>8.</td>
<td>Hasil penilaian rata-rata terhadap parameter uji organoleptik masing-masing perlakuan produk cumi-cumi kertas rasa manis pada penelitian utama</td>
<td>51</td>
</tr>
<tr>
<td>9.</td>
<td>Hasil penilaian rata-rata terhadap parameter uji organoleptik masing-masing perlakuan produk cumi-cumi kertas rasa manis pada penelitian utama</td>
<td>51</td>
</tr>
<tr>
<td>No</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Cumi-cumi (Loligo sp) ..</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Skema proses pembuatan produk cumi-cumi (Loligo edulis) kertas pada pada penelitian pendahuluan</td>
<td>20</td>
</tr>
<tr>
<td>3.</td>
<td>Skema proses pembuatan produk cumi-cumi (Loligo edulis) kertas pada pada penelitian utama</td>
<td>21</td>
</tr>
<tr>
<td>4.</td>
<td>Histogram nilai rata-rata uji organoleptik produk cumi-cumi kertas rasa manis pada penelitian pendahuluan</td>
<td>34</td>
</tr>
<tr>
<td>5.</td>
<td>Histogram nilai rata-rata uji organoleptik produk cumi-cumi kertas rasa pedas pada penelitian pendahuluan</td>
<td>35</td>
</tr>
<tr>
<td>6.</td>
<td>Histogram nilai rata-rata kadar air cumi-cumi kertas rasa manis</td>
<td>37</td>
</tr>
<tr>
<td>7.</td>
<td>Histogram nilai rata-rata kadar air cumi-cumi kertas rasa pedas</td>
<td>37</td>
</tr>
<tr>
<td>8.</td>
<td>Histogram nilai rata-rata aktivitas air (A_w) cumi-cumi kertas rasa manis</td>
<td>39</td>
</tr>
<tr>
<td>9.</td>
<td>Histogram nilai rata-rata aktivitas air (A_w) cumi-cumi kertas rasa pedas</td>
<td>40</td>
</tr>
<tr>
<td>10.</td>
<td>Histogram nilai rata-rata TVB cumi-cumi kertas rasa manis</td>
<td>41</td>
</tr>
<tr>
<td>11.</td>
<td>Histogram nilai rata-rata TVB cumi-cumi kertas rasa pedas</td>
<td>41</td>
</tr>
<tr>
<td>12.</td>
<td>Histogram nilai rata-rata log jumlah TPC cumi-cumi kertas rasa manis</td>
<td>44</td>
</tr>
<tr>
<td>13.</td>
<td>Histogram nilai rata-rata log jumlah TPC cumi-cumi kertas rasa pedas</td>
<td>44</td>
</tr>
<tr>
<td>14.</td>
<td>Histogram nilai rata-rata tekstur/kekerasan cumi-cumi kertas rasa manis</td>
<td>46</td>
</tr>
<tr>
<td>15.</td>
<td>Histogram nilai rata-rata tekstur/kekerasan cumi-cumi kertas rasa pedas</td>
<td>46</td>
</tr>
<tr>
<td>16.</td>
<td>Histogram nilai rata-rata uji organoleptik produk cumi-cumi kertas rasa manis pada penelitian utama</td>
<td>53</td>
</tr>
<tr>
<td>17.</td>
<td>Histogram nilai rata-rata uji organoleptik produk cumi-cumi kertas rasa pedas pada penelitian utama</td>
<td>54</td>
</tr>
<tr>
<td>Nomor</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Format uji organoleptik</td>
<td>61</td>
</tr>
<tr>
<td>2.</td>
<td>Hasil perhitungan kruskal wallis uji organoleptik pengaruh perlakuan</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>jenis cumi-cumi tawar buatan dan konsentrasi gula pada penelitian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pendahuluan</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Hasil perhitungan kruskal wallis uji organoleptik pengaruh perlakuan</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>jenis cumi-cumi tawar pasar dan konsentrasi gula pada penelitian pendahuluan</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Hasil perhitungan kruskal wallis uji organoleptik pengaruh perlakuan</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>jenis cumi-cumi tawar buatan dan konsentrasi bubuk cabai merah pada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>penelitian pendahuluan</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Hasil perhitungan kruskal wallis uji organoleptik pengaruh perlakuan</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>jenis cumi-cumi tawar pasar dan konsentrasi bubuk cabai merah pada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>penelitian pendahuluan</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Hasil perhitungan kruskal wallis uji organoleptik produk cumi-cumi kertas</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>rasa manis terhadap pengaruh perlakuan jenis cumi-cumi, pengepresan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dan lama pengeringan pada penelitian utama</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Hasil perhitungan kruskal wallis uji organoleptik produk cumi-cumi kertas</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>rasa pedas terhadap pengaruh perlakuan jenis cumi-cumi, pengepresan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dan lama pengeringan pada penelitian utama</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Contoh perhitungan uji lanjut multiple comparison</td>
<td>75</td>
</tr>
<tr>
<td>9.</td>
<td>Hasil analisa parameter kimia, fisik dan mikrobiologi cumi-cumi kertas</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>rasa manis</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Hasil analisa parameter kimia, fisik dan mikrobiologi cumi-cumi kertas</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>rasa pedas</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Hasil analisa ragam kadar air (%) cumi-cumi kertas rasa manis</td>
<td>76</td>
</tr>
<tr>
<td>12.</td>
<td>Hasil analisa ragam kadar air (%) cumi-cumi kertas rasa pedas</td>
<td>77</td>
</tr>
<tr>
<td>13.</td>
<td>Hasil analisa ragam aktivitas air (A_{w}) cumi-cumi kertas rasa manis</td>
<td>77</td>
</tr>
<tr>
<td>14.</td>
<td>Hasil analisa ragam aktivitas air (A_{w}) cumi-cumi kertas rasa pedas</td>
<td>78</td>
</tr>
<tr>
<td>15.</td>
<td>Hasil analisa ragam TVB (mgN/100 gr bahan) cumi-cumi kertas rasa manis</td>
<td>78</td>
</tr>
<tr>
<td>16.</td>
<td>Hasil analisa ragam TVB (mgN/100 gr bahan) cumi-cumi kertas rasa pedas</td>
<td>79</td>
</tr>
<tr>
<td>17.</td>
<td>Hasil analisa ragam log jumlah TPC cumi-cumi kertas rasa manis</td>
<td>79</td>
</tr>
<tr>
<td>18.</td>
<td>Hasil analisa ragam log jumlah TPC cumi-cumi kertas rasa pedas</td>
<td>80</td>
</tr>
<tr>
<td>19.</td>
<td>Hasil analisa tekstur/kekerasan cumi-cumi kertas rasa manis</td>
<td>80</td>
</tr>
<tr>
<td>20.</td>
<td>Hasil analisa tekstur/kekerasan cumi-cumi kertas rasa pedas</td>
<td>80</td>
</tr>
</tbody>
</table>
1. PENDAHULUAN

1.1 Latar Belakang

Berdasarkan hasil survei industri perikanan yang dilakukan oleh Tim Pengembangan Bisnis-Badan Pengkajian dan Pengembangan Teknologi (BPPT), terdapat beberapa indikasi adanya kendala-kendala dalam industrialisasi sektor perikanan sehingga potensi bisnis yang ada belum dapat dimanfaatkan secara optimal. Beberapa kendala tersebut diantaranya adalah pengembangan sumber daya manusia (SDM) bidang terkait yang relatif masih rendah, kebijakan pemerintah dibidang bisnis perikanan yang tidak konsisten serta dukungan inovasi teknologi dari lembaga riset yang masih rendah (Sriharjo, 2001). Padahal ketiga faktor tersebut merupakan faktor strategis yang memberikan sinergi bagi keberhasilan industrialisasi perikanan sehingga diperlukan kesatuan visi dari semua pihak dalam mengatasi kendala-kendala yang ada.

Untuk mengatasi kendala tersebut maka salah satu langkah awal dapat dilakukan suatu riset atau usaha pengembangan teknologi dengan inovasi terbaru sehingga minat masyarakat terhadap produk perikanan laut semakin besar. Salah satu cara yang dapat dilakukan adalah upaya pengembangan produk cumi-cumi (Loligo sp). Mengingat prospek dan pengembangannya yang besar, Indonesia perlu memperhatikan dan meningkatkan pendayagunaan sumber daya cephalopoda khususnya cumi-cumi. Cumi-cumi (Loligo sp) merupakan produk laut yang banyak terdapat di perairan Indonesia, namun tingkat konsumsi masyarakat masih relatif rendah, disebabkan harga yang relatif cukup tinggi untuk jenis-jenis tertentu dan keanekaragaman pengembangan produk masih relatif rendah.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Jumlah Produksi (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>14.088</td>
</tr>
<tr>
<td>1989</td>
<td>15.606</td>
</tr>
<tr>
<td>1990</td>
<td>15.262</td>
</tr>
<tr>
<td>1991</td>
<td>14.084</td>
</tr>
<tr>
<td>1992</td>
<td>18.365</td>
</tr>
<tr>
<td>1993</td>
<td>20.914</td>
</tr>
<tr>
<td>1994</td>
<td>26.216</td>
</tr>
<tr>
<td>1995</td>
<td>27.575</td>
</tr>
<tr>
<td>1996</td>
<td>29.167</td>
</tr>
<tr>
<td>1997</td>
<td>41.755</td>
</tr>
</tbody>
</table>

Sumber: Direktorat Jendral Perikanan (1999)

Cumi-cumi mempunyai kandungan protein yang tinggi dan kandungan lemak yang rendah sehingga daging cumi-cumi sangat cocok untuk menjaga agar berat badan tetap stabil. Daging cumi-cumi juga sangat baik bagi mereka yang sudah menginjak usia lanjut, dimana proses-proses metabolisme dalam tubuh cenderung mengalami gangguan, pencernaan makanan kurang berfungsi dengan baik, penyakit pada pembuluh darah jantung, serta penyumbatan pembuluh darah, dan sebagainya (Kreuzer, 1986).

Cumi-cumi kertas merupakan salah satu alternatif dalam rangka diversifikasi hasil-hasil perikanan. Produk ini merupakan camilan bagi setiap golongan masyarakat, dapat dikonsumsi baik tua dan muda, berprotein tinggi dan berkadar garam rendah, mudah dalam penyimpanannya karena merupakan produk kering yang awet dan tahan lama. Diharapkan pula produk ini dapat dijadikan salah satu riset dan inovasi baru yang cukup berpotensi dalam upaya bisnis industrialisasi sektor perikanan.

1.2 Tujuan Penelitian

Penelitian ini bertujuan untuk:
1. Mempelajari cara pembuatan produk cumi-cumi kertas.
2. Menentukan formulasi bumbu pada komposisi gula dan bubuk cabai merah untuk menghasilkan produk olahan cumi-cumi yang disukai.
3. Mengetahui teknik pengolahan yang tepat pada faktor pengepresan dan pengerengan.

1.3 Waktu dan Tempat Penelitian

2. TINJAUAN PUSTAKA

2.1 Cumi-cumi (*Loligo* sp)

2.1.1 Deskripsi cumi-cumi

Cephalopoda berasal dari kata *cephale* yang berarti kepala dan *podos* yang berarti kaki, sehingga cephalopoda berarti kaki yang berada di kepala. Cephalopoda yang hidup dimasa sekarang dibagi menjadi dua ordo, yaitu ordo tetrabanchiia dan ordo dibanchiia. Ordo tetrabanchiia mempunyai cangkang eksternal yang melingkar dalam satu bidang datar dan terbagi dalam sekat-sekat, tidak mempunyai kantung tinta, tentakelnya banyak, mata tanpa lensa, tidak mempunyai alat penghisap dan mempunyai 2 pasang insang, contohnya genus *Nautilus*. Sedangkan ordo dibanchiia mempunyai cangkang internal atau lenyap, sepasang insang, 8-10 tangan yang dilengkapi dengan alat penghisap, kantung tinta dan matanya mempunyai lensa (Suwignyo, 1989).

Tubuh cumi-cumi berbentuk kerucut yang dikelilingi oleh otot-otot mantel dengan sirip yang berbentuk segitiga pada bagian punggungnya. Dibagian belakang, mantel melekat pada tubuh, sedangkan bagian perut tidak melekat sehingga terdapat rongga mantel. Pada ujung mantel bagian perut terbuka dan disebut coliar yang dihubungkan dengan ujung leher oleh semacam tulang rawan sehingga memungkinkan efektifnya penutupan rongga mantel (Suwignyo, 1989).

Gambar 1. Cumi-cumi (*Loligo edulis*)

Cumi-cumi memiliki mantel terdiri dari kulit yang tebal, yang melindungi fungsi organ lainnya. Pada bagian bawah tubuhnya terdapat lubang-lubang berbentuk corong yang dinamakan funnel berguna untuk mengeluarkan air dari ruang mantel, juga berfungsi untuk memasukkan oksigen ke insangnya (Gunarso dan Purwangka, 1998).

Jenis-jenis cephalopoda terutama cumi-cumi yang hidup pada lapisan air tengah maupun pada lapisan dalam umumnya dilengkapi pula keistimewaan lain.
Mereka banyak mempunyai organ berpendar (bercahaya, bioluminesen) yang dikenal dengan fotofor. Fotofor ini berada dalam tubuh, atau dibawah lapisan kulitnya, bahkan ada yang memiliki pada bola mata maupun sekitar mata mereka (Gunarso dan Purwangka, 1998).

2.1.2 Klasifikasi dan jenis cumi-cumi

Menurut Hegner dan Engemann (1968), cumi-cumi dapat diklasifikasikan sebagai berikut:

Phylum : Molluska

Kelas : Cephalopoda

Sub Kelas : Coleoidea

Ordo : Decapoda

Sub Ordo : Teuthoidea

Famili : Loliginidae

Genus : *Loligo*

Spesies : *Loligo edulis*

a. *Loligo chinensis* Gray (1849)

Nama lain cumi-cumi ini adalah *L. formosana* ataupun *L. etheridgei*. Adapun nama umum atau nama dagangnya dikenal sebagai Mitre squid (Inggris), Calmar mitre (Francis) dan Calamar mitrado (Spanyol). Jenis cumi-cumi ini mencapai
panjang ukuran mantel 30 cm. Jenis cumi-cumi ini walau biasa mendiami laut berkedalaman 15-170 meter, dapat dipikat dengan cahaya, disebabkan sifat fototaksisnya yang sangat kuat.

b. *Loligo duvaceili* Orbigny (1848)

Nama lain cumi-cumi ini adalah *L. oshimae* ataupun *L. indica*. Jenis ini dikenal dalam dunia perdagangan atau nama umumnya adalah indian squid (Inggris, Calmar indien (Francis) ataupun Calmar indico (Spanyol). Ukuran maksimum yang dapat dicapai dalam hal berat adalah 1,5 kg, sedangkan ukuran panjang mantel 29 cm.

Cumi-cumi yang menghuni laut dengan kisaran kedalaman 30-170 meter ini umumnya bergabung-dalam kelompok-kelompok besar, utamanya pada masa pemijahan yang berlangsung manakala suhu perairan mulai berangsur naik.

c. *Loligo edulis* Hoyle (1885)

Nama ilmiah lainnya untuk jenis cumi-cumi yang satu ini adalah *Doryteuthis kensaki*, dalam dunia perdagangan biasa dikenal sebagai Swordtip squid (Inggris), Calmar epde (Francis) atau Calamar espode (Spanyol). Bobot maksimum mencapai 0,5 kg, sedangkan panjang mantel maksimumnya adalah 30 cm. Jenis cumi-cumi nertik ini pun biasa menghuni laut berkedalaman antara 30-170 meter. Pemijahan berlangsung pada bagian laut yang hangat berkedalaman antara 30-40 meter. Jenis ini biasa ditangkap dengan alat tangkap yang memanfaatkan lampu pikatan.

2.1.3 Komposisi gizi cumi-cumi

Kelas cephalopoda seperti cumi-cumi dan sotong biasanya dimanfaatkan sebagai bahan makanan oleh masyarakat. Dagingnya menarik perhatian karena terlihat bersih, licin dan mempunyai aroma yang khas serta mengandung nilai gizi yang cukup tinggi. Daging cumi-cumi selain mudah di cerna, juga mengandung hampir semua jenis asam amino essensial yang sangat diperlukan oleh tubuh manusia, disamping mengandung asam lemak tak jenuh (*poly unsaturated fatty
acid), termasuk omega-3 yang dapat menekan kandungan kolesterol dalam darah dan menekan proses-proses pembengkakan lebih lanjut pada pembuluh darah, seperti aterosclerosis dan penyakit kulit tertentu seperti eksem. Selain itu cumi-cumi juga memiliki beberapa kandungan mineral seperti fosfor dan kalsium yang berguna untuk pertumbuhan atau pembangunan tulang bagi anak (Kreuzer, 1986).

Tabel 2. Komposisi kimia cephalopoda

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Satuan</th>
<th>Gurita (O. vulgaris)</th>
<th>Short Finned Squid (L. illecebrosus)</th>
<th>Long Finner Squid (L. pealei)</th>
<th>Flying Squid (L. ommanstrephe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalori</td>
<td>Kkal</td>
<td>77</td>
<td>99</td>
<td>87</td>
<td>75</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>G</td>
<td>1.7</td>
<td>2.3</td>
<td>6.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Protein</td>
<td>G</td>
<td>14.8</td>
<td>17.3</td>
<td>13.2</td>
<td>15.3</td>
</tr>
<tr>
<td>Total lemak</td>
<td>G</td>
<td>0.80</td>
<td>1.3</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Asam lemak</td>
<td>G</td>
<td>0.22</td>
<td>0.52</td>
<td>0.16</td>
<td>-</td>
</tr>
<tr>
<td>jenuh</td>
<td></td>
<td>0.08</td>
<td>0.60</td>
<td>0.04</td>
<td>-</td>
</tr>
<tr>
<td>Asam lemak</td>
<td>G</td>
<td>0.26</td>
<td>0.83</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>Omega-3</td>
<td>G</td>
<td>0.21</td>
<td>0.60</td>
<td>0.24</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>I.U</td>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamin</td>
<td>Mg</td>
<td>0.12</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>Mg</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niasin</td>
<td>Mg</td>
<td>5.3</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>Mg</td>
<td>0.26</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>Meg</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>Penilethnic</td>
<td>acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalsium</td>
<td>Mg</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Fosfor</td>
<td>Mg</td>
<td>96</td>
<td>-</td>
<td>194</td>
<td>-</td>
</tr>
<tr>
<td>Besi</td>
<td>Mg</td>
<td>4.6</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Zinc</td>
<td>Mg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>Mg</td>
<td>-</td>
<td>-</td>
<td>176</td>
<td>-</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>Mg</td>
<td>465</td>
<td>-</td>
<td>-</td>
<td>226</td>
</tr>
</tbody>
</table>

Sumber: Nettleton (1985)

Tabel 3. Persentase kandungan air, protein, lemak, abu, dan berat asam lemak dari jaringan otot mantel beberapa jenis cumi-cumi (squid)

<table>
<thead>
<tr>
<th>Jenis</th>
<th>Air (%)</th>
<th>Protein (%)</th>
<th>Lemak (%)</th>
<th>Abu (%)</th>
<th>C-20:5 omega-3</th>
<th>C-22:6 omega-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todarodes pacificus</td>
<td>76.6 – 78.0</td>
<td>19.9 – 20.6</td>
<td>1,88 – 1,90</td>
<td>1,57 – 1,59</td>
<td>15,9</td>
<td>51,3</td>
</tr>
<tr>
<td>Ommastrephes bartramii</td>
<td>77,1 – 94,8</td>
<td>20,6 – 23,0</td>
<td>1,33 – 1,56</td>
<td>1,60 – 1,92</td>
<td>15,4</td>
<td>47,4</td>
</tr>
<tr>
<td>Nototodarus sloani</td>
<td>77,1</td>
<td>20,2</td>
<td>1,67</td>
<td>1,74</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Illex argentinus</td>
<td>78,8</td>
<td>18,2</td>
<td>2,03</td>
<td>1,71</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Loligo opalescens</td>
<td>77,0</td>
<td>19,6</td>
<td>2,74</td>
<td>1,62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Illex illecebrosus</td>
<td>79,0</td>
<td>18,0</td>
<td>1,00</td>
<td>1,00</td>
<td>15,8</td>
<td>37,1</td>
</tr>
</tbody>
</table>

Sumber: Kreuzer (1986)

Cumi-cumi mempunyai kandungan protein yang cukup tinggi yaitu nomor dua setelah udang dan berkisar antara 9.8-12 %. Bahkan untuk *Loligo vulgaris* dapat berkisar antara 14.9-19.3 % (Muljanah, 1982).

Menurut Takahashi (1965) rasio bagian tubuh ikan yang dapat dimakan dibandingkan keseluruhan tubuhnya rata-rata mencapai 40 - 70 %, sedangkan untuk jenis cumi-cumi sebesar 80 % yang terdiri dari 50 % bagian mantel, 30 % bagian lengan dan sisanya 20 % dibuang. Cumi-cumi juga memiliki kandungan minyak sebesar 1 - 1.5 % dan kandungan air sekitar 77 - 80 %.

2.1.4 Pemanfaatan cumi-cumi

2.2 Gula

Adanya glukosa, sukrosa, pati dan lain-lain dapat meningkatkan cita rasa pada bahan makanan. Misalnya sukrosa menimbulkan rasa manis, pati
menimbulkan rasa khusus pada makanan karena tekstur yang dipunyainya, demikian juga bila gula dipanaskan atau bereaksi dengan asam amino akan terbentuk warna coklat yang membuat bahan lebih menarik (Winarno, 1991).

2.3 Bubuk Cabai Merah

Cabai memiliki rasa pedas yang disebabkan oleh kandungan capsaicin dan dihidrocapsaicin sebanyak 1,5 % (w/w). Selain itu pada cabai juga terdapat karotenoid (capsanthin, capsorubin, carotene, dan lutein) sebesar 0,1-0,5 %, lemak (9-17%), protein (12-15%), vitamin A dan C (Lukmana, 1994).

Bubuk cabai merah merupakan buah cabai merah yang dikeringkan hingga menjadi bubuk, dan memiliki kandungan zat gizi per 100 gr bahan yang terdiri dari 311 kalori, 15.9 gr protein, 6.2 gr lemak, 61.8 gr karbohidrat, 160 mg kalsium, 370 mg fosfor, 2.3 mg besi, 576 SI vitamin A, 0.04 mg Vitamin B, 50 mg Vitamin C, dan 10 g air (Setiadi, 1987).

Warna merah pada cabai disebabkan oleh adanya pigmen yang terdiri dari campuran karotenoid sebanyak 0.1-0.5 % untuk cabai merah. Karotenoid merupakan senyawa yang apabila mengalami pemanasan proteinnya akan terdenaturasi (Winarno, 1991).

2.4 Bumbu

Bumbu atau rempah-rempah adalah bahan yang berasal dari tumbuhan yang biasa dicampurkan ke dalam berbagai makanan untuk memberikan flavor dan dapat membangkitkan selera makan (Somaatmadja, 1985). Selain itu menurut Winarno (1991) bumbu juga dapat meningkatkan mutu seperti aroma, warna, tekstur dan lain-lain pada waktu pengolahan makanan.

Bumbu yang digunakan dalam pembuatan cumi-cumi kertas adalah sebagai berikut:

1. Bawang putih

Bawang putih (Allium sativum L.) berfungsi sebagai penambah aroma dan untuk meningkatkan cita rasa produk yang dihasilkan. Bawang putih merupakan bahan alami yang biasa ditambahkan ke dalam bahan makanan atau produk lain sehingga diperoleh aroma yang khas guna meningkatkan selera makanan (Palungkun dan Budhiarti, 1995). Seperti bumbu masakan lainnya, bawang putih
harus digunakan dengan hati-hati karena adanya bau yang kuat dan rasa yang kurang disukai bila digunakan secara berlebihan (Farrel, 1990).

Bawang putih yang utuh tidak menimbulkan bau atau rasa yang spesifik. Namun apabila teriris akan terjadi perubahan kimia, yaitu enzim allinase memecahkan allin menjadi allicin, suatu zat yang menyebabkan timbulnya rasa pada umbinya (Ashari, 1995). Allicin yang terbentuk ini berperan memberikan aroma bawang putih dan merupakan salah satu zat aktif yang bersifat anti bakteri, selain itu bawang putih terdapat scordinin, senyawa kompleks thioglisidin yang bersifat antioksidan (Palungkun dan Budhiarti, 1995).

2. Bawang merah

3. Merica

Merica (Piper nigrum L.) merupakan rempah-rempah yang sering digunakan dalam pengolahan pangan. Merica biasanya ditambahkan pada bahan makanan sebagai penyedap masakan dan sangat digemari karena memiliki dua sifat penting yaitu rasa dan aroma yang pedas. Kedua sifat tersebut disebabkan kandungan bahan kimia organik yang terdapat pada merica. Rasa yang pedas disebabkan adanya zat piperin dan piperanin (Rismunandar, 1993).

4. Kunyit

Kunyit (Curcuma domestica Val.) temasuk famili Zingiberaceae memiliki kandungan minyak atsiri sebesar 5 %, terdiri dari turmeron, borneol, cineol, cineol, felandren, kurkumin dan Zingeron (Farrel, 1990).
Menurut Muchtadi (1992) minyak Curcumin mengandung 60 % "turmerone". Salah satu komponen lain ialah minyak "Zingiberene" 25 %, yang keseluruhannya memberi bau yang khas, yaitu bau kunyit. Sifat-sifat minyak curcumin, ialah merupakan bahan antioksidan dan antibakteri. Warna kuning dari curcumin, diluar negeri dimanfaatkan sebagai zat pewarna masakan, yaitu masakan daging, pewarna minyak, lemak, sup, asinan, dan sebagainya. Di Indonesia, kunyit banyak dimanfaatkan untuk penyedap sekaligus pewarna masakan telur, daging, ikan, nasi kuning, dan sebagainya.

5. Jeruk nipis

Jeruk nipis (Citrus aurantifolia swingle) merupakan jenis buah yang banyak mengandung air dan mempunyai rasa yang sangat masam dan mengandung vitamin C yang tinggi serta aroma yang sangat sedap. Pemanfaatan jeruk nipis cukup luas antara lain adalah sebagai bahan obat tradisional, perawatan kecantikan, penyedap makanan, menambah rasa segar pada minuman serta untuk menghilangkan bau anyir pada bahan pangan (Sarwono, 1982).

6. Garam

Garam dipergunakan manusia sebagai salah satu metode pengawetan pangan yang pertama dan masih dipergunakan secara luas mengawetkan berbagai macam makanan. Penggunaan garam dianjurkan tidak terlalu banyak karena akan menyebabkan terjadinya penggumpalan atau salting out dan rasa produk menjadi asin. (Buckle et al., 1987). Garam pada konsentrasi tertentu berfungsi sebagai penambah cita rasa pada bahan pangan (Soeparno, 1994).

2.5 Pengeringan

Pengeringan adalah suatu metode untuk mengeluarkan atau menghilangkan sebagian air dari suatu bahan dengan menggunakan energi panas. Pada umumnya kandungan air bahan dikurangi sampai batas tertentu sehingga pertumbuhan bakteri atau mikroorganisme dapat dihentikan (Winarno, 1991). Selain itu pula pengeringan dapat didefinisikan sebagai perpindahan panas dan uap air secara simultan yang memerlukan energi panas untuk menguapkan kandungan air yang dipindahkan dari permukaan bahan yang dikeringkan oleh media pengering yang biasanya berupa panas (Taib et. al., 1988).
Faktor-faktor yang mempengaruhi kecepatan pengeritingan ikan (Legendre, 1955 dalam Wibawa, 1996) adalah:

a. Kelembaban udara

Udara yang kering akan lebih cepat mengeritingkan ikan daripada udara yang lembab. Karena udara yang kering mampu menyerap air dari dalam tubuh ikan.

b. Suhu udara

c. Kecepatan udara

Kecepatan udara yang mengalir atau bertiup disekitar tempat pengeriting ikan sangat berpengaruh terhadap kecepatan proses pengeritingan. Lingkungan yang udaranya tidak mengalir atau mengalir dengan lambat kurang menguntungkan untuk pengeritingan. Oleh karena itu, diusahakan tempat pengeritingan yang bebas dari hambatan bagi mengalirnya udara.

d. Keadaan ikan

Sifat fisik dan kimia dari ikan yaitu bentuk, ukuran, komposisi dan keadaan air awal sangat berpengaruh terhadap kecepatan proses pengeritingan. Ikan yang berukuran besar dan tebal akan membutuhkan waktu pengeritingan relatif lebih lama dibandingkan dengan ikan yang berukuran tipis dan kecil. Demikian pula halnya dengan ikan yang mengandung lemak tinggi atau berkadar air awal tinggi akan membutuhkan waktu pengeritingan cukup lama. Hal ini karena lemak dapat menghambat air keluar dari tubuh ikan.

Secara garis besar pengeritingan dapat dilakukan dengan dua cara, yaitu pengeritingan secara alami (natural drying) dan pengeritingan buatan (artificial drying). Pengeritingan secara alami dapat dilakukan dengan cara menjemur dibawah sinar matahari (sun drying) sedangkan pengeritingan secara buatan dilakukan dengan menggunakan alat pengering (Taib et. al., 1988).
Pengeringan ikan dapat dilakukan dengan tiga cara (Moeljanto, 1992) yaitu:

1. Pengeringan Tradisional
 Cara ini menerapkan pemakaian proses sinar matahari yang dilakukan secara tradisional. Usaha pengeringan ini sangat tergantung pada keadaan cuaca secara alami. Dalam proses ini ikan dijemur dalam keadaan terbuka atau langsung berhubungan dengan sinar matahari.

2. Pengeringan dengan alat Pengering Tenaga Surya
 Prinsip alat ini adalah mengefisienkan energi sinar matahari dan menciptakan aliran udara sedemikian rupa sehingga waktu yang dibutuhkan untuk mengeringkan ikan lebih cepat dan tidak tergantung pada keadaan cuaca.

3. Pengeringan dengan alat pengering mekanik
 Jenis dan bentuk alat pengering mekanik bermacam-macam dengan tingkat efisiensi yang berbeda-beda tergantung pada disain dan konstruksi serta bahan yang digunakan sebagai sumber panas. Dengan menggunakan alat ini proses pengeringan dapat dikendalikan dan diperoleh tingkat kekeringan yang lebih seragam.

Makanan yang diolah dengan cara pengeringan akan mempunyai beberapa keuntungan, yaitu makanan mempunyai bobot yang lebih ringan, produk kering memerlukan tempat yang lebih sedikit dari aslinya, tidak membutuhkan suhu penyimpanan yang khusus tapi ada batasan pada suhu penyimpanan maksimal untuk masa simpan yang lebih lama (Buckle et al., 1987).

2.6 Pemanggangan

Pada dasarnya pemanggangan ikan merupakan gabungan aktivitas penggaraman, pengeringan dan pengasapan. Proses pemanggangan menyebabkan turunnya kadar air, naiknya kadar garam dan tertinggalnya bahan-bahan pembentuk asap pada permukaan ikan. Selain dapat memperpanjang masa simpan ikan, pemanggangan juga akan menimbulkan rasa dan aroma yang khas (Cutting, 1965).

Berdasarkan suhu pengasapan dikenal dua macam pengasapan yaitu pengasapan panas dan pengasapan dingin. Pada pengasapan dingin, suhu normal

2.7 Pengepresan

Pengepresan adalah proses penekanan pada bahan untuk mengeluarkan atau mengurangi sebagian kandungan air dan minyak yang terdapat dalam bahan. Pengepresan dapat menurunkan kadar air dari 70% menjadi 50% dan kandungan minyak sampai 5%. Hasil pengepresan berupa pres cake dan cairan (Kompianj, 1982 dalam Tasmaniar, 2000).

Roller pressing hampir sama dengan roller mil, yaitu tenaga pengepresan dilakukan dengan melewatkkan bahan yang akan dipres diantara roller. Tipe alat ini
yang sederhana digunakan untuk mengeluarkan nira dari tebu, dimana permukaan roller mempunyai alur. Variasi lain dari roller pressing adalah roller yang dilengkapi dengan pisau yang digunakan untuk pengepresan bahan yang berbentuk bubur (pulp).

Efisiensi pengepresan tergantung beberapa faktor, antara lain hasil tegangan pada fase padat, prioritas ruang pres, viskositas cairan yang dipres dan tenaga penekan yang digunakan (Idrial, 1987).

2.8 Pengaruh Pengolahan terhadap Nilai Gizi

Pengolahan pangan yang memanfaatkan panas merupakan salah satu cara paling penting yang telah dikembangkan untuk meningkatkan kelezatan makanan. Proses pemanasan yang bertujuan untuk memperpanjang umur simpan adalah pengukusan, pasteurisasi dan sterilisasi. Sedangkan proses yang bertujuan untuk meningkatkan kelezatan makanan adalah pemasakan (Lund, 1989).

Penggunaan panas dalam pengolahan bahan pangan dapat pula mengakibatkan protein ataupun beberapa asam amino mengalami perubahan struktur alami. Reaksi yang terjadi antara protein, asam-asam amino dan amin dengan gula pereduksi, aldehid dan keton menyebabkan terjadinya pencoklatan
(reaksi Maillard). Reaksi ini sangat dipengaruhi oleh kandungan air, pH, oksigen, logam, fosfat, belerang dioksida, dan inhibitor lainnya. Namun demikian, reaksi pencoklatan diperlukan pada bahan pangan tertentu untuk mendapatkan aroma dan cita rasa yang dikehendaki. Dalam produk lain, warna dan baursa yang terbentuk mungkin menjadi tidak sangat menyenangkan (deMan, 1997).
3. METODOLOGI

3.1 Bahan dan Alat

Bahan baku yang digunakan dalam penelitian ini adalah cumi-cumi (Loligo edulis) kering tawar dan cumi-cumi (Loligo edulis) segar yang di keringkan. Bumbu yang digunakan dalam pembuatan produk adalah garam, bawang merah, bawang putih, lada, kunyit, jeruk nipis, gula pasir dan bubuk cabai merah.

Bahan kimia dan bahan untuk pengujian mikrobiologis yang diperlukan untuk analisa yaitu asam sulfat, tablet kjeldahl, asam borat, asam klorida, Indikator, diethyl eter, kertas saring, kapas, natrium hidroksida, kalium nitrat, potassium hidroksida, petroleum eter, dietil eter, fenolftalin, larutan potassium kromat, Larutan buffer asetat, natrium agar dan Potato Dextrosa Agar (PDA).

Peralatan yang digunakan dalam penelitian ini adalah pemanggang, oven, roller pressure. Alat-alat untuk analisa kimia yaitu alat ekstraksi soxhlet lengkap dengan kondensor dan labu lemak, alat pemanas listrik atau penangas uap, timbang an analitik, pemanas kjeldahl, alat distilasi lengkap dengan erlenmeyer, buret, cawan desikator, penjepit cawan, cawan pengabuan, tanur pengabuan, dan mesin instron Food Testing Instrument model 1140 tipe Kramer Shear Cell.

3.2 Metode Pengolahan

Penelitian ini terdiri dari dua tahap yaitu tahap pertama sebagai penelitian pendahuluan dan dilanjutkan dengan tahap kedua yaitu penelitian utama.

3.2.1 Penelitian pendahuluan

Penelitian pendahuluan bertujuan untuk menentukan konsentrasi gula (5%, 10% dan 15%) yang terbaik untuk produk cumi-cumi kertas rasa manis, dan konsentrasi bubuk cabai merah (3%, 5% dan 7%) yang terbaik untuk produk cumi-cumi kertas rasa pedas terhadap cumi-cumi tawar buatan dan cumi-cumi tawar pasar. Uji organoleptik (Lampiran 1) dilakukan terhadap produk meliputi warna, penampakan, tekstur, aroma dan rasa untuk mendapatkan masing-masing konsentrasi bumbu terbaik.
3.2.2 Penelitian utama

Penelitian utama bertujuan untuk mendapatkan produk cumi-cumi kertas yang disukai dan bermutu dengan dua rasa yang berbeda, yaitu dengan konsentrasi terpilih dari penelitian pendahuluan pada penambahan gula untuk panelis yang menyukai rasa manis, dan penambahan bubuk cabai merah untuk panelis yang menyukai rasa pedas pada teknik pengolahan yang tepat. Perlakuan yang diberikan ada tiga faktor, yaitu faktor jenis cumi-cumi yang terdiri dari dua taraf yaitu cumi-cumi tawar buatan (A1) dan cumi-cumi tawar pasar (A2); faktor lama pengeringan yang terdiri dari dua taraf yaitu 25 menit pada 100°C (2) dan 35 menit pada 100°C (3); dan faktor pengepresan yang terdiri dari dua taraf, yaitu jarak renggang antara dua roll penggiling silinder sebesar 0,70 mm dengan frekuensi pengepresan lima kali (LIP5), dan jarak renggang antara dua roll penggiling silinder sebesar 0,75 mm dengan frekuensi pengepresan tujuh kali (L2P7). Uji yang dilakukan dalam penelitian ini adalah uji organoleptik yang meliputi warna, penampilan, tekstur, aroma dan penilaian umum terhadap produk seperti tertera pada Lampiran 1.

3.2.3 Pembuatan produk cumi-cumi kertas

Keterangan:
L1P5 = Teknik pengepresan dengan jarak renggang antara dua roll penggiling silinder pengepresan sebesar 0,70 mm dan frekuensi pengepresan sebanyak lima kali.
L2P7 = Teknik pengepresan dengan jarak renggang antara dua roll penggiling silinder pengepresan sebesar 0,75 mm dan frekuensi pengepresan sebanyak tujuh kali.

Gambar 2. Skema proses pembuatan produk cumi-cumi (Loligo edulis) kertas pada penelitian pendahuluan
Keterangan:
L1P5 = Teknik pengepresan dengan jarak renggang antara dua roll penggiling silinder pengepresan sebesar 0,70 mm dan frekuensi pengepresan sebanyak lima kali.
L2P7 = Teknik pengepresan dengan jarak renggang antara dua roll penggiling silinder pengepresan sebesar 0,75 mm dan frekuensi pengepresan sebanyak tujuh kali.

Gambar 3. Skema proses pembuatan produk cumi-cumi (Loligo edulis) kertas pada penelitian utama
Tabel 4. Formulasi bumbu cumi-cumi kertas rasa manis dan cumi-cumi kertas rasa pedas per 100 gram air

<table>
<thead>
<tr>
<th>Bahan</th>
<th>Cumi-cumi Kertas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rasa Manis (gram)</td>
<td>Rasa Pedas (gram)</td>
</tr>
<tr>
<td>Air</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bawang putih</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Bawang merah</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Kunyit</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lada</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Garam</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Gula pasir</td>
<td>5,10 dan 15**</td>
<td>10</td>
</tr>
<tr>
<td>Jeruk nipis</td>
<td>2 sendok makan*</td>
<td>2 sendok makan*</td>
</tr>
<tr>
<td>Bubuk cabe merah</td>
<td>-</td>
<td>3,5 dan 7**</td>
</tr>
</tbody>
</table>

*secuil selera
**dalam persen (%)

3.2.4 Analisis produk

Beberapa analisa dilakukan terhadap tahapan-tahapan proses. Tahap pertama dilakukan analisa terhadap cumi-cumi segar yang disiangi kemudian dikerlingkan, serta cumi-cumi kering tawar yang diperoleh dari pasar. Analisa tersebut terdiri dari analisa kadar air, kadar garam, aktivitas air (A_w) dan TVB.

Tahap kedua dilakukan analisa terhadap produk akhir cumi-cumi kertas rasa manis dan cumi-cumi kertas rasa pedas. Analisa yang dilakukan terdiri dari analisa kadar air, aktivitas air (A_w), TPC, kapang-khamir, TVB dan tekstur/kekerasan.

Tahap ketiga dilakukan analisa terhadap produk cumi-cumi kertas rasa manis dan produk rasa pedas yang paling disukai panelis. Analisa yang dilakukan adalah analisa proksimat dan analisa kadar garam.

3.2.4.1 Kadar air (AOAC, 1984)

Perhitungan nilai kadar air sebagai berikut:

\[
\text{Kadar Air} \, (\%) = \frac{B - C}{B - A} \times 100 \%
\]

Keterangan:
A = Berat kering cawan (gr)
B = Berat kering cawan dan sampel awal (gr)
C = Berat kering cawan dan sampel setelah dikeringkan (gr)

3.2.4.2 Kadar abu (AOAC, 1984)

Analisa kadar abu dilakukan dengan cara sampel dibakar dalam tungku pengabuan pada suhu 650°C hingga diperoleh abu. Cawan abu porselein disiapkan, dipanaskan dalam oven kemudian didinginkan dalam desikator dan ditimbang. Sebanyak 2 gr sampel yang telah dirajang kecil-kecil dimasukkan ke dalam cawan, kemudian bakar diatas api bunsen setelah tidak berasap dimasukkan kedalam tanur pengabuan. Secara bertahap suhu tungku dinaikkan sampai mencapai 650°C dan diabukan sampai diperoleh abu yang berwarna putih keabu-abuan. Selanjutnya cawan yang berisi abu didinginkan dalam desikator dan ditimbang. Perhitungan analisa kadar abu, yaitu:

\[
\text{Kadar Abu} \, (\%) = \frac{C - A}{B - A} \times 100 \%
\]

Keterangan:
A = Berat kering cawan (gr)
B = Berat kering cawan dan sampel awal (gr)
C = Berat kering cawan dan sampel hasil pengabuan (gr)

3.2.4.3 Kadar protein (Apriyantono et al., 1989)

Cara penetuan kadar protein adalah sebagai berikut:

a. Destruksi

- Sampel ditimbang sebanyak 0.3 gram
- Satu buah tablet kjeltab dimasukkan ke dalam tabung tersebut
- Ditambahkan larutan H₂SO₄ sebanyak 10 ml
- Tabung yang berisi larutan tersebut diletakkan pada alat pemanas dengan suhu 410°C
- Destruksi dilakukan hingga larutan bening
b. Destilasi
 1. Persiapan
 - Kran air dibuka kemudian periksa alkali dan air dalam tank
 - Tabung dan erlenmeyer yang berisi akuades diletakkan pada tempatnya
dan ditutup rapat pintu pengaman tabung
 - Tombol power ditekan, kemudian tombol steam ditekan
 - Ditunggu beberapa lama sampai air dalam tabung mendidih
 - Steam dimatikan dengan menekan tombolnya
 - Tabung kjeltec dan erlenmeyer dikeluarkan dari alat kjeltec system
 2. Sampel
 - Tabung berisi sampel yang telah didestruksi diletakkan pada tempatnya
sambil memasukkan ke dalamnya dan tabung dipasang rapat-rapat
 - Erlenmeyer yang berisi asam borat diletakkan pada tempatnya sambil
memasukkan selang ke dalamnya
 - Destilasi dilakukan sampai volume larutan dalam erlenmeyer yang berisi
asam borat mencapai 200 ml
 c. Titrasi
 - HCl 0.1 N dimasukkan ke dalam buret
 - Titrasi dilakukan hingga warna larutan berubah menjadi pink
 - Volume HCl yang digunakan dicatat
 Perhitungan total nitrogen:

 \[
 \% N = \left(ml\ \text{HCl} - ml\ \text{HCl blanko} \right) \times \frac{N\ \text{HCl} \times 14,007 \times 100 \%}{mg\ \text{sampel}}
 \]

 % Kadar protein = % N x 6,25 (faktor koreksi)

3.2.4.4 Kadar lemak (AOAC, 1984)

 Dua gram sampel dibungkus dalam kertas saring dan dimasukkan kedalam
selongsong lemak, kemudian ditutup dengan kapas bebas lemak. Selongsong lemak
tersebut dimasukkan kedalam ruang ekstraktor tabung soxhlet kemudian disiram
dengan pelarut lemak (petroleum benzene). Labu lemak dipanaskan pada suhu
40 °C dan ekstraksi dilakukan selama 16 jam. Kemudian pelarut lemak dalam labu
lemak di destilasi sampai semua pelarut lemak menguap. Sewaktu destilasi, pelarut akan tertampung diruang ekstraktor, pelarut tersebut dikeluarkan sehingga tidak turun ke labu lemak. Destilasi dilanjutkan sampai semua pelarut dalam labu lemak menguap. Kemudian labu lemak dikerlingkan dalam oven pada suhu 105 °C. Labu lemak ditimbang setelah didinginkan dalam desikator. Perhitungan kadar lemak, yaitu:

\[
\text{Kadar lemak (\%) = } \frac{\text{Berat labu dengan lemak - berat labu tanpa lemak}}{\text{Berat sampel (gram)}} \times 100 \%
\]

3.2.4.5 Kadar karbohidrat (Apriyantono et al., 1989)

Penentuan kadar karbohidrat dilakukan dengan cara perhitungan kasar (carbohydrate by difference) yaitu:

\[
\% \text{ Karbohidrat} = 100 \% - \% (\text{abu + lemak + protein + air})
\]

3.2.4.6 Kadar garam (AOAC, 1984)

Sebanyak 5 gram sampel diabukan terlebih dahulu. Kemudian abu tersebut dicuci dengan aquades dan dipindahkan kedalam tabung erlenmeyer 250 ml. Tambahkan larutan potassium kromat 5% sebanyak 1 ml dan dititrasi dengan larutan perak nitrat 0,1 ml. Titik akhir titrasi tercapai apabila timbul warna jingga yang pertama. Perhitungan kadar garam, yaitu:

\[
\text{Kadar garam (\%) = } \frac{\text{titer (ml)} \times \text{Molaritas perak nitrat} \times 5,84}{\text{berat sampel (gram)}}
\]

3.2.4.7 Aktivitas air (A_w) (Muchtadi, 1989)

Sampel yang telah dihaluskan dan homogen dimasukkan dalam cawan pengukuran A_w. Setelah cawan ditutup dan dikunci, A_w meter dijalankan. Sebelum digunakan untuk pengukuran, terlebih dahulu A_w meter dikalibrasi dengan menggunakan garam NaCl (suhu 30°C dan A_w 0.7509).
3.2.4.8 Tekstur/kekerasan (Ranganna, 1986)

Kekerasan adalah gaya yang dibutuhkan untuk menekan suatu bahan atau produk sehingga terjadi perubahan bentuk yang diinginkan. Pengukuran kekerasan dilakukan dengan Instron Food Testing Instrumen Model Tabel 1140 menggunakan Kramer Sear Cell.

3.2.4.9 Total Volatile Base (TVB) (AOAC, 1984)

TVB diukur dengan metode Conway. Sampel sebanyak 25 gram ditambahkan dengan 45 ml TCA 7 %, kemudian diblender selama 1 menit. Larutan kemudian disaring dengan menggunakan kertas saring, larutan jernih (filtrat) yang diperoleh diambil sebanyak 1 ml dimasukkan kedalam outer chamber dalam keadaan posisi tutup cawan hampir tertutup, kemudian ditambah kalium karbonat jenuh serta asam borat selanjutnya cawan ditutup rapat dan diinkubasi pada suhu 37°C selama 2 jam atau selama 24 jam pada suhu kamar. Setelah diinkubasi pada bagian inner chamber dititrasi dengan HCl sampai warna berubah menjadi merah muda. Perhitungan TVB, yaitu:

\[
TVB \text{ (mg.N \%) = (ml sampel - ml blanko) x 80 mgN/100 gr}
\]

3.2.4.10 Total Plate Count (TPC) (Fardiaz, 1987)

Prosedur kerja penghitungan jumlah bakteri adalah sebagai berikut: pembuatan media agar dengan pencampuran 23 g Nutrient Agar ke dalam 1 liter aquades ke dalam gelas piala. Larutan yang terbentuk dipanaskan sambil diaduk sampai mendidih sehingga semua agar terlarut. Sterilisasi dilakukan terhadap larutan agar beserta peralatan lain yang akan digunakan seperti: pipet, blender dan larutan agar dalam autoclaf selama 15 menit. Larutan agar disimpan dalam pemanas air bersuhu 45°C Pembaatan larutan pengencer dengan pencampuran 8.5 g NaCl ke dalam 1000 ml aquades. Larutan pengencer kemudian disterilisasi.

Pembuatan larutan sampel dengan mencampurkan 1 gr bahan (cumi-cumi) dan dihancurkan bersama larutan pengencer sebanyak 9 ml sampai larutan menjadi homogen. Pengenceran dilakukan dengan mengambil 1 ml larutan sampel yang sudah homogen dengan pipet steril, lalu dimasukkan ke dalam tabung reaksi berisi

3.2.4.11 Total kapang-khamir (Fardiaz, 1987)

Pengujian kapang-khamir dilakukan menggunakan metode tuang pada media Potato Dextrosa Agar (PDA). Sejumlah 10 gram contoh dilakukan dalam 90 ml larutan pengencer (garam fisiologis) sehingga didapatkan pengenceran 10⁻¹. Dari larutan contoh tersebut dipipet sebanyak 1 ml dan dmasukkan ke dalam tabung pengencer 9 ml untuk memperoleh pengenceran 10⁻². Begitu seterusnya sampai pada tingkat pengenceran yang diinginkan. Selanjutnya dari masing-masing tabung pengencer dipipet 1 ml contoh dan dituangkan dalam cawan petri yang telah steril. Kemudian ke dalam cawan dituangkan 15 ml media PDA hingga merata. Setelah media membeku cawan disimpan pada inkubator selama 48 jam pada suhu 37°C.

3.2.4.12 Uji organoleptik

Uji organoleptik yang dilakukan pada penelitian pendahuluan adalah uji kesukaan oleh 20 orang panelis dengan dua kali ulangan. Parameter yang dinilai meliputi warna, penampakan, tekstur, aroma dan rasa dengan skala hedonik. Skala penilaian yang diberikan adalah sebagai berikut: sangat suka (5), suka(4), biasa (3), kurang suka (2), dan tidak suka (1).

Sedangkan pada penelitian lanjutan dilakukan uji organoleptik mutu hedonik dan penilaian umum terhadap produk cumi-cumi kertas. Parameter yang diuji meliputi warna, penampakan, tekstur, aroma, rasa, dan penilaian umum. Format isian organoleptik dapat dilihat pada Lampiran 1.
3.2.5 Rancangan percobaan

Rancangan percobaan yang digunakan dalam penelitian ini adalah Rancangan Acak Lengkap pola faktorial dengan dua kali ulangan. Terdiri dari 3 faktor, yaitu faktor jenis cumi 2 taraf, faktor pengepresan 2 taraf dan faktor pengeringan 2 taraf. Selang kepercayaan yang digunakan adalah 95% untuk menyatakan perbedaan nyata. Data yang telah dianalisa apabila berbeda nyata dilenjutkan dengan uji lanjut Duncan. Uji lanjut Duncan digunakan untuk mengetahui masing-masing perluakan yang berbeda nyata. Model yang digunakan dalam analisis ini menurut Gaspersz (1991) adalah sebagai berikut:

\[
Y_{ijk} = \mu + A_i + P_j + O_k + (AP)_{ij} + (AO)_{ik} + (PO)_{jk} + (APO)_{ijk} + \epsilon_{ijkl}
\]

Keterangan :

- \(Y_{ijkl}\) = Cumi-cumi kertas pada percobaan ke-1, yang memperoleh kombinasi dari taraf jenis cumi ke-i, taraf pengepresan ke-j, dan taraf lama pengeringan ke-k.
- \(\mu\) = Nilai rata-rata cumi kertas yang sesungguhnya
- \(A_i\) = pengaruh aditif dari taraf jenis cumi ke-i
- \(P_j\) = pengaruh aditif dari taraf pengepresan ke-j
- \(O_k\) = Pengaruh aditif dari taraf lama pengeringan ke-k
- \((AP)_{ij}\) = pengaruh interaksi taraf jenis cumi ke-i dan taraf pengepresan ke-j
- \((AO)_{ik}\) = Pengaruh interaksi taraf jenis cumi ke-i dan taraf lama pengeringan ke-k
- \((PO)_{jk}\) = Pengaruh interaksi taraf pengepresan ke-j dan taraf lama pengeringan ke-k
- \((APO)_{ijk}\) = Pengaruh interaksi taraf jenis cumi ke-i, taraf pengepresan ke-j, dan taraf lama pengeringan ke-k
- \(\epsilon_{ijkl}\) = Pengaruh galat percobaan cumi kertas ke-l, yang memperorah taraf jenis cumi ke-i, taraf pengepresan ke-j, dan taraf lama pengeringan ke-k

Hasil organoleptik diuji dengan menggunakan statistik non parametrik, yaitu uji Kruskal Wallis dengan rumus sebagai berikut (Steel dan Torrie, 1993):

\[
H = \left[\frac{12}{n(n+1)} \sum \frac{R^2}{ni} \right] - 3(n+1)
\]

\[
H' = \frac{H}{\text{Pembagi}}
\]

\[
\text{Pembagi} = 1 - \frac{\Sigma T}{(n-1)(n-1)}
\]
Keterangan :
\[N \quad = \quad \text{Jumlah data} \]
\[N_i \quad = \quad \text{Banyaknya pengamatan dalam perlakuan ke-i} \]
\[R_i \quad = \quad \text{Jumlah ranking dalam perlakuan ke-i} \]
\[T \quad = \quad \text{Banyaknya pengamatan yang seri dalam kelompok} \]
\[H' \quad = \quad \text{H terkoreksi} \]

Jika hasil uji Kruskal Wallis menunjukkan berbeda nyata, selanjutnya dilakukan uji *Multiple Comparision* dengan rumus sebagai berikut:

\[
|R_i - R_j| > Z \cdot \frac{(N+1)k}{\sqrt{6}}
\]

Keterangan :
\[R_i \quad = \quad \text{Rata-rata ranking perlakuan ke-i} \]
\[R_j \quad = \quad \text{Rata-rata ranking perlakuan ke-j} \]
\[K \quad = \quad \text{Banyaknya ulangan} \]
\[N \quad = \quad \text{Jumlah total data} \]
4. HASIL DAN PEMBAHASAN

4.1 Penelitian Pendahuluan

Penelitian pendahuluan dilakukan untuk mendapatkan produk cumi-cumi kertas dengan dua macam rasa yang berbeda yaitu rasa manis dan rasa pedas. Rasa manis didapatkan dari penambahan konsentrasi gula pasir yang terdiri dari 5% (B1), 10% (B2), dan 15% (B3), sedangkan rasa pedas didapatkan dari penambahan bubuk cabai merah yang terdiri dari 3% (C1), 5% (C2) dan 7% (C3). Untuk menghasilkan kedua macam produk tersebut digunakan bahan baku cumi-cumi segar yang dikeritingkan atau cumi-cumi tawar buatan (A1) dan cumi-cumi tawar pasar (A2).

4.1.1 Warna

Hasil uji organoleptik terhadap parameter warna pada penelitian pendahuluan untuk produk cumi-cumi kertas rasa manis pada jenis cumi tawar buatan dihasilkan nilai rata-rata berkisar antara 3,175 sampai 3,85 (antara biasa sampai suka) (Gambar 4). Nilai rata-rata tertinggi adalah perlakuan A1B2. Hal ini berarti cumi-cumi tawar buatan dengan konsentrasi gula 10 % paling banyak disukai panelis dari segi parameter warna dibandingkan dengan jenis lainnya. Uji kruskal wallis nilai organoleptik warna untuk rasa manis menunjukkan hasil ketiga macam konsentrasi gula pasir (5%, 10%, dan 15%) tidak berbeda nyata (Lampiran 2 dan 3).

Sedangkan untuk uji organoleptik pada parameter warna produk cumi-cumi kertas rasa pedas diperoleh nilai rata-rata berkisar antara 2,775 sampai 3,95 (antara biasa sampai suka). Gambar 5 menunjukkan bahwa perlakuan A1C1 (cumi-cumi tawar buatan dengan konsentrasi bubuk cabai merah 3%) memiliki nilai tertinggi sebesar 3,95 dibandingkan perlakuan jenis lainnya. Hal ini menunjukkan bahwa untuk produk cumi-cumi kertas rasa pedas pada jenis cumi tawar buatan pada parameter warna lebih banyak disukai panelis. Uji kruskal wallis nilai organoleptik terhadap warna untuk rasa pedas menunjukkan hasil ketiga macam konsentrasi bubuk cabai merah tidak berbeda nyata (Lampiran 4 dan 5).
4.1.2 Penampakan

4.1.3 Tekstur

Suka tidaknya panelis terhadap tekstur cumi-cumi dipengaruhi oleh renyah atau liat (keras) produk tersebut. Tekstur yang disukai panelis adalah cumi-cumi
yang bertekstur agak renyah dan tidak terlalu liat, sedangkan yang tidak disukai panelis adalah tekstur yang keras (sangat liat).

4.1.4 Aroma

Penerimaan panelis terhadap parameter aroma memberikan nilai rata-rata berkisar antara 2,85 sampai 3,35 yang berarti tingkat kesukaan panelis biasa terhadap aroma produk cumi-cumi kertas rasa manis (Gambar 4). Nilai rata-rata tertinggi diberikan panelis untuk cumi-cumi dengan perlakuan A1B1 dan A1B3 yaitu 3,35. Uji kruskal wallis masing-masing perlakuan terhadap parameter aroma menunjukkan tidak berpengaruh nyata (Lampiran 2 dan 3).

4.1.5 Rasa

Produk cumi-cumi kertas rasa pedas pada parameter rasa uji organoleptik berkisar antara 3,225–4,5 (biasa sampai sangat suka). Perlakuan dengan konsentrasi bubuk cabai merah 5 % terhadap cumi-cumi tawar buatan maupun tawar pasar memiliki nilai tertinggi dibandingkan dengan konsentrasi bubuk cabai merah lainnya masing-masing nilai yaitu 4,4 dan 4,5 bahwa panelis menyukai rasa produk tersebut.
Dari hasil uji kruskal wallis (Lampiran 2, 3, 4, dan 5) terhadap produk cumi-cumi kertas rasa manis maupun cumi-cumi kertas rasa pedas pada parameter rasa didapatkan hasil berbeda nyata. Hasil uji lanjut multiple comparison untuk cumi-cumi rasa manis menunjukkan hasil berbeda nyata pada perlakuan antara A1B1 dengan A1B3 (jenis cumi tawar buatan pada konsentrası gula pasar 5% dengan 15%). Sedangkan hasil uji lanjut multiple comparison untuk cumi-cumi rasa pedas menunjukkan hasil berbeda nyata pada perlakuan antara A1C1 dengan A1C3 (jenis cumi tawar buatan pada konsentrası bubuk cabai merah 3% dengan 7%) dan perlakuan A1C1 dengan A1C2 (jenis cumi tawar buatan pada konsentrası bubuk cabai merah 3% dengan 5%).

Hasil yang diperoleh secara keseluruhan dari parameter warna, penampakan, tekstur, aroma dan rasa (Tabel 5) menunjukkan bahwa untuk cumi-cumi dengan perlakuan konsentrasi gula 15% (Produk rasa manis) dan konsentrası bubuk cabai merah 5% (produk rasa pedas) baik pada cumi-cumi tawar buatan maupun tawar pasar memiliki nilai tertinggi untuk kelima parameter tersebut. Dengan demikian dapat diambil kesimpulan, untuk cumi-cumi dengan perlakuan penambahan konsentrası gula 15% dan perlakuan penambahan bubuk cabai merah pada konsentrası 5% adalah yang terbaik pada penelitian pendahuluan ini, sehingga kedua macam konsentrası tersebut dapat mewakili selera panelis pada cumi-cumi tawar buatan maupun tawar pasar setelah melalui uji kesukaan.

Tabel 5. Hasil penilaian rata-rata terhadap parameter uji organoleptik masing-masing perlakuan produk cumi-cumi kertas pada penelitian pendahuluan.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gula Pasir</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cumi-cumi tawar buatan</td>
<td></td>
<td></td>
<td>Cumi-cumi tawar pasar</td>
<td></td>
<td></td>
<td>Cumi-cumi tawar buatan</td>
<td></td>
<td></td>
<td>Cumi-cumi tawar pasar</td>
</tr>
<tr>
<td></td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>3%</td>
<td>5%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>Warna</td>
<td>3,725</td>
<td>3,85</td>
<td>3,75</td>
<td>3,175</td>
<td>3,25</td>
<td>3,55</td>
<td>3,75</td>
<td>3,775</td>
<td>3,5</td>
<td>3,375</td>
</tr>
<tr>
<td>Penampakan</td>
<td>3,6</td>
<td>3,675</td>
<td>3,6</td>
<td>2,925</td>
<td>3,175</td>
<td>3,3</td>
<td>3,65</td>
<td>3,575</td>
<td>3,35</td>
<td>3,375</td>
</tr>
<tr>
<td>Rasa</td>
<td>3,3</td>
<td>3,675</td>
<td>3,925</td>
<td>3,4</td>
<td>3,375</td>
<td>4,3</td>
<td>3,725</td>
<td>4,4</td>
<td>3,5</td>
<td>3,225</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>3,46</td>
<td>2,905</td>
<td>3,61</td>
<td>3,125</td>
<td>3,275</td>
<td>3,525</td>
<td>3,645</td>
<td>3,84</td>
<td>3,45</td>
<td>3,255</td>
</tr>
</tbody>
</table>

Keterangan:
1 = tidak suka 2 = kurang suka 3 = biasa 4 = suka 5 = sangat suka
Gambar 4. Histogram nilai rata-rata uji organoleptik produk cumi-cumi kertas rasa manis pada penelitian pendahuluan.
Gambar 5. Histogram nilai rata-rata uji organoleptik produk cumi-cumi kertas rasa pedas pada penelitian.
4.2 Penelitian Utama

Penelitian utama dilakukan untuk mengetahui teknik pengolahan yang tepat dengan kombinasi penggorengan dan lama pengeringan oven untuk mendapatkan produk cumi-cumi kertas rasa manis (M) dengan konsentrasi gula pasir 15% dan cumi-cumi kertas rasa pedas (P) dengan konsentrasi bubuk cabai merah 5%. Perlakuan yang diberikan terdiri dari tiga faktor, yaitu faktor jenis cumi-cumi yang terdiri dari dua taraf, yaitu cumi-cumi tawar buatan (A1) dan cumi-cumi tawar pasar (A2), faktor lama pengeringan oven yang terdiri dari dua taraf yaitu 25 menit pada 100ºC (2) dan 35 menit pada 100ºC (3), serta faktor pengepresan yang terdiri dari dua taraf yaitu jarak renggang antara dua roll penggiling silinder sebesar 0,70 mm dengan frekuensi pengepresan lima kali (L1P5) (5), dan jarak renggang antara dua rol penggiling silinder sebesar 0,75 mm dengan frekuensi pengepresan tujuh kali (L2P7) (7). Uji yang dilakukan adalah uji organoleptik meliputi warna, penampakan, tekstur, aroma, rasa dan penilaian umum. Kemudian dilakukan penetapan analisa proksimat dan kadar garam terhadap kedua produk cumi-cumi kertas terbaik yang dihasilkan pada uji organoleptik penelitian utama. Sebelumnya dilakukan analisa terhadap kedua produk cumi-cumi kertas pada masing-masing perlakuan meliputi analisa kadar air, aktivitas air (A_w), TVB, kapang-khamir, TPC dan tekstur.

4.2.1 Kadar air

Kadar air yang tinggi dalam suatu bahan pangan akan mengakibatkan mudahnya bakteri dan kapang-khamir untuk berkembang biak, sehingga akan terjadi berbagai perubahan. Selain kerusakan mikrobiologis, kadar air juga mempengaruhi sifat-sifat fisik (kekerasan dan kekeringan) dan sifat-sifat fisiko-kimia (Buckle et al., 1987).

Karakteristik sifat fisik bahan baku cumi-cumi segar memiliki nilai kadar air sebesar 83,80 %, sedangkan cumi-cumi segar yang dikeringkan (cumi-cumi kering...
tawar buatan) memiliki nilai kadar air sebesar 31,25% dan cumi-cumi kering tawar pasar sebesar 22,35 %.

Hasil pengamatan pada penelitian utama menunjukkan bahwa nilai rata-rata kadar air untuk produk cumi-cumi tawar buatan rasa manis berkisar antara 6,945–10,055 % dan untuk cumi-cumi tawar pasar berkisar antara 10,55–13,04 %. Histogram nilai rata-rata kadar air produk cumi-cumi kertas rasa manis dapat dilihat pada Gambar 6. Hasil analisa ragam menunjukkan bahwa kadar air dipengaruhi oleh perlakuan jenis cumi-cumi (A), tingkat pengepresan (P), lama pengeringan oven (O), dan interaksi antara tingkat pengepresan dan lama pengeringan. Kemudian di lakukan analisa lebih lanjut dengan uji lanjut Duncan yang menunjukkan berbeda nyata pada jenis cumi-cumi tawar buatan dengan tawar pasar, pada tingkat pengepresan L1P5 dengan L2P7, dan lama pengeringan oven 25 menit dan 35 menit (Lampiran 11). Hal ini menunjukkan bahwa semakin tipis suatu bahan dan semakin lama pengeringan maka semakin rendah jumlah kadar air bahan tersebut.

Gambar 6. Histogram nilai rata-rata kadar air cumi-cumi kertas rasa manis

Gambar 7. Histogram nilai rata-rata kadar air cumi-cumi kertas rasa pedas

Semakin tipis (dipres) suatu bahan semakin rendah kadar air bahan tersebut. Untuk mengeluarkan air dari bahan pangan adalah melalui pengepresan atau pemerasan, penguapan, dan penyaringan (Winarno, 1993). Demikian pula dengan lama pengeringan, semakin lama pengeringan semakin banyak air yang diuapkan dari permukaan bahan dengan menggunakan panas dan mengakibatkan kadar air menjadi rendah. Untuk memperpanjang daya tahan suatu bahan, sebagian air dalam bahan harus dihilangkan dengan beberapa cara tertangung dari jenis bahan. Umumnya dilakukan pengeringan, baik dengan penjemuran atau dengan alat pengering buatan (Taib et al., 1988).

Pada produk cumi-cumi kertas rasa manis bila dibandingkan dengan produk cumi-cumi kertas rasa pedas rata-rata memiliki nilai kadar air lebih rendah, Hal ini dapat diduga bahwa penambahan gula mempengaruhi kadar air yang terdapat pada produk tersebut.

Daya larut yang tinggi dari gula, dapat mengikat air suatu bahan dan mengurangi keseimbangan kelembaban relatif (ERH), sehingga gula dapat dipakai dalam pengawetan bahan pangan (Buckle et al., 1987). Pengolahan dan pengawetan bahan pangan bertujuan untuk memperpanjang daya simpan diantaranya dengan mengurangi sejumlah air yang tersedia bagi pertumbuhan mikroorganisme. Salah satu cara pengawetan adalah dengan kombinasi penambahan garam, gula atau humektan serta pengeringan (Purnomo, 1995).

4.2.2 Aktivitas air (A_w)

Aktivitas air merupakan petunjuk akan adanya sejumlah air dalam bahan pangan yang dibutuhkan bagi pertumbuhan mikroorganisme Aktivitas air juga berkaitan erat dengan adanya air dalam bahan pangan (Purnomo, 1995). Nilai A_w
cumi-cumi segar yang dikerlingkan (cumi tawar buatan) sebesar 0,752 dan cumi tawar pasar sebesar 0,6955. Cumi-cumi ini kemudian diolah dalam bentuk cumi-cumi kertas.

Pengukuran A_w cumi-cumi kertas penting artinya, karena nilai A_w dapat mengontrol laju dan jenis reaksi perusakan bahan dan merupakan suatu indeks stabilitas dan kualitas bahan pangan. Tujuan pengukuran A_w adalah untuk mengetahui keaktifan air yang terdapat dalam bahan pangan sehingga dapat mengurangi kemungkinan terjadinya pertumbuhan mikroba.

Nilai rata-rata A_w produk cumi tawar buatan rasa manis berkisar antara 0,4755–0,5505 dan produk cumi tawar pasar berkisar antara 0,43–0,453. Histogram nilai rata-rata A_w produk cumi-cumi kertas untuk rasa manis dapat dilihat pada Gambar 8. Hasil uji lanjut Duncan menunjukkan bahwa jenis cumi-cumi tawar buatan dengan cumi tawar pasar berbeda nyata pada nilai A_w (Lampiran 13).

Gambar 8. Histogram nilai rata-rata aktivitas air (A_w) cumi-cumi kertas rasa manis
Gambar 9. Histogram nilai rata-rata aktivitas air (A_w) cumi-cumi kertas rasa pedas

Kapang membutuhkan A_w untuk germinasi spora aseksual, dan pertumbuhannya relatif lebih rendah dibandingkan bakteri. Nilai A_w minimal untuk germinasi spora adalah 0,62. Pada beberapa kapang diantaranya Mucor, Rhizopus, dan Botrytis membutuhkan nilai A_w sekitar 0,93 untuk pertumbuhannya. Untuk jenis Aspergillus membutuhkan nilai A_w sebesar 0,98 dan Rhizopus berkisar 0,995 - 0,98. Pada A_w dibawah 0,62 semua pertumbuhan kapang akan terhambat (Fardiaz, 1989).

Pada penelitian ini, produk cumi-cumi kertas rasa manis maupun rasa pedas rata-rata memiliki nilai A_w di bawah 0,62 maka kemungkinan untuk tumbuhnya mikroba kecil sekali hanya pada perlakuan A2P27 dan A2P25 memiliki nilai A_w diatas 0,62. Ragi osmoofilik yang dapat tumbuh pada A_w minimum 0,60 (Adnan, 1982), sehingga perlu di lakukan pengolahan lebih lanjut untuk menghambat pertumbuhan mikroba seperti pengeritingan, pemanasan dan sebagainya (Fardiaz, 1989). Faktor yang dapat mempengaruhi tumbuhnya mikroba adalah suhu, pH dan substrat (Adnan, 1982).

4.2.3 **Total Volatile Base (TVB)**

Nilai TVB sangat erat kaitannya dengan proses kemunduran mutu. Semakin tinggi nilai TVB, pada umumnya semakin mundur nilai mutu produk tersebut, karena itu TVB sering digunakan sebagai salah satu parameter untuk mengetahui derajat kemunduran mutu.

Gambar 10. Histogram nilai rata-rata TVB cumi-cumi kertas rasa manis

Gambar 11. Histogram nilai rata-rata TVB cumi-cumi kertas rasa pedas

Total Volatile Bases merupakan salah satu metode pengukuran untuk menentukan tingkat kerusakan bahan pangan yang disebabkan oleh pemecahan protein dan turunannya menghasilkan senyawa volatil sehingga menyebabkan aroma busuk seperti amoniak, TMA, histamin, dan H₂S (Sikorski, 1990). Namun demikian TVB dapat juga dijadikan salah satu pengukuran nilai kualitas bahan yang telah mengalami proses pemanasan dan pembekuan (Botta, 1994).

Pada penelitian ini TVB, untuk cumi-cumi segar adalah 47,89 mg/100 gr bahan yaitu dibawah nilai standar kesegaran ikan sebesar
30 mgN/100 gr bahan atau dibawah standar kesegaran cumi-cumi sekitar 45 mgN/100 gr bahan (Sikorski, 1990). Hal ini karena pada saat cumi-cumi setelah ditangkap tidak langsung diukur nilai kesegarannya dan mengalami penundaan selama beberapa jam sehingga mengakibatkan mutu cumi-cumi semakin menurun.

Cumi-cumi yang sudah diolah menjadi produk cumi-cumi kertas memiliki nilai TVB lebih besar dari nilai TVB bahan segarnya. Untuk produk cumi-cumi kertas rasa manis nilai TVB berkisar antara 179,92–305,065 mg/100 gr bahan, dan untuk cumi-cumi kertas rasa pedas nilai TVB berkisar antara 141,965–254,3 mg/100 gr bahan. Nilai TVB yang dihasilkan pada produk ini masih memenuhi standar atau kisaran produk cumi-cumi kering sekitar 284,44 mg/100 gr bahan (Priono et al., 1986). Histogram nilai TVB untuk cumi-cumi kertas rasa manis dan pedas terdapat pada Gambar 10 dan 11.

Tabel 6. Nilai rata-rata jumlah TVB pada produk cumi-cumi kertas

<table>
<thead>
<tr>
<th>Produk</th>
<th>TVB (mg/100 gr bhn)</th>
<th>TVB (mg/100 gr bhn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manis</td>
<td></td>
<td>Pedas</td>
</tr>
<tr>
<td>A1M35</td>
<td>233,84</td>
<td>A1P35</td>
</tr>
<tr>
<td>A1M27</td>
<td>305,065</td>
<td>A1P27</td>
</tr>
<tr>
<td>A1M37</td>
<td>264,98</td>
<td>A1P37</td>
</tr>
<tr>
<td>A2M25</td>
<td>220,25</td>
<td>A2P25</td>
</tr>
<tr>
<td>A2M35</td>
<td>179,92</td>
<td>A2P35</td>
</tr>
<tr>
<td>A2M27</td>
<td>246,03</td>
<td>A2P27</td>
</tr>
<tr>
<td>A2M37</td>
<td>205,61</td>
<td>A2P37</td>
</tr>
</tbody>
</table>

Hasil uji lanjut Duncan menunjukkan bahwa jenis cumi tawar buatan dengan cumi tawar pasar; tingkat pengepresan L1P5 dengan L2P7; dan lama penerangan oven 25 menit dengan 35 menit berbeda nyata pada nilai TVB dan tidak berbeda nyata di antara interaksi pada tiap perlakuan yang diberikan (Lampiran 15).

Sedangkan untuk cumi-cumi kertas rasa pedas pada jenis cumi tawar buatan dengan tawar pasar, serta lama penerangan 25 menit dan 35 menit menunjukkan hasil berbeda nyata pada nilai TVB yang dihasilkan berdasarkan uji lanjut Duncan (Lampiran 16).

Proses pemanasan pada proses pengolahan produk cumi-cumi kertas mengakibatkan denaturasi protein atau perubahan besar dalam struktur alami tetapi tidak melibatkan perubahan dalam urutan asam amino. Pemanasan juga
mengakibatkan hilangnya sistin dan lisin bersamaan dengan timbulnya senyawa volatil hidrogen sulfida dan amoniak (Priestley, 1979).

Timbulnya senyawa volatil pada bahan akibat dari proses pemanasan ditandai dengan besarnya jumlah TVB pada produk yang dihasilkan. Besarnya nilai TVB pada bahan juga berkorelasi pada aroma khas cumi-cumi, yaitu keluarnya aroma yang spesifik.

4.2.4 Total kapang-khamir

Kerusakan mikrobiologis pada makanan ditandai dengan timbulnya kapang, kebusukan, lendir, terjadinya perubahan warna dan sebagainya. Kapang menyerang bahan yang banyak mengandung pektin, pati dan selulosa, sedangkan khamir menyerang bahan-bahan yang banyak mengandung gula (Winarno, 1993).

Dari penelitian ini tidak ditemui adanya kapang-khamir diduga selama proses pengolahan masih terjaga sanitasi dan hygiene bahan dan peralatan yang digunakan, sehingga kemungkinan untuk tumbuh kapang-khamir sangat kecil.

Beberapa faktor yang ikut berperan serta dalam pertumbuhan mikroorganisme meliputi suplai zat tinggi, waktu, suhu, air, pH, tersedianya oksigen dan aktivitas air. Khamir dapat tumbuh dan berkembang biak pada nilai A_w 0,87-0,91 (Purnomo, 1995) dan perubahan kapang akan terhambat pada A_w 0,62 (Fardiaz, 1989).

4.2.5 Total Plate Count (TPC)

Perhitungan Total Plate Count (TPC) bertujuan untuk menghitung semua mikroba yang tumbuh dalam produk. Adanya bakteri dalam bahan pangan dapat mengakibatkan pembusukan, menimbulkan penyakit yang ditularkan melalui makanan dan terjadinya fermentasi. (Buckle et al., 1987).

Nilai rata-rata log jumlah TPC untuk produk cumi-cumi kertas rasa manis, cumi-cumi tawar buatan berkisar antara 2,6-2,96 atau 3,6x10² – 9,7x10² (koloni/gr) dan tidak jauh berbeda dengan cumi-cumi tawar pasar dengan log jumlah TPC berkisar antara 2,55-2,94 atau 3,2x10² – 9,1x10² (koloni/gr).

Pada produk cumi-cumi kertas rasa pedas, log jumlah TPC (Gambar 13) lebih banyak mendominasi pada cumi-cumi tawar pasar berkisar antara 5,6-5,69 atau 3,9x10⁷ – 5,6x10⁸ (koloni/gram) dibandingkan dengan cumi-cumi tawar buatan

Gambar 12. Histogram nilai rata-rata log jumlah TPC (koloni/gram) cumi-cumi kertas rasa manis

Gambar 13. Histogram nilai rata-rata log jumlah TPC (koloni/gram) cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Produk manis</th>
<th>Jumlah TPC (koloni/gram)</th>
<th>Log jumlah TPC</th>
<th>Produksi pedas</th>
<th>Jumlah TPC (koloni/gram)</th>
<th>Log jumlah TPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M25</td>
<td>5,6×10^2</td>
<td>2,75</td>
<td>A1P25</td>
<td>1,555×10^5</td>
<td>5,19</td>
</tr>
<tr>
<td>A1M27</td>
<td>9,15×10^2</td>
<td>2,96</td>
<td>A1P27</td>
<td>4,75×10^5</td>
<td>5,66</td>
</tr>
<tr>
<td>A1M35</td>
<td>4×10^2</td>
<td>2,60</td>
<td>A1P35</td>
<td>1,35×10^5</td>
<td>5,13</td>
</tr>
<tr>
<td>A1M37</td>
<td>5,2×10^2</td>
<td>2,72</td>
<td>A1P37</td>
<td>1,445×10^5</td>
<td>5,16</td>
</tr>
<tr>
<td>A2M25</td>
<td>4,6×10^2</td>
<td>2,66</td>
<td>A2P25</td>
<td>4,6×10^5</td>
<td>5,66</td>
</tr>
<tr>
<td>A2M27</td>
<td>8,66×10^2</td>
<td>2,94</td>
<td>A2P27</td>
<td>4,9×10^5</td>
<td>5,89</td>
</tr>
<tr>
<td>A2M35</td>
<td>3,55×10^2</td>
<td>2,55</td>
<td>A2P35</td>
<td>4×10^5</td>
<td>5,6</td>
</tr>
<tr>
<td>A2M37</td>
<td>4,4×10^2</td>
<td>2,64</td>
<td>A2P37</td>
<td>4,15×10^5</td>
<td>5,6</td>
</tr>
</tbody>
</table>
4.2.6 Tekstur atau kekerasan

Tekstur dan sifat-sifat fisik suatu bahan pangan yang meliputi gaya, deformasi dan waktu merupakan parameter yang penting untuk merancang alat proses (pengolahan), memenuhi syarat pengepakkan (kemasan), serta kondisi penyimpanan (Wirakartakusumah et al., 1992).

Pengukuran tekstur dilakukan dengan menggunakan Instron Table Model 1140, bertujuan untuk melihat pengaruh perlakuan terhadap kekerasan secara objektif. Hasil yang diperoleh dapat dibandingkan dengan analisa organoleptik kenyamanan yang bersifat subyektif. Kekerasan didefinisikan sebagai gaya yang dibutuhkan untuk menekan suatu bahan atau produk sehingga terjadi perubahan bentuk yang diinginkan (Ranganna, 1986).

Pada Gambar 14 menunjukkan bahwa nilai kekerasan produk cumi-cumi kertas rasa manis berkisar antara 0,016 - 0,046 kg/mm². Hasil analisis ragam menunjukkan bahwa kekerasan tidak dipengaruhi oleh ketiga perlakuan yang diberikan, artinya tingkat kekerasan dari semua produk cumi-cumi kertas rasa manis maupun produk cumi-cumi kertas rasa pedas tidak berbeda nyata (Lampiran 19 dan 20). Sedangkan, nilai rata-rata produk cumi-cumi kertas rasa pedas berkisar antara 0,017-0,445 kg/mm² (Gambar 14).

Selama pemasakan terjadi empat mekanisme pokok terhadap tekstur bahan pangan yaitu: (1) enzim proteolitik endogenous dinonaktifkan, (2) denaturasi termal jaringan ikat mengakibatkan keempukan, (3) terjadi denaturasi protein kontraktil yang berakibat pengerasan, (4) turunnya WHC (Water Holding Capacity), kekurangan cairan seperti air, lemak, dan terjadi penyusutan diameter dan panjang sel serta peningkatan densitas (Wirakartakusumah et al., 1992).

Gambar 14. Histogram nilai rata-rata tekstur/kekerasan cumi-cumi kertas rasa manis

Gambar 15. Histogram nilai rata-rata tekstur/kekerasan cumi-cumikertas rasa pedas
4.2.7 Uji organoleptik

Nilai organoleptik merupakan faktor yang penting untuk mengetahui penerimaan konsumen terhadap suatu produk makanan. Penerimaan uji organoleptik yang dilakukan terhadap produk cumi-cumi kertas meliputi uji mutu pada parameter warna, penampakan, tekstur, aroma, rasa dan penilaian umum konsumen terhadap produk.

4.2.7.1 Warna

Penentuan mutu bahan makanan pada umumnya tergantung dari beberapa faktor seperti cita rasa, tekstur dan nilai gizi. Tetapi sebelum faktor lain dipertimbangkan secara visual faktor warna tampil lebih dahulu dan sangat menentukan (Winarno, 1991).

Kriteria yang digunakan dalam uji organoleptik penelitian utama pada parameter warna untuk produk cumi-cumi kertas rasa manis yaitu kuning kecoklatan (5), coklat kekuningan (4), merah kecoklatan (3), coklat kehitaman (2) dan hitam gosong (1), sedangkan untuk cumi-cumi rasa pedas yaitu kuning kecoklatan (5), coklat kemerahan (4), merah kecoklatan (3), coklat kehitaman (2) dan hitam gosong (1).

Reaksi pencoklatan dapat terjadi pada produk yang mengalami pemanasan atau penyimpanan. Pencoklatan pada proses pengolahan cumi-cumi kertas terjadi setelah mengalami proses pemanasan yang membuat produk lebih menarik. Terbentuknya warna tersebut melalui reaksi maillard yaitu interaksi antara asam amino, protein atau amin dengan gula pereda, aldehid atau keton (deMan, 1997).

Pada produk cumi-cumi kertas rasa pedas diperoleh nilai rata-rata pada parameter warna berkisar antara 3,05-4,65. (merah kecoklatan sampai kuning kecoklatan) (Gambar 16). Nilai rata-rata tertinggi diperoleh pada jenis cumi-cumi

4.2.7.2 Penampakan

4.2.7.3 Tekstur

Kriteria yang digunakan dalam uji organoleptik pada parameter tekstur cumi-cumi kertas yaitu tidak lihat, tidak padat (5), agak lihat, agak padat (4), agak liat, padat (3), liat, padat (2), sangat liat, sangat padat (1).

Hasil uji organoleptik pada parameter tekstur produk cumi-cumi kertas rasa manis diperoleh nilai rata-rata berkisar antara 1,775 - 4,175 (antara liat, padat sampai agak liat, agak padat) (Gambar 15). Nilai rata-rata tertinggi diperoleh pada jenis cumi-cumi tawar buatan dengan lama pengeringan 35 menit dan tingkat

4.2.7.4 Aroma

Kisaran yang digunakan uji organoleptik terhadap parameter aroma produk cumi-cumi kertas terdiri dari harum, spesifik jenis, tanpa bau tambahan (5), agak harum, spesifik jenis, tanpa bau tambahan (4), hampir netral sedikit bau tambahan (3), netral, sedikit bau tambahan (2), bau tambahan mengganggu, tidak busuk, agak tengik (1).

4.2.7.5 Rasa

Rasa merupakan komponen terakhir dalam menentukan enak tidaknya suatu makanan. Kriteria yang digunakan pada produk cumi-cumi kertas yaitu enak, spesifik jenis, tanpa rasa tambahan, terasa bumbu (5) agak enak, spesifik jenis, tanpa rasa tambahan, terasa bumbu (4), biasa, spesifik jenis, tanpa rasa tambahan, terasa
bumbu (3) kurang enak, rasa tambahan mengganggu, kurang terasa bumbu (2) tidak enak, rasa tambahan mengganggu, tidak terasa bumbu (1).

4.2.7.6 Penilaian umum

Penilaian umum panelis terhadap suatu produk merupakan penilaian yang mencakup keseluruhan dari penilaian lainnya. Kriteria penilaian umum yaitu sangat suka (5), suka (4), biasa (3), kurang suka (2), tidak suka (1).

Berdasarkan hasil yang diperoleh secara keseluruhan meliputi warna, penampakan, tekstur, aroma, rasa dan penilaian umum, untuk produk cumi-cumi kertas rasa manis pada perlakuan A1M37 (Jenis cumi-cumi buatan, lama
pengeringan 35 menit, tingkat pengepresan L2P7) mendapat respon yang cukup baik (disukai) panelis, yaitu pada parameter warna (merah kecoklatan), penampakan (utuh, rap, permukaan kurang rata, ketebalan kurang rata), tekstur (agak liat, agak padat), aroma (agak harum, spesik jenis, tanpa bau tambahan), rasa (agak enak, spesifik jenis, tanpa rasa tambahan, terasa bumbu) dan penilaian umum (disukai).

Tabel 8. Hasil penilaian rata-rata terhadap parameter uji organoleptik masing-masing perlakuan produk cumi-cumi kertas rasa manis pada penelitian utama

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rasa manis</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cumi tawar buatan (A1)</td>
<td>Cumi tawar pasar (A2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M25</td>
<td>M27</td>
<td>M35</td>
<td>M37</td>
<td>M25</td>
<td>M27</td>
<td>M35</td>
<td>M37</td>
<td>M25</td>
</tr>
<tr>
<td>Warna</td>
<td>4.55</td>
<td>4.58</td>
<td>3.52</td>
<td>3.37</td>
<td>4.43</td>
<td>3.1</td>
<td>3.4</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>Penampakan</td>
<td>3.73</td>
<td>3.8</td>
<td>3.45</td>
<td>3.23</td>
<td>3.03</td>
<td>3.55</td>
<td>4.05</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Tekstur</td>
<td>3.88</td>
<td>3.75</td>
<td>4.03</td>
<td>4.18</td>
<td>1.78</td>
<td>2.28</td>
<td>3.25</td>
<td>3.93</td>
<td></td>
</tr>
<tr>
<td>Aroma</td>
<td>3.63</td>
<td>3.88</td>
<td>3.65</td>
<td>3.98</td>
<td>3.35</td>
<td>3.2</td>
<td>3.28</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>Rasa</td>
<td>3.6</td>
<td>3.93</td>
<td>3.28</td>
<td>4.25</td>
<td>2.6</td>
<td>2.8</td>
<td>3.03</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Penilaian</td>
<td>3.68</td>
<td>3.35</td>
<td>3.55</td>
<td>4.38</td>
<td>2.68</td>
<td>2.83</td>
<td>3.05</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>Umum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>3.85</td>
<td>3.88</td>
<td>3.58</td>
<td>3.9</td>
<td>2.98</td>
<td>2.96</td>
<td>3.34</td>
<td>3.45</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 9. Hasil penilaian rata-rata terhadap parameter uji organoleptik masing-masing perlakuan produk cumi-cumi kertas rasa pedas pada penelitian utama

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rasa pedas</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cumi tawar buatan (A1)</td>
<td>Cumi tawar pasar (A2)</td>
<td>Kontrol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warna</td>
<td>3.95</td>
<td>4.4</td>
<td>4.25</td>
<td>3.05</td>
<td>4.4</td>
<td>4.53</td>
<td>4.65</td>
<td>4.3</td>
<td>3.15</td>
</tr>
<tr>
<td>Penampakan</td>
<td>3.75</td>
<td>3.3</td>
<td>3.53</td>
<td>2.88</td>
<td>3.63</td>
<td>3.68</td>
<td>3.45</td>
<td>3.35</td>
<td>3.05</td>
</tr>
<tr>
<td>Tekstur</td>
<td>2.9</td>
<td>3.4</td>
<td>3.53</td>
<td>3.93</td>
<td>2.95</td>
<td>3.05</td>
<td>3.13</td>
<td>2.96</td>
<td>3.55</td>
</tr>
<tr>
<td>Aroma</td>
<td>3.88</td>
<td>3.9</td>
<td>3</td>
<td>3.58</td>
<td>3.68</td>
<td>3.88</td>
<td>3.73</td>
<td>2.73</td>
<td>2.63</td>
</tr>
<tr>
<td>Rasa</td>
<td>3.33</td>
<td>2.45</td>
<td>4.15</td>
<td>3.9</td>
<td>3.48</td>
<td>3.55</td>
<td>3.9</td>
<td>3.5</td>
<td>2.63</td>
</tr>
<tr>
<td>Penilaian</td>
<td>3.9</td>
<td>3.55</td>
<td>4.05</td>
<td>3.78</td>
<td>3.5</td>
<td>3.43</td>
<td>3.85</td>
<td>3.38</td>
<td>2.53</td>
</tr>
<tr>
<td>Umum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>3.62</td>
<td>3.5</td>
<td>3.9</td>
<td>3.51</td>
<td>3.62</td>
<td>3.65</td>
<td>3.81</td>
<td>3.54</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Pada produk cumi-cumi kertas rasa pedas dengan perlakuan A1P35 (jenis cumi-cumi buatan, lama pengeringan 35 menit, tingkat pengepresan L1P5) mendapatkan respon yang cukup baik (disukai) panelis. Kriteria yang diperoleh, yaitu pada parameter warna (kuning kecoklatan), penampakan (utuh, kurang rap, permukaan rata, ketebalan rata), tekstur (agak liat, agak padat), aroma (agak harum, spesifik jenis, tanpa bau tambahan), rasa (agak enak, spesifik jenis, tanpa rasa tambahan, terasa bumbu) dan penilaian umum (disukai). Hasil penilaian rata-rata terhadap parameter uji organoleptik masing-masing perlakuan produk cumi-cumi kertas dapat dilihat pada Tabel 8 dan 9.
4.2.8 Komposisi gizi produk terpilih dan kadar garam

Nilai gizi dari suatu produk merupakan parameter yang sangat penting karena merupakan salah satu pertimbangan konsumen dalam menentukan pilihan terhadap makanan. Salah satu cara untuk menentukan kandungan gizi suatu produk adalah analisa proksimat.

Pemanasan tidak banyak menurunkan nilai gizi protein. Tetapi panas yang terlalu tinggi dan lama akan mengakibatkan nilai gizi menurun dan hilangnya cita rasa. Terdapat tiga jenis reaksi yang dapat menurunkan nilai gizi bila pemanasan dilakukan berlebihan, yaitu oksidasi asam lemak, perubahian ikatan asam amino sehingga absorbsi terganggu dan terbentuknya ikatan-ikatan baru sehingga enzim pencernaan tidak mampu lagi mencermannya (Winarno, 1993).

Garam dapat mempengaruhi aktivitas air (A_w) dari bahan selain menghambat aktivitas mikroorganisme (Buckle et al., 1987). Kadar garam cumi-cumi segar yang dikeritingkan (cumi-cumi tawar buatan) yaitu sebesar 0,21 %, dan setelah diolah menjadi produk cumi-cumi kertas rasa manis dan rasa pedas nilai kadar garamnya menjadi 2,6 % dan 1,78 %.

<table>
<thead>
<tr>
<th>Komponen</th>
<th>A1M37</th>
<th>A1P35</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% bb</td>
<td>% bk</td>
</tr>
<tr>
<td>Kadar air (%)</td>
<td>8,056</td>
<td>-</td>
</tr>
<tr>
<td>Kadar protein (%)</td>
<td>65,68</td>
<td>71,43</td>
</tr>
<tr>
<td>Kadar abu (%)</td>
<td>6,16</td>
<td>6,70</td>
</tr>
<tr>
<td>Kadar lemak (%)</td>
<td>1,97</td>
<td>2,14</td>
</tr>
<tr>
<td>Kadar karbohidrat (%)</td>
<td>18,135</td>
<td>19,72</td>
</tr>
</tbody>
</table>

Keterangan:
- bk = basis kering
- bb = basis basah
- A1M37 = jenis cumi-cumi tawar buatan, lama pengeringan 35 menit, tingkat pengepresan L2P7
- A1P35 = jenis cumi-cumi tawar buatan, lama pengeringan 35 menit, tingkat pengepresan L1P5
Gambar 17. Histogram nilai rata-rata uji organoleptik cumi-cumi kertas rasa pedas pada penelitian.
5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

1. Berdasarkan hasil uji kesukaan untuk produk cumi-cumi kertas rasa manis dihasilkan konsentrasi gula terbaik adalah 15%, dan konsentrasi bubuk cabai merah sebesar 5% untuk produk cumi-cumi kertas rasa pedas.

2. Produk cumi-cumi kertas terbaik dihasilkan pada perlakuan A1M37 (jenis cumi-cumi tawar buatan, lama pengeringan 35 menit, serta tingkat pengepresan dengan jarak renggang dua rol penggiling silinder pengepresan sebesar 0,75 mm pada frekuensi pengepresan sebanyak tujuh kali (L2P7)) untuk produk rasa manis, dan perlakuan A1P35 (jenis cumi-cumi tawar buatan, lama pengeringan 35 menit, serta tingkat pengepresan dengan jarak renggang dua rol penggiling silinder pengepresan sebesar 0,70 mm pada frekuensi pengepresan sebanyak lima kali (L1P5)) untuk produk rasa pedas berdasarkan penilaian uji organoleptik.

3. Produak terpilih memiliki karakteristik fisik, kimia, dan mikrobiologi sebagai berikut:
 a. Perlakuan A1M37
 Kadar air (8,055 %), kadar protein (71,43 %), kadar abu (6,70 %), kadar lemak (2,14 %), kadar karbohidrat (19,72 %), kadar garam (2,6 %), A_w (0,545), TVB (264,98 mg/100 gr bahan), kapang-khamir (negatif), TPC $(5,2\times10^2$ koloni/gram), tekstur/kekerasan (0,016 kg/mm2).
 b. Perlakuan A1P35
 Kadar air (9,34 %), kadar protein (72,63 %), kadar abu (5,88 %), kadar lemak (2,20 %), kadar karbohidrat (17,55 %), kadar garam (1,78 %), A_w (0,4895), TVB (205,29 mg/100 gr bahan), kapang-khamir (negatif), TPC $(1,35\times10^5$ koloni/gr), tekstur/kekerasan (0,0385 kg/mm2).

4. Pada pembuatan produk cumi-cumi kertas, lebih baik menggunakan cumi-cumi segar yang dikeritingkan (cumi-cumi tawar buatan) karena mengandung kadar garam relatif rendah dan lebih higienis dibanding cumi-cumi kering yang didapat dari pasaran.
5. Produk cumi-cumi kertas sudah cukup baik untuk dipasarkan, disukai, dan tahan lama karena mengandung kadar air relatif rendah, sehingga kemungkinan untuk ditumbuhi mikroba sangat lama.

6. Perlakuan A2P25 (jenis cumi tawar pasar, lama pengeringan 25 menit, tingkat pengepresan L1P5) dan A2P27 (jenis cumi tawar pasar, lama pengeringan 25 menit, tingkat pengepresan L2P7) sangat rentan terhadap ragi osmofilik karena memiliki Aw lebih dari 0,60.

7. Upaya diversifikasi produk cumi-cumi menjadi makanan camilan sebagai bentuk olahan cumi-cumi kertas sangat baik untuk dikonsumsi tua dan muda karena memiliki kadar protein yang cukup tinggi dan kadar lemak yang rendah.

5.2 Saran

1. Perlu digunakan bahan pengawet yang aman untuk dapat menghasilkan produk dengan aroma yang disukai.

2. Perlu dilakukan penelitian lanjutan untuk mengetahui daya awet produk tersebut pada berbagai kondisi penyimpanan dan pengemasan dilihat pada faktor suhu dan waktu pengeringan serta tingkat pengepresan.
DAFTAR PUSTAKA

LAMPIRAN
LEMBAR PENILAIAN UJI ORGANOLEPTIK PENELITIAN PENDAHULUAN

<table>
<thead>
<tr>
<th>Kode</th>
<th>Warna</th>
<th>Penampakan</th>
<th>Tekstur</th>
<th>Aroma</th>
<th>Rasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>579</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan :
5 = sangat suka
4 = suka
3 = biasa
2 = kurang suka
1 = tidak suka

LEMBAR PENILAIAN UJI ORGANOLEPTIK PENELITIAN LANJUTAN

<table>
<thead>
<tr>
<th>Kode</th>
<th>Warna</th>
<th>Penampakan</th>
<th>Tekstur</th>
<th>Aroma</th>
<th>Rasa</th>
<th>Penilaian Umum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan :
Warna (rasa *pedas*)
5 = Kuning kecoklatan
4 = Coklat kemerahan
3 = Merah kecoklatan
2 = Coklat kehitaman
1 = Hitam gosong

Warna (rasa *manis*)
5 = Kuning kecoklatan
4 = Coklat kemerahan
3 = Merah kecoklatan
2 = Coklat kehitaman
1 = Hitam gosong

Penampakan
5 = Utuh, rapi, permukaan rata, ketebalan rata
4 = Utuh, kurang rapi, permukaan rata, ketebalan rata
3 = Utuh, rapi, permukaan kurang rata, ketebalan kurang rata
2 = Kurang utuh, kurang rapi, permukaan rata, ketebalan rata
1 = Kurang utuh, kurang rapi, permukaan kurang rata, ketebalan kurang rata
Tekstur:
5 = Tidak liat, tidak padat
4 = Agak liat, agak padat
3 = Agak liat, padat
2 = Liat, padat
1 = Sangat liat, sangat padat

Aroma:
5 = Harum, spesifik jenis, tanpa bau tambahan
4 = Agak harum, spesifik jenis, tanpa bau tambahan
3 = Hampir netral, sedikit bau tambahan
2 = Netral, sedikit bau tambahan
1 = Bau tambahan mengganggu, tidak busuk, agak tengik

Rasa:
5 = Enak, spesifik jenis, tanpa rasa tambahan, terasa bumbu
4 = Agak enak, spesifik jenis, tanpa rasa tambahan, terasa bumbu
3 = Biasa, spesifik jenis, tanpa rasa tambahan, terasa bumbu
2 = Kurang enak, rasa tambahan mengganggu, kurang terasa bumbu
1 = tidak enak, rasa tambahan mengganggu, tidak terasa bumbu

Penerimaan Umum:
5 = Sangat suka
4 = Suka
3 = Biasa
2 = Kurang suka
1 = Tidak suka

Lampiran 2. Hasil perhitungan kruskal wallis uji organoleptik pengaruh perilaku jenis cumi-cumi tawar buatan dan konsentrasi gula pada penelitian pendahuluan

1. Warna

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B1</td>
<td>40</td>
<td>4</td>
<td>58,2</td>
<td>-0,51</td>
<td>3,725</td>
</tr>
<tr>
<td>A1B2</td>
<td>40</td>
<td>4</td>
<td>63,8</td>
<td>0,73</td>
<td>3,85</td>
</tr>
<tr>
<td>A1B3</td>
<td>40</td>
<td>4</td>
<td>59,5</td>
<td>-0,23</td>
<td>3,75</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 0,57 DF = 2 P = 0,753
H = 0,82 DF = 2 P = 0,663 (α = 0,05)

2. Penampakan

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B1</td>
<td>40</td>
<td>4</td>
<td>58,8</td>
<td>-0,38</td>
<td>3,6</td>
</tr>
<tr>
<td>A1B2</td>
<td>40</td>
<td>4</td>
<td>63,0</td>
<td>0,57</td>
<td>3,675</td>
</tr>
<tr>
<td>A1B3</td>
<td>40</td>
<td>4</td>
<td>59,7</td>
<td>-0,19</td>
<td>3,6</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 0,33 DF = 2 P = 0,847
H = 0,45 DF = 2 P = 0,739 (α = 0,05)

3. Tekstur

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B1</td>
<td>40</td>
<td>3</td>
<td>58,3</td>
<td>-0,49</td>
<td>3,325</td>
</tr>
<tr>
<td>A1B2</td>
<td>40</td>
<td>3</td>
<td>59,8</td>
<td>-0,16</td>
<td>3,325</td>
</tr>
<tr>
<td>A1B3</td>
<td>40</td>
<td>3</td>
<td>63,4</td>
<td>0,65</td>
<td>3,425</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 0,46 DF = 2 P = 0,795
H = 0,54 DF = 2 P = 0,762 (α = 0,05)
4. Aroma

<table>
<thead>
<tr>
<th></th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B1</td>
<td>40</td>
<td>3</td>
<td>60,9</td>
<td>0,09</td>
<td>3,35</td>
</tr>
<tr>
<td>A1B2</td>
<td>40</td>
<td>3</td>
<td>60,5</td>
<td>-0,01</td>
<td>3,325</td>
</tr>
<tr>
<td>A1B3</td>
<td>40</td>
<td>3</td>
<td>60,1</td>
<td>-0,09</td>
<td>3,36</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 0,01 DF = 2 P = 0,994
H = 0,01 DF = 2 P = 0,993 (α = 0,05)

5. Rasa

<table>
<thead>
<tr>
<th></th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1B1</td>
<td>40</td>
<td>3</td>
<td>49,4</td>
<td>-2,47</td>
<td>3,3</td>
</tr>
<tr>
<td>A1B2</td>
<td>40</td>
<td>4</td>
<td>61,6</td>
<td>0,23</td>
<td>3,875</td>
</tr>
<tr>
<td>A1B3</td>
<td>40</td>
<td>4</td>
<td>70,5</td>
<td>2,24</td>
<td>3,925</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 7,45 DF = 2 P = 0,024
H = 8,65 DF = 2 P = 0,013 * (α = 0,05)

Uji Lanjutan *multiple comparison* pada parameter rasa

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1B1-R A1B3]</td>
<td>21,2 *</td>
<td>16,67</td>
</tr>
<tr>
<td>[R A1B2-R A1B3]</td>
<td>8,9</td>
<td>16,67</td>
</tr>
</tbody>
</table>

Keterangan :
A1B1 = Cumi-cumi tawar buatan dan konsentrasi gua 5 %
A1B2 = Cumi-cumi tawar buatan dan konsentrasi gua 10 %
A1B3 = Cumi-cumi tawar buatan dan konsentrasi gua 15 %
* = Menunjukkan berbeda nyata

Lampiran 3. Hasil perhitungan kruskal wallis uji organoleptik pengaruh perlakuan jenis cumi-cumi tawar pasar dan konsentrasi gua pada penelitian pendahuluan

1. Warna

<table>
<thead>
<tr>
<th></th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2B1</td>
<td>40</td>
<td>3</td>
<td>55,6</td>
<td>-1,09</td>
<td>3,175</td>
</tr>
<tr>
<td>A2B2</td>
<td>40</td>
<td>3</td>
<td>56,3</td>
<td>-0,49</td>
<td>3,25</td>
</tr>
<tr>
<td>A2B3</td>
<td>40</td>
<td>3</td>
<td>67,6</td>
<td>1,58</td>
<td>3,55</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 2,03 DF = 2 P = 0,268
H = 3,10 DF = 2 P = 0,212 (α = 0,05)

2. Penampakan

<table>
<thead>
<tr>
<th></th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2B1</td>
<td>40</td>
<td>3</td>
<td>51,3</td>
<td>-2,05</td>
<td>2,925</td>
</tr>
<tr>
<td>A2B2</td>
<td>40</td>
<td>3</td>
<td>62,9</td>
<td>0,53</td>
<td>3,175</td>
</tr>
<tr>
<td>A2B3</td>
<td>40</td>
<td>3</td>
<td>67,3</td>
<td>1,53</td>
<td>3,3</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 4,55 DF = 2 P = 0,103
H = 6,64 DF = 2 P = 0,068 (α = 0,05)
3. Tekstur

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2B1</td>
<td>40</td>
<td>3</td>
<td>57,5</td>
<td>-0,67</td>
<td>3,175</td>
</tr>
<tr>
<td>A2B2</td>
<td>40</td>
<td>3</td>
<td>65,0</td>
<td>1,01</td>
<td>3,328</td>
</tr>
<tr>
<td>A2B3</td>
<td>40</td>
<td>3</td>
<td>59,0</td>
<td>-0,34</td>
<td>3,225</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 1.06 DF = 2 P = 0.597

H = 1.44 DF = 2 P = 0.486 (α = 0.05)

3. Aroma

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2B1</td>
<td>40</td>
<td>3</td>
<td>47,9</td>
<td>-2,81</td>
<td>2,85</td>
</tr>
<tr>
<td>A2B2</td>
<td>40</td>
<td>3</td>
<td>67,3</td>
<td>1,50</td>
<td>3,25</td>
</tr>
<tr>
<td>A2B3</td>
<td>40</td>
<td>3</td>
<td>66,4</td>
<td>1,31</td>
<td>3,25</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 7,92 DF = 2 P = 0,019

H = 10,31 DF = 2 P = 0,006 (α = 0,05)

4. Rasa

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2B1</td>
<td>40</td>
<td>3</td>
<td>44,3</td>
<td>-3,61</td>
<td>3,4</td>
</tr>
<tr>
<td>A2B2</td>
<td>40</td>
<td>4</td>
<td>58,5</td>
<td>-0,44</td>
<td>3,75</td>
</tr>
<tr>
<td>A2B3</td>
<td>40</td>
<td>4</td>
<td>78,7</td>
<td>4,05</td>
<td>4,3</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 19,72 DF = 2 P = 0,000

H = 21,99 DF = 2 P = 0,000 * (α = 0,05)

Uji Lanjutan multiple comparision pada parameter rasa

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1B1-R A1B3]</td>
<td>34,4 *</td>
<td>18,67</td>
</tr>
<tr>
<td>[R A1B2-R A1B3]</td>
<td>20,2 *</td>
<td>18,67</td>
</tr>
</tbody>
</table>

Keterangan:
A2B1 = Cumi-cumi tawar pasar dan konsentrasi gula 5 %
A2B2 = Cumi-cumi tawar pasar dan konsentrasi gula 10 %
A2B3 = Cumi-cumi tawar pasar dan konsentrasi gula 15 %
* = Menunjukkan berbeda nyata

Lampiran 4. Hasil perhitungan kruskal wallis uji organoleptik pengaruh perlakuan jenis cumi-cumi tawar buatan dan konsentrasi bubuk cabe merah pada penelitian pendahuluan

1. Warna

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C1</td>
<td>40</td>
<td>4</td>
<td>67,5</td>
<td>1,57</td>
<td>3,95</td>
</tr>
<tr>
<td>A1C2</td>
<td>40</td>
<td>4</td>
<td>61,9</td>
<td>0,31</td>
<td>3,775</td>
</tr>
<tr>
<td>A1C3</td>
<td>40</td>
<td>3</td>
<td>52,0</td>
<td>-1,68</td>
<td>3,5</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td>60,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 4,06 DF = 2 P = 0,130

H = 4,86 DF = 2 P = 0,102 (α = 0,05)
2. Penampakan

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C1</td>
<td>40</td>
<td>4</td>
<td>65,0</td>
<td>1,00</td>
<td>3,65</td>
</tr>
<tr>
<td>A1C2</td>
<td>40</td>
<td>4</td>
<td>62,0</td>
<td>0,35</td>
<td>3,575</td>
</tr>
<tr>
<td>A1C3</td>
<td>40</td>
<td>3</td>
<td>54,5</td>
<td>-1,35</td>
<td>3,35</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td>60,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 1,96 DF = 2 P = 0,376
H = 2,21 DF = 2 P = 0,332 (α = 0,05)

3. Tekstur

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C1</td>
<td>40</td>
<td>3,5</td>
<td>59,4</td>
<td>-0,24</td>
<td>3,525</td>
</tr>
<tr>
<td>A1C2</td>
<td>40</td>
<td>4</td>
<td>64,5</td>
<td>0,56</td>
<td>3,65</td>
</tr>
<tr>
<td>A1C3</td>
<td>40</td>
<td>4</td>
<td>57,5</td>
<td>-0,65</td>
<td>3,45</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td>60,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 0,84 DF = 2 P = 0,657
H = 0,84 DF = 2 P = 0,624 (α = 0,05)

4. Aroma

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C1</td>
<td>40</td>
<td>4</td>
<td>59,3</td>
<td>-0,26</td>
<td>3,575</td>
</tr>
<tr>
<td>A1C2</td>
<td>40</td>
<td>4</td>
<td>67,3</td>
<td>1,03</td>
<td>3,6</td>
</tr>
<tr>
<td>A1C3</td>
<td>40</td>
<td>3</td>
<td>54,3</td>
<td>-1,38</td>
<td>3,45</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td>60,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 3,09 DF = 2 P = 0,213
H = 3,46 DF = 2 P = 0,178 (α = 0,05)

5. Rasa

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C1</td>
<td>40</td>
<td>4</td>
<td>54,4</td>
<td>-1,36</td>
<td>3,725</td>
</tr>
<tr>
<td>A1C2</td>
<td>40</td>
<td>5</td>
<td>75,1</td>
<td>3,92</td>
<td>4,4</td>
</tr>
<tr>
<td>A1C3</td>
<td>40</td>
<td>4</td>
<td>45,0</td>
<td>-2,56</td>
<td>3,5</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td>60,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 15,82 DF = 2 P = 0,000
H = 17,44 DF = 2 P = 0,000 (α = 0,05)

Uji Lanjutan multiple comparison pada parameter rasa

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1C1-R A1C2]</td>
<td>23,7 *</td>
<td>18,67</td>
</tr>
<tr>
<td>[R A1C1-R A1C3]</td>
<td>6,4</td>
<td>18,67</td>
</tr>
</tbody>
</table>

Keterangan:
A1C1 = Cumi-cumi tawar buatan dan konsentrasi bubuk cabai merah 5 %
A1C2 = Cumi-cumi tawar buatan dan konsentrasi bubuk cabai merah 10 %
A1C3 = Cumi-cumi tawar buatan dan konsentrasi bubuk cabai merah 15 %
* = Menunjukkan berbeda nyata
Lampiran 5. Hasil perhitungan kruskal wallis uji organoleptik pengaruh perlakuan jenis cumi-cumi tawar pasar dan konsentrasi bubuk cabe merah pada penelitian pendahuluan

1. Warna

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C1</td>
<td>40</td>
<td>3</td>
<td>65,5</td>
<td>-1,10</td>
<td>3,375</td>
</tr>
<tr>
<td>A2C2</td>
<td>40</td>
<td>4</td>
<td>71,2</td>
<td>2,38</td>
<td>3,775</td>
</tr>
<tr>
<td>A2C3</td>
<td>40</td>
<td>3</td>
<td>54,8</td>
<td>-1,27</td>
<td>3,3</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 5.66 DF = 2 P = 0.059
H = 6.57 DF = 2 P = 0.057 (α = 0.05)

2. penampakan

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C1</td>
<td>40</td>
<td>3</td>
<td>56,8</td>
<td>-0,37</td>
<td>3,375</td>
</tr>
<tr>
<td>A2C2</td>
<td>40</td>
<td>4</td>
<td>66,9</td>
<td>1,87</td>
<td>3,6</td>
</tr>
<tr>
<td>A2C3</td>
<td>40</td>
<td>3</td>
<td>53,7</td>
<td>-1,50</td>
<td>3,25</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 3.93 DF = 2 P = 0.140
H = 4.61 DF = 2 P = 0.100 (α = 0.05)

3. Tekstur

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C1</td>
<td>40</td>
<td>3</td>
<td>58,4</td>
<td>-2,24</td>
<td>3</td>
</tr>
<tr>
<td>A2C2</td>
<td>40</td>
<td>3</td>
<td>64,1</td>
<td>0,79</td>
<td>3,4</td>
</tr>
<tr>
<td>A2C3</td>
<td>40</td>
<td>3,5</td>
<td>67,0</td>
<td>1,45</td>
<td>3,5</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 5.17 DF = 2 P = 0.076
H = 6.71 DF = 2 P = 0.058 (α = 0.05)

4. Aroma

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C1</td>
<td>40</td>
<td>3</td>
<td>58,6</td>
<td>-0,43</td>
<td>3,3</td>
</tr>
<tr>
<td>A2C2</td>
<td>40</td>
<td>4</td>
<td>65,8</td>
<td>1,14</td>
<td>3,525</td>
</tr>
<tr>
<td>A2C3</td>
<td>40</td>
<td>3</td>
<td>57,3</td>
<td>-0,71</td>
<td>3,3</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 1.32 DF = 2 P = 0.518
H = 1.51 DF = 2 P = 0.469 (α = 0.05)

5. Rasa

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C1</td>
<td>40</td>
<td>3</td>
<td>42,2</td>
<td>-4,08</td>
<td>3,225</td>
</tr>
<tr>
<td>A2C2</td>
<td>40</td>
<td>5</td>
<td>86,1</td>
<td>6,70</td>
<td>4,5</td>
</tr>
<tr>
<td>A2C3</td>
<td>40</td>
<td>4</td>
<td>53,3</td>
<td>-1,61</td>
<td>3,5</td>
</tr>
<tr>
<td>Jumlah</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>60,5</td>
</tr>
</tbody>
</table>

H = 34.46 DF = 2 P = 0,000
H = 37.84 DF = 2 P = 0,000 * (α = 0,05)

Uji Lanjutan multiple comparison pada parameter rasa

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1C1-R A1C3]</td>
<td>11,1</td>
<td>18,67</td>
</tr>
<tr>
<td>[R A1C2-R A1C3]</td>
<td>32,8 *</td>
<td>18,67</td>
</tr>
</tbody>
</table>

Keterangan = * Menunjukkan berbeda nyata
Lampiran 6. Hasil perhitungan kruskal wallis uji organoleptik produk cumi-cumi kertas rasa manis terhadap pengaruh perlakuan jenis cumi-cumi, pengepresan dan lama pengovenan pada penelitian lanjutan

1. Warna

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M25</td>
<td>40</td>
<td>5</td>
<td>234,8</td>
<td>5,42</td>
<td>4,55</td>
</tr>
<tr>
<td>A1M27</td>
<td>40</td>
<td>5</td>
<td>237,0</td>
<td>5,59</td>
<td>4,575</td>
</tr>
<tr>
<td>A1M35</td>
<td>40</td>
<td>3</td>
<td>136,9</td>
<td>-1,80</td>
<td>3,525</td>
</tr>
<tr>
<td>A1M37</td>
<td>40</td>
<td>3,5</td>
<td>126,0</td>
<td>-2,55</td>
<td>3,375</td>
</tr>
<tr>
<td>A2M25</td>
<td>40</td>
<td>5</td>
<td>222,0</td>
<td>4,54</td>
<td>4,425</td>
</tr>
<tr>
<td>A2M27</td>
<td>40</td>
<td>3</td>
<td>109,8</td>
<td>-3,71</td>
<td>3,1</td>
</tr>
<tr>
<td>A2M35</td>
<td>40</td>
<td>3</td>
<td>128,9</td>
<td>-2,31</td>
<td>3,4</td>
</tr>
<tr>
<td>A2M37</td>
<td>40</td>
<td>3</td>
<td>95,7</td>
<td>-6,18</td>
<td>2,925</td>
</tr>
</tbody>
</table>

Jumlah 320 160,5

H = 119,69 DF = 7 P = 0,000
H = 129,78 DF = 7 P = 0,000 * (α = 0,05)

Uji Lanjutan multiple comparison pada parameter warna

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1M25 - R A2M37]</td>
<td>124,8*</td>
<td>64,75</td>
<td>[R A1M35 - R A2M37]</td>
<td>3,3</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A1M37]</td>
<td>111,4*</td>
<td>64,75</td>
<td>[R A2M25 - R A2M27]</td>
<td>112,8*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M25]</td>
<td>14,4</td>
<td>64,75</td>
<td>[R A2M25 - R A2M35]</td>
<td>93,7*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M27]</td>
<td>127,2*</td>
<td>64,75</td>
<td>[R A2M25 - R A2M37]</td>
<td>132,9*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M35]</td>
<td>108,1*</td>
<td>64,75</td>
<td>[R A2M27 - R A2M37]</td>
<td>19,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M37]</td>
<td>147,3*</td>
<td>64,75</td>
<td>[R A2M27 - R A2M35]</td>
<td>20,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M35 - R A1M37]</td>
<td>10,3</td>
<td>64,75</td>
<td>[R A2M35 - R A2M37]</td>
<td>39,2</td>
<td>64,75</td>
</tr>
</tbody>
</table>

Keterangan: * Menunjukkan hasil berbeda nyata (α = 0,05)

2. Penampakan

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M25</td>
<td>40</td>
<td>4</td>
<td>190,4</td>
<td>1,45</td>
<td>1,45</td>
</tr>
<tr>
<td>A1M27</td>
<td>40</td>
<td>4</td>
<td>187,1</td>
<td>1,94</td>
<td>1,94</td>
</tr>
<tr>
<td>A1M35</td>
<td>40</td>
<td>3</td>
<td>155,6</td>
<td>-0,36</td>
<td>-0,36</td>
</tr>
<tr>
<td>A1M37</td>
<td>40</td>
<td>3</td>
<td>136,3</td>
<td>-1,77</td>
<td>-1,77</td>
</tr>
<tr>
<td>A2M25</td>
<td>40</td>
<td>3</td>
<td>115,4</td>
<td>-3,29</td>
<td>-3,29</td>
</tr>
<tr>
<td>A2M27</td>
<td>40</td>
<td>3,5</td>
<td>165,9</td>
<td>0,39</td>
<td>0,39</td>
</tr>
<tr>
<td>A2M35</td>
<td>40</td>
<td>4</td>
<td>211,5</td>
<td>3,72</td>
<td>3,72</td>
</tr>
<tr>
<td>A2M37</td>
<td>40</td>
<td>3</td>
<td>131,8</td>
<td>-2,10</td>
<td>-2,10</td>
</tr>
</tbody>
</table>

Jumlah 320 160,5

H = 33,62 DF = 7 P = 0,000
H = 37,08 DF = 7 P = 0,000 * (α = 0,05)
Uji Lanjutan *multiple comparison* pada parameter penampakan

<table>
<thead>
<tr>
<th>Antar Perkalaun</th>
<th>Nilai</th>
<th>$\alpha = 0.05$</th>
<th>Antar Perkalaun</th>
<th>Nilai</th>
<th>$\alpha = 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1M27 - R A1M37]</td>
<td>50,8</td>
<td>64,75</td>
<td>[R A2M25 - R A2M35]</td>
<td>50,5</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M25]</td>
<td>71,7*</td>
<td>64,75</td>
<td>[R A2M25 - R A2M37]</td>
<td>96,1*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M27]</td>
<td>21,2</td>
<td>64,75</td>
<td>[R A2M25 - R A2M37]</td>
<td>16,4</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M35]</td>
<td>24,4</td>
<td>64,75</td>
<td>[R A2M25 - R A2M37]</td>
<td>45,8</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M37]</td>
<td>55,3</td>
<td>64,75</td>
<td>[R A2M27 - R A2M37]</td>
<td>34,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M35 - R A1M37]</td>
<td>19,3</td>
<td>64,75</td>
<td>[R A2M35 - R A2M37]</td>
<td>79,7*</td>
<td>64,75</td>
</tr>
</tbody>
</table>

Keterangan: * Menunjukkan hasil berbeda nyata ($\alpha = 0.05$)

3. Tekstur

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M25</td>
<td>40</td>
<td>4</td>
<td>194,3</td>
<td>2,47</td>
<td>3,975</td>
</tr>
<tr>
<td>A1M27</td>
<td>40</td>
<td>4</td>
<td>184,0</td>
<td>1,72</td>
<td>3,75</td>
</tr>
<tr>
<td>A1M35</td>
<td>40</td>
<td>4</td>
<td>204,8</td>
<td>3,24</td>
<td>4,025</td>
</tr>
<tr>
<td>A1M37</td>
<td>40</td>
<td>4,5</td>
<td>216,8</td>
<td>4,11</td>
<td>4,175</td>
</tr>
<tr>
<td>A2M25</td>
<td>40</td>
<td>2</td>
<td>53,1</td>
<td>-7,85</td>
<td>1,775</td>
</tr>
<tr>
<td>A2M27</td>
<td>40</td>
<td>2</td>
<td>82,2</td>
<td>-5,72</td>
<td>2,275</td>
</tr>
<tr>
<td>A2M35</td>
<td>40</td>
<td>3</td>
<td>147,9</td>
<td>-0,92</td>
<td>3,25</td>
</tr>
<tr>
<td>A2M37</td>
<td>40</td>
<td>4</td>
<td>200,9</td>
<td>2,95</td>
<td>3,925</td>
</tr>
</tbody>
</table>

Jumlah 320 160,5

H = 122,81 DF = 7 P = 0,000
H = 128,32 DF = 7 P = 0,000 * ($\alpha = 0.05$)

Uji Lanjutan *multiple comparison* pada parameter tekstur

<table>
<thead>
<tr>
<th>Antar Perkalaun</th>
<th>Nilai</th>
<th>$\alpha = 0.05$</th>
<th>Antar Perkalaun</th>
<th>Nilai</th>
<th>$\alpha = 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1M25 - R A2M35]</td>
<td>46,4</td>
<td>64,75</td>
<td>[R A1M37 - R A2M27]</td>
<td>134,6*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M37]</td>
<td>6,6</td>
<td>64,75</td>
<td>[R A1M37 - R A2M35]</td>
<td>60,9*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A1M37]</td>
<td>32,8</td>
<td>64,75</td>
<td>[R A2M25 - R A2M27]</td>
<td>29,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M27]</td>
<td>101,8</td>
<td>64,75</td>
<td>[R A2M27 - R A2M37]</td>
<td>147,8*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M35]</td>
<td>36,1</td>
<td>64,75</td>
<td>[R A2M27 - R A2M37]</td>
<td>85,7*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M37]</td>
<td>16,9</td>
<td>64,75</td>
<td>[R A2M27 - R A2M37]</td>
<td>118,7*</td>
<td>64,75</td>
</tr>
</tbody>
</table>

Keterangan: * Menunjukkan hasil berbeda nyata ($\alpha = 0.05$)
4. Aroma

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M25</td>
<td>40</td>
<td>4</td>
<td>166,6</td>
<td>0,45</td>
<td>3,625</td>
</tr>
<tr>
<td>A1M27</td>
<td>40</td>
<td>4</td>
<td>182,7</td>
<td>1,62</td>
<td>3,975</td>
</tr>
<tr>
<td>A1M35</td>
<td>40</td>
<td>4</td>
<td>164,6</td>
<td>0,30</td>
<td>3,65</td>
</tr>
<tr>
<td>A1M37</td>
<td>40</td>
<td>4</td>
<td>196,7</td>
<td>2,64</td>
<td>3,975</td>
</tr>
<tr>
<td>A2M25</td>
<td>40</td>
<td>3</td>
<td>133,8</td>
<td>-1,97</td>
<td>3,35</td>
</tr>
<tr>
<td>A2M27</td>
<td>40</td>
<td>3</td>
<td>124,6</td>
<td>-2,63</td>
<td>3,2</td>
</tr>
<tr>
<td>A2M35</td>
<td>40</td>
<td>3</td>
<td>129,2</td>
<td>-2,29</td>
<td>3,275</td>
</tr>
<tr>
<td>A2M37</td>
<td>40</td>
<td>4</td>
<td>186,1</td>
<td>1,87</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Jumlah: 320 160,5

H = 25,71 DF = 7 P = 0,001
H = 28,02 DF = 7 P = 0,000 * (α = 0,05)

Uji Lanjutan multiple comparison pada parameter aroma

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1M25 - R A1M27]</td>
<td>16,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A1M35]</td>
<td>2</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A1M37]</td>
<td>30,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M25]</td>
<td>33</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M35]</td>
<td>42</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M37]</td>
<td>37,4</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M37]</td>
<td>19,5</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A1M35]</td>
<td>18,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A1M37]</td>
<td>14</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M25]</td>
<td>45,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M35]</td>
<td>58,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M37]</td>
<td>53,5</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M37]</td>
<td>3,43</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M35 - R A1M37]</td>
<td>32,1</td>
<td>64,75</td>
</tr>
</tbody>
</table>

Keterangan: * Menunjukkan hasil berbeda nyata (α = 0,05)

5. Rasa

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M25</td>
<td>40</td>
<td>4</td>
<td>187,6</td>
<td>1,98</td>
<td>3,6</td>
</tr>
<tr>
<td>A1M27</td>
<td>40</td>
<td>3</td>
<td>140,5</td>
<td>-1,48</td>
<td>3,025</td>
</tr>
<tr>
<td>A1M35</td>
<td>40</td>
<td>3</td>
<td>164,0</td>
<td>0,25</td>
<td>3,275</td>
</tr>
<tr>
<td>A1M37</td>
<td>40</td>
<td>4</td>
<td>241,9</td>
<td>5,95</td>
<td>4,25</td>
</tr>
<tr>
<td>A2M25</td>
<td>40</td>
<td>2,5</td>
<td>112,4</td>
<td>-3,52</td>
<td>2,6</td>
</tr>
<tr>
<td>A2M27</td>
<td>40</td>
<td>3</td>
<td>123,8</td>
<td>-2,88</td>
<td>2,6</td>
</tr>
<tr>
<td>A2M35</td>
<td>40</td>
<td>3</td>
<td>140,1</td>
<td>-1,49</td>
<td>3,025</td>
</tr>
<tr>
<td>A2M37</td>
<td>40</td>
<td>4</td>
<td>173,8</td>
<td>0,97</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Jumlah: 320 160,5

H = 58,18 DF = 7 P = 0,000
H = 59,8 DF = 7 P = 0,000 * (α = 0,05)

Uji Lanjutan multiple comparison pada parameter rasa

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1M25 - R A1M27]</td>
<td>47,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A1M35]</td>
<td>23,6</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A1M37]</td>
<td>54,3</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M25]</td>
<td>74,7*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M35]</td>
<td>63,8</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M35]</td>
<td>47,5</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M25 - R A2M35]</td>
<td>13,8</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A1M35]</td>
<td>23,5</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A1M37]</td>
<td>101,4*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M25]</td>
<td>28,1</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M35]</td>
<td>16,7</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M35]</td>
<td>0,4</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M27 - R A2M37]</td>
<td>33,3</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M35 - R A1M37]</td>
<td>77,9*</td>
<td>64,75</td>
</tr>
</tbody>
</table>
6. Penilaian umum

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1M25</td>
<td>40</td>
<td>4</td>
<td>190,0</td>
<td>2,15</td>
<td>3,675</td>
</tr>
<tr>
<td>A1M27</td>
<td>40</td>
<td>3</td>
<td>169,8</td>
<td>0,02</td>
<td>3,35</td>
</tr>
<tr>
<td>A1M35</td>
<td>40</td>
<td>3,5</td>
<td>178,6</td>
<td>1,33</td>
<td>3,55</td>
</tr>
<tr>
<td>A1M37</td>
<td>40</td>
<td>4,5</td>
<td>249,0</td>
<td>6,47</td>
<td>4,375</td>
</tr>
<tr>
<td>A2M25</td>
<td>40</td>
<td>3</td>
<td>100,7</td>
<td>-4,37</td>
<td>2,675</td>
</tr>
<tr>
<td>A2M27</td>
<td>40</td>
<td>3</td>
<td>112,2</td>
<td>-3,53</td>
<td>2,625</td>
</tr>
<tr>
<td>A2M35</td>
<td>40</td>
<td>3</td>
<td>133,2</td>
<td>-2,00</td>
<td>3,05</td>
</tr>
<tr>
<td>A2M37</td>
<td>40</td>
<td>3</td>
<td>159,4</td>
<td>-0,08</td>
<td>3,35</td>
</tr>
<tr>
<td>Jumlah</td>
<td>320</td>
<td>150,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 73,34 \ DF = 7 \ P = 0,000
H = 79,68 \ DF = 7 \ P = 0,000 \ (\alpha = 0,05)

Uji Lanjutan *multiple comparison* pada parameter penilaian umum

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>(\alpha = 0,05)</th>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>(\alpha = 0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1M25 - R A2M35]</td>
<td>5,8</td>
<td>64,75</td>
<td>[R A1M35 - R A2M27]</td>
<td>136,8*</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M35 - R A2M27]</td>
<td>48,6</td>
<td>64,75</td>
<td>[R A1M35 - R A2M37]</td>
<td>58,7</td>
<td>64,75</td>
</tr>
<tr>
<td>[R A1M35 - R A1M37]</td>
<td>1,4</td>
<td>64,75</td>
<td>[R A1M35 - R A2M35]</td>
<td>47,2</td>
<td>64,75</td>
</tr>
</tbody>
</table>

Keterangan : * Menunjukkan hasil berbeda nyata (\(\alpha = 0,05\))

Lampiran 7. Hasil perhitungan kruskal wallis uji organoleptik produk cumi-cumi kertas rasa pedas terhadap pengaruh perlakuan jenis cumi-cumi, pengepresan dan lama pengovenan pada penelitian utama

1. Warna

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1P25</td>
<td>40</td>
<td>5</td>
<td>213,4</td>
<td>1,22</td>
<td>3,95</td>
</tr>
<tr>
<td>A1P27</td>
<td>40</td>
<td>4,5</td>
<td>190,9</td>
<td>1,06</td>
<td>4,25</td>
</tr>
<tr>
<td>A1P35</td>
<td>40</td>
<td>3</td>
<td>80,9</td>
<td>-6,42</td>
<td>3,05</td>
</tr>
<tr>
<td>A1P37</td>
<td>40</td>
<td>5</td>
<td>243,4</td>
<td>4,05</td>
<td>4,65</td>
</tr>
<tr>
<td>A2P25</td>
<td>40</td>
<td>5</td>
<td>220,8</td>
<td>2,60</td>
<td>4,255</td>
</tr>
<tr>
<td>A2P35</td>
<td>40</td>
<td>5</td>
<td>243,4</td>
<td>4,05</td>
<td>4,65</td>
</tr>
<tr>
<td>A2P37</td>
<td>40</td>
<td>5</td>
<td>207,9</td>
<td>1,77</td>
<td>4,3</td>
</tr>
<tr>
<td>Kontrol</td>
<td>40</td>
<td>3</td>
<td>88,6</td>
<td>-5,93</td>
<td>3,15</td>
</tr>
<tr>
<td>Jumlah</td>
<td>360</td>
<td>180,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H = 101,07 \ DF = 8 \ P = 0,000
H = 114,27 \ DF = 8 \ P = 0,000 \ (\alpha = 0,05)
Uji Lanjutan *multiple comparison* pada parameter warna

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0.05</th>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1P25 - R A1P27]</td>
<td>52.2</td>
<td>74.70</td>
<td>[R A1P35 - R A2P35]</td>
<td>46.5</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P25 - R A1P37]</td>
<td>60.3*</td>
<td>74.70</td>
<td>[R A1P35 – R kontrol]</td>
<td>108.3*</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P25 - R A2P27]</td>
<td>59.8</td>
<td>74.70</td>
<td>[R A1P37 – R A2P27]</td>
<td>139.9*</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P25 - R A2P35]</td>
<td>82.2*</td>
<td>74.70</td>
<td>[R A1P37 – R A2P35]</td>
<td>162.5*</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P25 – R kontrol]</td>
<td>46.7</td>
<td>74.70</td>
<td>[R A1P37 – R kontrol]</td>
<td>127*</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P27 – R A2P27]</td>
<td>7.4</td>
<td>74.70</td>
<td>[R A2P25 – R kontrol]</td>
<td>122.9*</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P27 – R A2P37]</td>
<td>5.5</td>
<td>74.70</td>
<td>[R A2P27 – R A2P37]</td>
<td>12.9</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P27 – R kontrol]</td>
<td>124.8*</td>
<td>74.70</td>
<td>[R A2P27 – R kontrol]</td>
<td>132.2*</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P35 – R A1P35]</td>
<td>116*</td>
<td>74.70</td>
<td>[R A2P35 – R A2P37]</td>
<td>35.5</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P35 – R A2P27]</td>
<td>23.9</td>
<td>74.70</td>
<td>[R A2P37 – R kontrol]</td>
<td>119.3*</td>
<td>74.70</td>
</tr>
</tbody>
</table>

Keterangan : * Menunjukkan hasil berbeda nyata (α = 0.05)

2. Penampakan

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1P25</td>
<td>40</td>
<td>4</td>
<td>205,7</td>
<td>1,62</td>
<td>3,75</td>
</tr>
<tr>
<td>A1P27</td>
<td>40</td>
<td>3,5</td>
<td>162,9</td>
<td>-0,75</td>
<td>3</td>
</tr>
<tr>
<td>A1P35</td>
<td>40</td>
<td>4</td>
<td>187,9</td>
<td>0,49</td>
<td>3,525</td>
</tr>
<tr>
<td>A1P37</td>
<td>40</td>
<td>3</td>
<td>135,8</td>
<td>-2,88</td>
<td>2,875</td>
</tr>
<tr>
<td>A2P25</td>
<td>40</td>
<td>3</td>
<td>210,6</td>
<td>1,94</td>
<td>3,825</td>
</tr>
<tr>
<td>A2P27</td>
<td>40</td>
<td>4</td>
<td>202,6</td>
<td>1,42</td>
<td>3,875</td>
</tr>
<tr>
<td>A2P35</td>
<td>40</td>
<td>4</td>
<td>180,2</td>
<td>-0,02</td>
<td>3,45</td>
</tr>
<tr>
<td>A2P37</td>
<td>40</td>
<td>3</td>
<td>173,1</td>
<td>-0,47</td>
<td>3,35</td>
</tr>
<tr>
<td>Kontrol</td>
<td>40</td>
<td>2,5</td>
<td>159,6</td>
<td>-1,35</td>
<td>3,05</td>
</tr>
</tbody>
</table>

Jumlah 360 180,5

H = 17.40 DF = 8 P = 0.000
H = 18.42 DF = 8 P = 0.000 * (α = 0.05)

Uji Lanjutan *multiple comparison* pada parameter penampakan

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0.05</th>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1P25 – R kontrol]</td>
<td>32.6</td>
<td>74.70</td>
<td>[R A1P37 – R kontrol]</td>
<td>37.3</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P27 – R kontrol]</td>
<td>41.7</td>
<td>74.70</td>
<td>[R A2P25 – R kontrol]</td>
<td>37.5</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P27 – R kontrol]</td>
<td>33.7</td>
<td>74.70</td>
<td>[R A2P25 – R kontrol]</td>
<td>51</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P27 – R A2P37]</td>
<td>4.2</td>
<td>74.70</td>
<td>[R A2P27 – R A2P37]</td>
<td>29.5</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P27 – R kontrol]</td>
<td>9.3</td>
<td>74.70</td>
<td>[R A2P27 – R kontrol]</td>
<td>43</td>
<td>74.70</td>
</tr>
<tr>
<td>[R A1P35 – R A2P25]</td>
<td>22.7</td>
<td>74.70</td>
<td>[R A2P35 – R kontrol]</td>
<td>20.6</td>
<td>74.70</td>
</tr>
</tbody>
</table>

Keterangan : * Menunjukkan hasil berbeda nyata (α = 0.05)
3. Tekstur

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1P25</td>
<td>40</td>
<td>3</td>
<td>148,9</td>
<td>-2,04</td>
<td>2,9</td>
</tr>
<tr>
<td>A1P27</td>
<td>40</td>
<td>4</td>
<td>133,3</td>
<td>0,83</td>
<td>3,4</td>
</tr>
<tr>
<td>A1P35</td>
<td>40</td>
<td>3,5</td>
<td>202,0</td>
<td>1,39</td>
<td>3,625</td>
</tr>
<tr>
<td>A1P37</td>
<td>40</td>
<td>5</td>
<td>237,5</td>
<td>3,67</td>
<td>3,925</td>
</tr>
<tr>
<td>A2P25</td>
<td>40</td>
<td>3</td>
<td>153,6</td>
<td>-1,73</td>
<td>2,95</td>
</tr>
<tr>
<td>A2P27</td>
<td>40</td>
<td>4</td>
<td>162,1</td>
<td>-1,19</td>
<td>3,05</td>
</tr>
<tr>
<td>A2P35</td>
<td>40</td>
<td>3</td>
<td>156,4</td>
<td>-0,78</td>
<td>3,125</td>
</tr>
<tr>
<td>A2P37</td>
<td>40</td>
<td>3</td>
<td>153,9</td>
<td>-1,71</td>
<td>2,95</td>
</tr>
<tr>
<td>Kontrol</td>
<td>40</td>
<td>4</td>
<td>204,7</td>
<td>1,56</td>
<td>3,55</td>
</tr>
</tbody>
</table>

Jumlah 360 180,5

H = 27,21 DF = 8 P = 0,000
H = 28,81 DF = 8 P = 0,000 * (α = 0,05)

Uji Lanjutan multiple comparison pada parameter tekstur

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
</table>

Keterangan : * Menunjukkan hasil berbeda nyata (α = 0,05)

4. Aroma

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1P25</td>
<td>40</td>
<td>4</td>
<td>199,6</td>
<td>1,23</td>
<td>3,875</td>
</tr>
<tr>
<td>A1P27</td>
<td>40</td>
<td>4</td>
<td>205,0</td>
<td>1,58</td>
<td>3,9</td>
</tr>
<tr>
<td>A1P35</td>
<td>40</td>
<td>4</td>
<td>202,3</td>
<td>1,40</td>
<td>3,9</td>
</tr>
<tr>
<td>A1P37</td>
<td>40</td>
<td>4</td>
<td>170,9</td>
<td>-0,82</td>
<td>3,5</td>
</tr>
<tr>
<td>A2P25</td>
<td>40</td>
<td>3,5</td>
<td>172,2</td>
<td>-0,53</td>
<td>3,575</td>
</tr>
<tr>
<td>A2P27</td>
<td>40</td>
<td>4</td>
<td>163,3</td>
<td>0,18</td>
<td>3,675</td>
</tr>
<tr>
<td>A2P35</td>
<td>40</td>
<td>4</td>
<td>196,6</td>
<td>1,17</td>
<td>3,875</td>
</tr>
<tr>
<td>A2P37</td>
<td>40</td>
<td>4</td>
<td>187,7</td>
<td>0,46</td>
<td>3,725</td>
</tr>
<tr>
<td>Kontrol</td>
<td>40</td>
<td>3</td>
<td>104,8</td>
<td>-4,88</td>
<td>2,725</td>
</tr>
</tbody>
</table>

Jumlah 360 180,5

H = 26,50 DF = 8 P = 0,001
H = 30,63 DF = 8 P = 0,000 * (α = 0,05)
Uji Lanjutan *multiple comparison* pada parameter aroma

<table>
<thead>
<tr>
<th>Antar Perkakuan</th>
<th>Nilai</th>
<th>α = 0.05</th>
<th>Antar Perkakuan</th>
<th>Nilai</th>
<th>α = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1P27 - R A2P37]</td>
<td>17,3</td>
<td>74,70</td>
<td>[R A2P27 - R kontrol]</td>
<td>4,4</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P27 - R kontrol]</td>
<td>100,2*</td>
<td>74,70</td>
<td>[R A2P27 - R kontrol]</td>
<td>70,8*</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 - R A2P25]</td>
<td>30,08</td>
<td>74,70</td>
<td>[R A2P35 - R kontrol]</td>
<td>93,8*</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 - R A2P27]</td>
<td>19</td>
<td>74,70</td>
<td>[R A2P37 - R kontrol]</td>
<td>82,9*</td>
<td>74,70</td>
</tr>
</tbody>
</table>

Keterangan: * Menunjukkan hasil berbeda nyata (α = 0.05)

6. Rasa

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1P25</td>
<td>40</td>
<td>3</td>
<td>159,7</td>
<td>-1,34</td>
<td>3,325</td>
</tr>
<tr>
<td>A1P27</td>
<td>40</td>
<td>3</td>
<td>171,4</td>
<td>-0,56</td>
<td>3,46</td>
</tr>
<tr>
<td>A1P35</td>
<td>40</td>
<td>4</td>
<td>239,8</td>
<td>3,82</td>
<td>4,15</td>
</tr>
<tr>
<td>A1P37</td>
<td>40</td>
<td>4</td>
<td>207,9</td>
<td>1,77</td>
<td>3,9</td>
</tr>
<tr>
<td>A2P25</td>
<td>40</td>
<td>3</td>
<td>172,5</td>
<td>-0,51</td>
<td>3,475</td>
</tr>
<tr>
<td>A2P27</td>
<td>40</td>
<td>3,5</td>
<td>180,2</td>
<td>-0,02</td>
<td>3,35</td>
</tr>
<tr>
<td>A2P35</td>
<td>40</td>
<td>4</td>
<td>215,9</td>
<td>2,28</td>
<td>3,8</td>
</tr>
<tr>
<td>A2P37</td>
<td>40</td>
<td>3,5</td>
<td>175,7</td>
<td>-0,31</td>
<td>3,5</td>
</tr>
<tr>
<td>Kontrol</td>
<td>40</td>
<td>2</td>
<td>101,3</td>
<td>-5,11</td>
<td>2,625</td>
</tr>
</tbody>
</table>

Jumlah | 360 | 180,5 |

H = 45,77 DF = 8 P = 0,000
H = 49,20 DF = 8 P = 0,000 * (α = 0.05)

Uji Lanjutan *multiple comparison* pada parameter rasa

<table>
<thead>
<tr>
<th>Antar Perkakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
<th>Antar Perkakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1P25 - R A1P35]</td>
<td>80,1*</td>
<td>74,70</td>
<td>[R A1P35 - R A2P37]</td>
<td>64,1</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P27 - R A2P27]</td>
<td>8,8</td>
<td>74,70</td>
<td>[R A2P27 - R kontrol]</td>
<td>71,2</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P27 - R A2P37]</td>
<td>4,3</td>
<td>74,70</td>
<td>[R A2P27 - R kontrol]</td>
<td>4,5</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P27 - R kontrol]</td>
<td>70,11</td>
<td>74,70</td>
<td>[R A2P27 - R kontrol]</td>
<td>78,9*</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 - R A2P27]</td>
<td>59,6</td>
<td>74,70</td>
<td>[R A2P37 - R kontrol]</td>
<td>74,6</td>
<td>74,70</td>
</tr>
</tbody>
</table>

Keterangan: * Menunjukkan hasil berbeda nyata (α = 0.05)
6. Penilaian umum

<table>
<thead>
<tr>
<th>Kode</th>
<th>Panelis</th>
<th>Median</th>
<th>Rangking</th>
<th>Nilai Z</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1P25</td>
<td>40</td>
<td>4</td>
<td>215,2</td>
<td>2,24</td>
<td>3,9</td>
</tr>
<tr>
<td>A1P27</td>
<td>40</td>
<td>4</td>
<td>181,1</td>
<td>0,04</td>
<td>3,55</td>
</tr>
<tr>
<td>A1P35</td>
<td>40</td>
<td>4</td>
<td>232,6</td>
<td>3,36</td>
<td>4,05</td>
</tr>
<tr>
<td>A1P37</td>
<td>40</td>
<td>4</td>
<td>201,6</td>
<td>1,36</td>
<td>3,77</td>
</tr>
<tr>
<td>A2P25</td>
<td>40</td>
<td>3,5</td>
<td>174,2</td>
<td>-0,41</td>
<td>3,5</td>
</tr>
<tr>
<td>A2P27</td>
<td>40</td>
<td>3</td>
<td>165,7</td>
<td>-0,95</td>
<td>3,425</td>
</tr>
<tr>
<td>A2P35</td>
<td>40</td>
<td>4</td>
<td>212,4</td>
<td>2,06</td>
<td>3,85</td>
</tr>
<tr>
<td>A2P37</td>
<td>40</td>
<td>3</td>
<td>160,9</td>
<td>-1,26</td>
<td>3,375</td>
</tr>
<tr>
<td>Kontrol</td>
<td>40</td>
<td>2</td>
<td>80,8</td>
<td>-6,43</td>
<td>2,525</td>
</tr>
</tbody>
</table>

Jumlah 360 180,5

H = 58,93 DF = 8 P = 0,000
H = 84,10 DF = 8 P = 0,000* (α = 0,05)

Uji Lanjutan *multiple comparison* pada parameter penilaian umum

<table>
<thead>
<tr>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
<th>Antar Perlakuan</th>
<th>Nilai</th>
<th>α = 0,05</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R A1P25 − R A2P35]</td>
<td>13,6</td>
<td>74,70</td>
<td>[R A1P35 − R kontrol]</td>
<td>151,8*</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P25 − R A2P35]</td>
<td>2,8</td>
<td>74,70</td>
<td>[R A1P37 − R kontrol]</td>
<td>10,8</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R kontrol]</td>
<td>134,5*</td>
<td>74,70</td>
<td>[R A1P37 − R kontrol]</td>
<td>120,8*</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P25 − R kontrol]</td>
<td>51,5</td>
<td>74,70</td>
<td>[R A2P25 − R A2P27]</td>
<td>8,5</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R kontrol]</td>
<td>6,9</td>
<td>74,70</td>
<td>[R A2P25 − R A2P37]</td>
<td>13,3</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R kontrol]</td>
<td>15,4</td>
<td>74,70</td>
<td>[R A2P25 − R kontrol]</td>
<td>93,4*</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R kontrol]</td>
<td>31,3</td>
<td>74,70</td>
<td>[R A2P27 − R A2P35]</td>
<td>46,7</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R kontrol]</td>
<td>20,2</td>
<td>74,70</td>
<td>[R A2P27 − R A2P37]</td>
<td>4,8</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R kontrol]</td>
<td>100,3*</td>
<td>74,70</td>
<td>[R A2P27 − R kontrol]</td>
<td>84,9</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R A2P25]</td>
<td>58,4</td>
<td>74,70</td>
<td>[R A2P35 − R kontrol]</td>
<td>131,6*</td>
<td>74,70</td>
</tr>
<tr>
<td>[R A1P35 − R A2P27]</td>
<td>66,9</td>
<td>74,70</td>
<td>[R A2P37 − R kontrol]</td>
<td>80,1*</td>
<td>74,70</td>
</tr>
</tbody>
</table>

Keterangan:

A1M25 = Cumi-cumi tawar buatan, rasa manis, lama pengeringan 25 menit dan tingkat pengepresan L1P5
A1M27 = Cumi-cumi tawar buatan, rasa manis, lama pengeringan 25 menit dan tingkat pengepresan L2P7
A1M35 = Cumi-cumi tawar buatan, rasa manis, lama pengeringan 35 menit dan tingkat pengepresan L1P5
A1M37 = Cumi-cumi tawar buatan, rasa manis, lama pengeringan 35 menit dan tingkat pengepresan L2P7
A2M25 = Cumi-cumi tawar pasar, rasa manis, lama pengeringan 25 menit dan tingkat pengepresan L1P5
A2M27 = Cumi-cumi tawar pasar, rasa manis, lama pengeringan 25 menit dan tingkat pengepresan L2P7
A2M35 = Cumi-cumi tawar pasar, rasa manis, lama pengeringan 35 menit dan tingkat pengepresan L1P5
A2M37 = Cumi-cumi tawar pasar, rasa manis, lama pengeringan 35 menit dan tingkat pengepresan L2P7
A1P25 = Cumi-cumi tawar buatan, rasa pedas, lama pengeringan 25 menit dan tingkat pengepresan L1P5
A1P27 = Cumi-cumi tawar buatan, rasa pedas, lama pengeringan 25 menit dan tingkat pengepresan L2P7
A1P35 = Cumi-cumi tawar buatan, rasa pedas, lama pengeringan 35 menit dan tingkat pengepresan L1P5
A1P37 = Cumi-cumi tawar buatan, rasa pedas, lama pengeringan 35 menit dan tingkat pengepresan L2P7
A2P25 = Cumi-cumi tawar pasar, rasa pedas, lama pengeringan 25 menit dan tingkat pengepresan L1P5
A2P27 = Cumi-cumi tawar pasar, rasa pedas, lama pengeringan 25 menit dan tingkat pengepresan L2P7
Lampiran 8. Contoh perhitungan uji lanjut multiple comparison

Parameter warna uji organoleptik rasa manis pengaruh perlakuan jenis cumi-cumi, pengepresan dan lama pengovenan pada penelitian lanjutan.

\[
[R_i - R_j] > \frac{Z_{\alpha/2, p}}{\sqrt{N-1}} \sqrt{\frac{(N+1)k}{6}}
\]

\[
Z = \frac{k(k-1)}{2} = \frac{8(8-1)}{2} = 28
\]

\[
Z_{0,05/2,28} = 0,0009 \text{ (Tabel A4)}
\]

\[
= 3,13
\]

\[
\text{sehingga } (3,13) \sqrt{\frac{(320+1)8}{6}} = 64,75
\]

\[\text{[R A1M25} - \text{ R A1M27]} = [234,6 - 237,0] = 2,4 \text{ melawan 64,75 artinya tidak berbeda nyata}\]

\[\text{[R A1M25} - \text{ R A1M35]} = [234,6 - 135,9] = 98,7 \text{ melawan 64,75 artinya berbeda nyata}\]

Lampiran 9. Hasil analisa parameter kimia, fisik dan mikrobiologi cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>No</th>
<th>Kode</th>
<th>Ulangan</th>
<th>K. Air (%w/b)</th>
<th>(A_w)</th>
<th>TVB (mgN/100 gr bahan)</th>
<th>Tekstur (Kg/mm²)</th>
<th>Log (\Sigma) TPC (koloni/1gr)</th>
<th>Kapang (koloni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1M25</td>
<td>1</td>
<td>8,44</td>
<td>0,548</td>
<td>285,51</td>
<td>0,027</td>
<td>2,79</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>8,35</td>
<td>0,529</td>
<td>286,51</td>
<td>0,041</td>
<td>2,70</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>8,45</td>
<td>0,5385</td>
<td>285,51</td>
<td>0,0334</td>
<td>2,75</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A1M35</td>
<td>1</td>
<td>6,86</td>
<td>0,488</td>
<td>237,46</td>
<td>0,016</td>
<td>2,66</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>7,03</td>
<td>0,463</td>
<td>230,22</td>
<td>0,0375</td>
<td>2,60</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>6,945</td>
<td>0,4755</td>
<td>233,84</td>
<td>0,02775</td>
<td>2,60</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A1M27</td>
<td>1</td>
<td>9,95</td>
<td>0,522</td>
<td>304,34</td>
<td>0,027</td>
<td>2,99</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10,16</td>
<td>0,579</td>
<td>305,79</td>
<td>0,017</td>
<td>2,93</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>10,055</td>
<td>0,5905</td>
<td>305,065</td>
<td>0,022</td>
<td>2,96</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A1M37</td>
<td>1</td>
<td>8,32</td>
<td>0,573</td>
<td>264,96</td>
<td>0,015</td>
<td>2,74</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>7,79</td>
<td>0,517</td>
<td>264,98</td>
<td>0,017</td>
<td>2,69</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>8,055</td>
<td>0,545</td>
<td>264,98</td>
<td>0,016</td>
<td>2,72</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A2M26</td>
<td>1</td>
<td>11,39</td>
<td>0,443</td>
<td>216,55</td>
<td>0,035</td>
<td>2,60</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>11,19</td>
<td>0,436</td>
<td>223,96</td>
<td>0,016</td>
<td>2,72</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>11,29</td>
<td>0,439</td>
<td>220,25</td>
<td>0,0255</td>
<td>2,66</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A2M35</td>
<td>1</td>
<td>10,33</td>
<td>0,458</td>
<td>183,50</td>
<td>0,016</td>
<td>2,50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10,32</td>
<td>0,402</td>
<td>176,34</td>
<td>0,021</td>
<td>2,59</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>10,33</td>
<td>0,4247</td>
<td>180,40</td>
<td>0,0183</td>
<td>2,55</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A2M27</td>
<td>1</td>
<td>13,04</td>
<td>0,448</td>
<td>252,46</td>
<td>0,0109</td>
<td>2,96</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>12,67</td>
<td>0,456</td>
<td>243,60</td>
<td>0,0333</td>
<td>2,91</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>12,855</td>
<td>0,453</td>
<td>248,03</td>
<td>0,0465</td>
<td>2,94</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A2M37</td>
<td>1</td>
<td>10,20</td>
<td>0,432</td>
<td>205,61</td>
<td>0,0253</td>
<td>2,69</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10,99</td>
<td>0,437</td>
<td>205,61</td>
<td>0,0577</td>
<td>2,60</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rata-rata</td>
<td></td>
<td>10,55</td>
<td>0,4345</td>
<td>205,61</td>
<td>0,0410</td>
<td>2,64</td>
<td>0</td>
</tr>
</tbody>
</table>
Lampiran 10. Hasil analisa parameter kimia, fisik dan mikrobiologi cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>No</th>
<th>Kode</th>
<th>Ulangan</th>
<th>K. Air (4h/b)</th>
<th>A_r</th>
<th>TVB (mgN/100 gr bahan)</th>
<th>Tekstur (Kg/mm²)</th>
<th>Log Σ TPC (kolonilgi)</th>
<th>Kapang (koloni)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1P25</td>
<td>1</td>
<td>13.00</td>
<td>0.564</td>
<td>252.63</td>
<td>0.038</td>
<td>5.23</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>12.14</td>
<td>0.574</td>
<td>230.16</td>
<td>0.044</td>
<td>5.15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>12.57</td>
<td>0.569</td>
<td>241.42</td>
<td>0.041</td>
<td>5.19</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A1P35</td>
<td>1</td>
<td>9.20</td>
<td>0.507</td>
<td>204.03</td>
<td>0.046</td>
<td>5.12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.48</td>
<td>0.472</td>
<td>206.55</td>
<td>0.031</td>
<td>5.12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>9.34</td>
<td>0.4895</td>
<td>205.29</td>
<td>0.0365</td>
<td>5.13</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A1P27</td>
<td>1</td>
<td>13.18</td>
<td>0.603</td>
<td>264.30</td>
<td>0.041</td>
<td>5.72</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>12.94</td>
<td>0.596</td>
<td>254.30</td>
<td>0.048</td>
<td>5.63</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>13.06</td>
<td>0.5995</td>
<td>254.30</td>
<td>0.0445</td>
<td>5.68</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A1P37</td>
<td>1</td>
<td>9.51</td>
<td>0.514</td>
<td>189.87</td>
<td>0.039</td>
<td>5.16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>9.79</td>
<td>0.515</td>
<td>238.58</td>
<td>0.0435</td>
<td>5.18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>9.65</td>
<td>0.5145</td>
<td>213.725</td>
<td>0.04125</td>
<td>5.16</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>A2P25</td>
<td>1</td>
<td>20.97</td>
<td>0.605</td>
<td>154.19</td>
<td>0.0355</td>
<td>5.70</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>20.07</td>
<td>0.608</td>
<td>166.72</td>
<td>0.0155</td>
<td>5.62</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>20.07</td>
<td>0.607</td>
<td>160.456</td>
<td>0.025</td>
<td>5.68</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>A2P35</td>
<td>1</td>
<td>17.05</td>
<td>0.579</td>
<td>129.31</td>
<td>0.020</td>
<td>5.59</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>17.31</td>
<td>0.565</td>
<td>154.62</td>
<td>0.016</td>
<td>5.81</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>17.185</td>
<td>0.572</td>
<td>141.965</td>
<td>0.018</td>
<td>5.60</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>A2P27</td>
<td>1</td>
<td>21.70</td>
<td>0.633</td>
<td>168.92</td>
<td>0.027</td>
<td>5.62</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>21.60</td>
<td>0.689</td>
<td>143.33</td>
<td>0.026</td>
<td>5.72</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>21.65</td>
<td>0.661</td>
<td>156.125</td>
<td>0.0265</td>
<td>5.69</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A2P37</td>
<td>1</td>
<td>17.94</td>
<td>0.092</td>
<td>156.00</td>
<td>0.016</td>
<td>5.67</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>18.57</td>
<td>0.605</td>
<td>143.21</td>
<td>0.016</td>
<td>5.56</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rata-rata</td>
<td>18.065</td>
<td>0.5955</td>
<td>149.905</td>
<td>0.017</td>
<td>5.82</td>
<td>0</td>
</tr>
</tbody>
</table>

Lampiran 11. Hasil analisa ragam kadar air (%) cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>33.375</td>
<td>33.375</td>
<td>518.67*</td>
<td>5.32</td>
</tr>
<tr>
<td>Tingkat pengepresan (P)</td>
<td>1</td>
<td>5,2327</td>
<td>5,2327</td>
<td>81.34*</td>
<td>5.32</td>
</tr>
<tr>
<td>Lama pengeringan (O)</td>
<td>1</td>
<td>11,3401</td>
<td>11,3401</td>
<td>176,62*</td>
<td>5.32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>0.2328</td>
<td>0.2328</td>
<td>3.62</td>
<td>5.32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>0.0068</td>
<td>0.0068</td>
<td>0.11</td>
<td>5.32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>0.7869</td>
<td>0.7869</td>
<td>13.66*</td>
<td>5.32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>0.1502</td>
<td>0.1502</td>
<td>2.33</td>
<td>5.32</td>
</tr>
<tr>
<td>Galat</td>
<td>8</td>
<td>0.5146</td>
<td>0.0843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>51.7355</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: * Berbeda nyata pada taraf 5 % Huruf yang berbeda menunjukkan berbeda nyata

Uji lanjut duncan Jenis cumi-cumi terhadap kadar air cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumi tawar buatan</td>
<td>A</td>
</tr>
<tr>
<td>Cumi tawar pasar</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan tingkat pengepresan terhadap kadar air cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1P5</td>
<td>A</td>
</tr>
<tr>
<td>L2P7</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan lama pengeringan oven terhadap kadar air cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 menit</td>
<td>A</td>
</tr>
<tr>
<td>35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>
Uji lanjut duncan interaksi antara pengepresan dengan pengeringan oven terhadap kadar air cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1P5-25 menit</td>
<td>C</td>
</tr>
<tr>
<td>L1P5-35 menit</td>
<td>A</td>
</tr>
<tr>
<td>L2P7-25 menit</td>
<td>D</td>
</tr>
<tr>
<td>L2P7 35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>

Huruf yang berbeda menunjukkan berbeda nyata

Lampiran 12. Hasil analisa ragam kadar air (%) cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jenis cumi (A)</th>
<th>Tingkat pengerasan (P)</th>
<th>Lama pengeringan (O)</th>
<th>AP</th>
<th>PO</th>
<th>APO</th>
<th>Galat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumber Keragaman</td>
<td>db</td>
<td>JK</td>
<td>KT</td>
<td>F hitung</td>
<td>F tab (0,05)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>262,278</td>
<td>262,278</td>
<td>1125,84 *</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,822</td>
<td>1,822</td>
<td>7,82 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>46,717</td>
<td>46,717</td>
<td>200,54 *</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,303</td>
<td>0,303</td>
<td>1,30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,038</td>
<td>0,038</td>
<td>0,16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,176</td>
<td>0,176</td>
<td>0,76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,008</td>
<td>0,008</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,664</td>
<td>0,233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>313,256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uji lanjut duncan Jenis cumi-cumi terhadap kadar air cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumi tawar buatan</td>
<td>A</td>
</tr>
<tr>
<td>Cumi tawar pasar</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan tingkat pengepresan terhadap kadar air cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1P5</td>
<td>A</td>
</tr>
<tr>
<td>L2P7</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan lama pengeringan oven terhadap kadar air cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 menit</td>
<td>A</td>
</tr>
<tr>
<td>35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>

Huruf yang berbeda menunjukkan berbeda nyata

Lampiran 13. Hasil analisa ragam aktivitas air (Aω) cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jenis cumi (A)</th>
<th>Tingkat pengerasan (P)</th>
<th>Lama pengeringan (O)</th>
<th>AP</th>
<th>PO</th>
<th>APO</th>
<th>Galat</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumber Keragaman</td>
<td>db</td>
<td>JK</td>
<td>KT</td>
<td>F hitung</td>
<td>F tab (0,05)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,0311522</td>
<td>0,0311522</td>
<td>46,60 *</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,0025</td>
<td>0,0025</td>
<td>3,74</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,002304</td>
<td>0,002304</td>
<td>3,45</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,0009922</td>
<td>0,0009922</td>
<td>1,48</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,0004202</td>
<td>0,0004202</td>
<td>0,63</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,0005760</td>
<td>0,0005760</td>
<td>0,66</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,0011222</td>
<td>0,0011222</td>
<td>1,68</td>
<td>5,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,005348</td>
<td>0,0006685</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,044415</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uji lanjut duncan Jenis cumi-cumi terhadap aktivitas air (Aω) cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumi tawar buatan</td>
<td>A</td>
</tr>
<tr>
<td>Cumi tawar pasar</td>
<td>B</td>
</tr>
</tbody>
</table>

Huruf yang berbeda menunjukkan berbeda nyata
Lampiran 14. Hasil analisa ragam aktivitas air (A_w) cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>0,017689</td>
<td>0,017689</td>
<td>58.5 *</td>
<td>5,32</td>
</tr>
<tr>
<td>Tingkat pengepresan (P)</td>
<td>1</td>
<td>0,004624</td>
<td>0,004624</td>
<td>15,16 *</td>
<td>5,32</td>
</tr>
<tr>
<td>Lama pengeringan (O)</td>
<td>1</td>
<td>0,0171610</td>
<td>0,0171610</td>
<td>58.27 *</td>
<td>5,32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>0,0001563</td>
<td>0,0001563</td>
<td>0,51</td>
<td>5,32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>0,0011222</td>
<td>0,0011222</td>
<td>3,68</td>
<td>5,32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>0,00027222</td>
<td>0,00027222</td>
<td>0,89</td>
<td>5,32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>0,0001210</td>
<td>0,0001210</td>
<td>0,40</td>
<td>5,32</td>
</tr>
<tr>
<td>Galat</td>
<td>8</td>
<td>0,00244</td>
<td>0,0003050</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>0,043568</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan: * Barbeda nyata pada taraf ul 5 %

Uji lanjut duncan Jenis cumi-cumi terhadap aktivitas air (A_w) cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumi tawar buatan</td>
<td>A</td>
</tr>
<tr>
<td>Cumi tawar pasar</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan tingkat pengepresan terhadap aktivitas air (A_w) cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1P5</td>
<td>A</td>
</tr>
<tr>
<td>L2P7</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan lama pengeringan oven terhadap aktivitas air (A_w) cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 menit</td>
<td>A</td>
</tr>
<tr>
<td>35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>

Huruf yang berbeda menunjukkan berbeda nyata

Lampiran 15. Hasil analisa ragam TVB (mg/100 gr bahan) cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>13874,5</td>
<td>13874,5</td>
<td>928,06 *</td>
<td>5,32</td>
</tr>
<tr>
<td>Tingkat pengepresan (P)</td>
<td>1</td>
<td>2712,3</td>
<td>2712,3</td>
<td>181,43 *</td>
<td>5,32</td>
</tr>
<tr>
<td>Lama pengeringan (O)</td>
<td>1</td>
<td>7613,4</td>
<td>7613,4</td>
<td>509,27 *</td>
<td>5,32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>1,9</td>
<td>1,9</td>
<td>0,13</td>
<td>5,32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>20,2</td>
<td>20,2</td>
<td>1,35</td>
<td>5,32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>22,6</td>
<td>22,6</td>
<td>1,51</td>
<td>5,32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>46,7</td>
<td>46,7</td>
<td>3,12</td>
<td>5,32</td>
</tr>
<tr>
<td>Galat</td>
<td>15</td>
<td>119,6</td>
<td>14,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>2441,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan: * Berbeda nyata pada taraf ul 5 %

Uji lanjut duncan Jenis cumi-cumi terhadap TVB (mg/100 gr bahan) cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumi tawar buatan</td>
<td>A</td>
</tr>
<tr>
<td>Cumi tawar pasar</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan tingkat pengepresan terhadap TVB cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1P5</td>
<td>A</td>
</tr>
<tr>
<td>L2P7</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan lama pengeringan oven terhadap TVB cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 menit</td>
<td>A</td>
</tr>
<tr>
<td>35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>
Lampiran 16. Hasil analisa ragam TVB (mg/100 gr bahan) cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>24271,3</td>
<td>24271,3</td>
<td>87,27 *</td>
<td>5,32</td>
</tr>
<tr>
<td>Tingkat pengepresan (P)</td>
<td>1</td>
<td>219,4</td>
<td>219,4</td>
<td>0,79</td>
<td>5,32</td>
</tr>
<tr>
<td>Lama pengerian (O)</td>
<td>1</td>
<td>2338,4</td>
<td>2338,4</td>
<td>8,41 *</td>
<td>5,32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>42,3</td>
<td>42,3</td>
<td>0,15</td>
<td>5,32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>803,6</td>
<td>803,6</td>
<td>2,69</td>
<td>5,32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>1,6</td>
<td>1,6</td>
<td>0,01</td>
<td>5,32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>32,6</td>
<td>32,6</td>
<td>0,12</td>
<td>5,32</td>
</tr>
<tr>
<td>Galat</td>
<td>8</td>
<td>2225,1</td>
<td>278,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>29694,2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uji lanjut duncan Jenis cumi-cumi terhadap TVB cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumi tawar buatan</td>
<td>A</td>
</tr>
<tr>
<td>Cumi tawar pasar</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan lama pengerian oven terhadap TVB cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 menit</td>
<td>A</td>
</tr>
<tr>
<td>35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>

Huruf yang berbeda menunjukkan berbeda nyata

Lampiran 17. Hasil analisa ragam log jumlah TPC cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>0,0144</td>
<td>0,0144</td>
<td>4,43</td>
<td>5,32</td>
</tr>
<tr>
<td>Tingkat pengepresan (P)</td>
<td>1</td>
<td>0,1225</td>
<td>0,1225</td>
<td>37,69 *</td>
<td>5,32</td>
</tr>
<tr>
<td>Lama pengerian (O)</td>
<td>1</td>
<td>0,18</td>
<td>0,18</td>
<td>49,23 *</td>
<td>5,32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>0,0004</td>
<td>0,0004</td>
<td>0,12</td>
<td>5,32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>0,0001</td>
<td>0,0001</td>
<td>0,03</td>
<td>5,32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>0,0196</td>
<td>0,0196</td>
<td>0,03 *</td>
<td>5,32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>0,0016</td>
<td>0,0016</td>
<td>0,43</td>
<td>5,32</td>
</tr>
<tr>
<td>Galat</td>
<td>8</td>
<td>0,026</td>
<td>0,00325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>0,3448</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uji lanjut duncan tingkat pengepresan terhadap jumlah TPC cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1P5</td>
<td>A</td>
</tr>
<tr>
<td>L2P7</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan lama pengerian oven terhadap jumlah TPC cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 menit</td>
<td>A</td>
</tr>
<tr>
<td>35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>

Uji lanjut duncan interaksi antara pengepresan dengan pengerian oven terhadap jumlah TPC cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Signifikasi 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1P5-25 menit</td>
<td>C</td>
</tr>
<tr>
<td>L1P5-35menit</td>
<td>A</td>
</tr>
<tr>
<td>L2P7-25 menit</td>
<td>D</td>
</tr>
<tr>
<td>L2P7 35 menit</td>
<td>B</td>
</tr>
</tbody>
</table>

Huruf yang berbeda menunjukkan berbeda nyata
Lampiran 18. Hasil analisa ragam log jumlah TPC cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>0.49</td>
<td>0.49</td>
<td>180.65</td>
<td>5.32</td>
</tr>
<tr>
<td>Tingkat pengpresan (P)</td>
<td>1</td>
<td>0.075625</td>
<td>0.076625</td>
<td>27.83</td>
<td>5.32</td>
</tr>
<tr>
<td>Lama pengerigan (Q)</td>
<td>1</td>
<td>0.1225</td>
<td>0.1225</td>
<td>45.16</td>
<td>5.32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>0.0525</td>
<td>0.0625</td>
<td>23.04</td>
<td>5.32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>0.05523</td>
<td>0.05523</td>
<td>20.36</td>
<td>5.32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>0.0484</td>
<td>0.0484</td>
<td>17.84</td>
<td>5.32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>0.05062</td>
<td>0.05062</td>
<td>18.66</td>
<td>5.32</td>
</tr>
<tr>
<td>Galat</td>
<td>8</td>
<td>0.0217</td>
<td>0.0271</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>0.92858</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Lampiran 19. Hasil analisa ragam tekstur/kekerasan cumi-cumi kertas rasa manis

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>0.0002441</td>
<td>0.0002441</td>
<td>0.52</td>
<td>5.32</td>
</tr>
<tr>
<td>Tingkat pengpresan (P)</td>
<td>1</td>
<td>0.0000926</td>
<td>0.0000926</td>
<td>0.20</td>
<td>5.32</td>
</tr>
<tr>
<td>Lama pengerigan (Q)</td>
<td>1</td>
<td>0.000147</td>
<td>0.000147</td>
<td>0.31</td>
<td>5.32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>0.0011139</td>
<td>0.0011139</td>
<td>2.36</td>
<td>5.32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>0.0000013</td>
<td>0.0000013</td>
<td>0</td>
<td>5.32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>0.0000008</td>
<td>0.0000008</td>
<td>0</td>
<td>5.32</td>
</tr>
<tr>
<td>Galat</td>
<td>8</td>
<td>0.0037831</td>
<td>0.0004729</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>0.0053829</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Lampiran 20. Hasil analisa ragam tekstur/kekerasan cumi-cumi kertas rasa pedas

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tab (0,05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jenis cumi (A)</td>
<td>1</td>
<td>0.00153077</td>
<td>0.00153077</td>
<td>2.60</td>
<td>5.32</td>
</tr>
<tr>
<td>Tingkat pengpresan (P)</td>
<td>1</td>
<td>0.0000977</td>
<td>0.0000977</td>
<td>0.21</td>
<td>5.32</td>
</tr>
<tr>
<td>Lama pengerigan (Q)</td>
<td>1</td>
<td>0.00012939</td>
<td>0.00012939</td>
<td>2.76</td>
<td>5.32</td>
</tr>
<tr>
<td>AP</td>
<td>1</td>
<td>0.0000977</td>
<td>0.0000977</td>
<td>0.21</td>
<td>5.32</td>
</tr>
<tr>
<td>AO</td>
<td>1</td>
<td>0.0003164</td>
<td>0.0003164</td>
<td>0.67</td>
<td>5.32</td>
</tr>
<tr>
<td>PO</td>
<td>1</td>
<td>0.0000189</td>
<td>0.0000189</td>
<td>0.04</td>
<td>5.32</td>
</tr>
<tr>
<td>APO</td>
<td>1</td>
<td>0.0000039</td>
<td>0.0000039</td>
<td>0.01</td>
<td>5.32</td>
</tr>
<tr>
<td>Galat</td>
<td>8</td>
<td>0.00037562</td>
<td>0.00004695</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>0.00206823</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>