PERUBAHAN KUALITAS ONGGOK UREA-ZEOLIT-FERMENTASI
(Cassabio) PADA LAMA FERMENTASI YANG BERBEDA

The Changes in Chemical Content of Fermented Onggok-Urea-Zeolit
(Cassabio) with Different Fermentation Time

SKRIPSI
SUHARTONO

JURUSAN ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2001
ABSTRACT

Advisor : Ir. Ahmad Darobin Lubis, MSc
Co Advisor : Ir. Abdul Djamil Hasjmy, MS

By product from tapiocca industry (onggok) is abundant in Indonesia. Generally, quality onggok is not so good due to low in crude protein and high in crude fibre. Therefore, fermentation technology by using *Aspergillus niger* will help utilization of onggok as feed. Microorganism have capability to increase the quality of onggok with satisfactory result.

This research was carried out at Feed and Technology Science Laboratory, Bogor Agricultural University, from Februari to March 2000. The objective of this research is to find out the optimum length time of fermentation with *Aspergillus niger* to increase nutrient quality in order to produce high quality of Cassabio.

Cassabio were incubated for 4 days, 6 days, 8 days and 10 days respectively as treatments. parameter were the content of ash, crude protein, crude fibre, and gross energy. The Research design was Completely Randomized Design with 4 treatment and 3 replicates. The data were analyzed using ANOVA (Analysis of Variant). The significant differences among treatments data were analyzed using Duncan's New Multiple Range.

Result showed that the length time fermentation had no significant effect an ash and crude protein. Where as, the fermentation processed to increase crude protein content. The fermentation time reduced (P<0.05) on crude fibre and gross energy.

The six days length fermentation time showed better nutrients content. However viewed by ingredient nutrient, the 8 days fermentation time showed high crude protein and low crude fibre compared to the others.
RINGKASAN

Pembimbing Utama : Ir. Ahmad Darobin Lubis, MSc
Pembimbing Anggota : Ir. Abdul Djamil Hasjiny, MS

Penelitian ini dilakukan dengan tujuan untuk mengetahui lama fermentasi kapang Aspergillus niger yang optimum dalam meningkatkan kualitas zat makanan onggok sehingga menghasilkan produk Cassabio yang berkualitas tinggi.

Lama fermentasi tidak mempengaruhi kadar abu, dan protein kasar. Walaupun demikian perlakuan lama fermentasi cenderung meningkatkan kandungan protein kasar (P<0.1). Lama fermentasi nyata (P<0.05) menurunkan serat kasar dan meningkatkan energi bruto.

Untuk aplikasi di lapangan perlakuan lama fermentasi 6 hari lebih baik bila ditinjau dari efisiensi waktu. Bila ditinjau dari kualitas komposisi zat makanan, lama fermentasi 8 hari lebih baik karena mempunyai protein kasar yang tinggi dan serat kasar yang rendah.
PERUBAHAN KUALITAS ONGGOK UREA-ZEOLIT-FERMENTASI
(Cassabio) PADA LAMA FERMENTASI YANG BERBEDA

Skripsi ini merupakan salah satu syarat untuk
memperoleh Gelar Sarjana Peternakan
pada Fakultas Peternakan
Institut Pertanian Bogor

Oleh
SUHARTONO
D02496066

JURUSAN ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2001
PERUBAHAN KUALITAS ONGGOK UREA-ZEOLIT-FERMENTASI (Cassabio) PADA LAMA FERMENTASI YANG BERBEDA

Oleh

SUHARTONO
D02496066

Skripsi ini telah disetujui dan disidangkan

di hadapan Komisi Ujian Lisan pada tanggal 2 Februari 2001

Menyetujui,

Pembimbing Utama,

Ir. Ahmad Darobin Lubis, MSc

Pembimbing Anggota,

Ir. Abdul Djamil Hasjmy, MS

Mengetahui,

Ketua Jurusan
Ilmu Nutrisi dan Makanan Ternak
Fakultas Peternakan
Institut Pertanian Bogor

Dr. Ir. Nahrowi Ramli, MSc

Dekan
Fakultas Peternakan
Institut Pertanian Bogor

Prof. Dr.Ir. Soedarmadi H, MSc
RIWAYAT HIDUP

Terlahir di Kota Rembang tanggal 6 Maret 1978 di Rembang, sebagai anak ketiga dari tiga bersaudara dari pasangan Bapak Wagirin dan Ibu Prisni.

Pada tahun yang sama diterima sebagai mahasiswa Tingkat Persiapan Bersama IPB melalui porgram UMPTN (Ujian Masuk Perguruan Tinggi Negeri) dan terdaftar pada program studi Ilmu Nutrisi dan Makanan Ternak, Fakultas Peternakan.

Selama di IPB penulis aktif sebagai anggota Himpunan Mahasiswa Ilmu Nutrisi dan Makanan Ternak (HIMASITER).
PRAKATA

Bismillahirrohmanirrohim.

Alhamdulillah. Puji syukur penulis ucapkan kepada Allah SWT atas limpahan rahmat dan hidayah-Nya, sehingga penulis dapat menyelesaikan studi serta penyusunan Karya Ilmiah ini.

Pada kesempatan ini penulis mengucapkan terima kasih yang tak terhingga kepada Bapak Ir. Ahmad Darobin Lubis, MSc dan Bapak Ir. Abdul Djamil Hasjmy, MS dan Ibu Dr. Ir. Erika B. Laconi, MS selaku pembimbing skripsi, yang telah banyak memberikan pengarahan dan saran, semajak persiapan penelitian hingga selesaianya penulisan skripsi ini.

Terima kasih kepada Bapak Dr. Ir. Komang G Wiryawan, MSc atas segala nasihatnya saat seminar dan Bapak Dr. Ir. Nahrowi Ramli, MSc selaku dosen pembimbing akademik atas segala perhatian dan pengorbanannya selama penulis menyelesaikan studi.

Kepada Bapak Dr. Ir. Toto Toharmat, MSc dan Bapak Ir. H. Amirudin Saleh, MS sebagai dosen penguji, terima kasih atas segala saran dan nasihatnya saat ujian.

Ucapan terima kasih juga penulis sampaikan kepada keluarga kecilku : Bapak Wagirin dan Ibu Prisni dan kedua kakakku tercinta Agus Susanto (Mas Totok) dan Titik Widiastuti (Mbak Titik) yang selalu yang selalu memberikan kasih sayangnya, perhatian, dan do’a kepada penulis hingga penulis dapat menyelesaikan studi dengan baik.
Rekan satu penelitianku yaitu Ika, Hasta, Budi semoga kita tetap selalu kompak. Tak lupa saya ucapkan terima kasih kepada Pak Sofyan, Bu Welly, Bu Eneh, Bu Irma, Pak Opik dan Pak Sukri atas bantuannya selama penulis penelitian. Terima kasih kepada teman-teman “Cylindrica” (Cipto, Aat, Bugik, Gumis, Setyo, Pudel, Ipung dan Rusli) yang selama ini jadi keluarga kecilku semoga kita tetap selalu teringat kebersamaan kita. Temen-temen terbaikku : Dian, Hera, Ipunk, Jay, Nana, Udin, Fajar, Emmy, Roni, dan Yunto semoga kompak selalu dan rekan-rekan INMT "33 yang tidak mungkin penulis sebutkan satu persatu. Tak lupa pada tape Sony-ku yang telah menemani belajar selama menempuh studi.

Akhirnya dengan segala kerendahan hati, penulis berharap semoga karya ilmiah ini bermanfaat bagi yang memerlukannya.

Bogor, Februari 2001

Penulis
DAFTAR ISI

Halaman

ABSTRACT ... i
RINGKASAN .. ii
RIWAYAT HIDUP ... v
PRAKATA .. vi
DAFTAR ISI ... ix
DAFTAR TABEL ... xi
DAFTAR GAMBAR ... xii
DAFTAR LAMPIRAN .. xiii
PENDAHULUAN ... 1

TINJAUAN PUSTAKA ... 3

Onggok sebagai Limbah Industri Tapioka 3
Potensi Onggok sebagai Pakan Ternak 4
Sifat Urea dan Pemanfaatannya dalam Pakan Ternak 7
Sifat Zeolit dan Pemanfaatannya dalam Pakan Ternak 8
Fermentasi Medium Padat ... 10
Kapang Sebagai Inokulum Fermentasi 11
Kapang Aspergillus niger .. 12
Pengaruh Lama Fermentasi terhadap Kualitas Pakan 13
Faktor Lingkungan dalam Fermentasi 15

ix
Waktu Inkubasi dan Perubahan Selama Fermentasi............. 16
Onggok-Urea-Zeolit Fermentasi................................. 17
MATERI DAN METODE ... 18
 Waktu dan Tempat Penelitian.................................... 18
 Bahan dan Alat... 18
 Metode Penelitian... 19
 Perbanyakan Inokulum.. 19
 Pembuatan starter.. 19
 Fermentasi Bahan.. 20
 Rancangan Penelitian... 22
 Metode Analisa Zat Makanan.................................... 23
HASIL DAN PEMBAHASAN.. 26
 Komposisi Bahan Baku Media.................................... 26
 Perubahan Kandungan Zat Makanan Onggok Selama Fermentasi
 Kadar Abu... 27
 Kadar Protein Kasar.. 29
 Kadar Serat Kasar.. 32
 Energi Bruto .. 35
KESIMPULAN DAN SARAN ... 37
DAFTAR PUSTAKA.. 38
LAMPIRAN.. 42
<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Komposisi Zat Makanan Onggok dari Beberapa Literatur (% BK)</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Hasil Analisa Kandungan Zat Makanan dalam Onggok (% BK)</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Rataan Perubahan Kandungan Zat Makanan dalam Onggok – Urea-Zeolit Fermentasi (Cassabio) Selama Fermentasi</td>
<td>28</td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Alir Proses Ekstraksi Tepung Tapioka dan Tepung Onggok Industri Rakyat</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Pembuatan Onggok-Urea-Zeolit Fermentasi dengan Aspergillus niger</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Grafik Rataan Kadar Abu Cassabio Selama Proses Fermentasi</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Grafik Rataan Kadar Protein Kasar Cassabio Selama Proses Fermentasi</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Grafik Rataan Kadar Serat Kasar Cassabio Selama Proses Fermentasi</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Grafik Rataan Energi Bruto Cassabio selama Proses Fermentasi</td>
<td>36</td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Analisis Ragam (Anova) untuk Data Kadar Abu Cassabio Selama Proses Fermentasi</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>Analisis Ragam (Anova) untuk Data Kadar Protein Kasar Cassabio Selama Proses Fermentasi</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Analisis Ragam (Anova) untuk Data Serat Kasar Cassabio Selama Proses Fermentasi</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Analisis Ragam (Anova) untuk Energi Bruto Cassabio Selama Proses Fermentasi</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>Contoh Uji Duncan Kadar Serat Kasar</td>
<td>46</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar belakang

Onggok merupakan limbah pembuatan tepung tapioka, yang ketersediaannya saat ini cukup melimpah. Sebagai limbah, onggok bisa mencemari lingkungan bila tidak dimanfaatkan. Salah satu upaya pemanfaatan limbah onggok adalah sebagai pakan ternak.

Penggunaan urea yang ditambahkan ke dalam media fermentasi akan diuraikan enzim urease menjadi amonia dan karbondioksida. Penguraian amonia yang cepat akan dimanfaatkan Aspergillus niger untuk membentuk protein tubuhnya. Sedangkan zeolit digunakan untuk membantu menyerap amonia dari peruraian urea. Selain itu zeolit juga dapat mensuplai mineral yang dibutuhkan kapang untuk
pertumbuhannya, karena zeolit mengandung unsur mineral seperti Na, K, Mg, Ca, Sr, Ba, Al, dan Si.

Kualitas hasil fermentasi bahan pakan secara biologis sangat tergantung pada ketersediaan energi dan nutrisi bagi pertumbuhan mikroba, kualitas lingkungan bahan dan lama fermentasi. Lama fermentasi merupakan faktor yang sangat mempengaruhi lama hidup dan jumlah mikroba yang berkembang biak. Fase pertumbuhan mikroba terdiri atas 3 fase yaitu fase pertumbuhan awal, fase pertumbuhan eksponensial dan fase stasioner. Fase-fase ini keberadaannya sangat mempengaruhi jumlah zat makanan yang hilang dalam bahan dan kekuatan fermentasi dari mikroba. Zat makanan yang terkandung dalam bahan akan semakin berkurang bila lama fermentasi makin panjang sehingga kekuatan fermentasi dari mikroba akan menurun karena tidak mempunyai sumber energi untuk aktivitasnya. Dengan mengetahui lama fermentasi maka akan diketahui waktu yang optimal dalam proses fermentasi sehingga akan dihasilkan kualitas pakan yang lebih baik.

Tujuan

Tujuan dari penelitian ini adalah untuk mengetahui lama fermentasi kapang *Aspergillus niger* yang optimum dalam meningkatkan kualitas zat makanan bahan pakan onggok, sehingga menghasilkan onggok-urea-zeolit fermentasi (*Cassabio*) yang berkualitas.
TINJAUAN PUSTAKA

Onggok sebagai Limbah Industri Tapioka

Ketersediaan jumlah onggok sangat bergantung pada varietas dan mutu ubi kayu yang diolah menjadi tapioka, efefisien proses ekstraksi pati tapioka dan penanganannya. Pada proses pengolahan ubi kayu menjadi tapioka diperoleh hasil sampingan berupa padatan yang disebut onggok dan hasil buangan berupa cairan yang disebut sludge. Dalam pengolahan tapioka, satu ton ubi kayu segar diperoleh kurang lebih 0.250 ton tapioka, 0.114 ton onggok dan 0.120 ton sludge (Enie, 1989).

Untuk menjadikan onggok sebagai pakan ternak diperlukan suatu penanganan dan pengolahan lebih lanjut karena kandungan zat makanannya terutama kandungan proteinnya yang cukup rendah.

Potensi Onggok sebagai Pakan Ternak

Estiningdriati (1997) menyatakan bahwa pemanfaatan onggok yang difermentasi sebagai bahan ransum ayam broiler cenderung menurunkan pertambahan bobot badan. Penelitian yang dilakukan oleh Kompiang *et al.*, (1994) menunjukkan bahwa ayam broiler yang diberi ransum yang mengandung ubi kayu yang difermentasi dan kulit ubi kayu yang difermentasi pada taraf 15 persen
menghasilkan pertambahan bobot badan yang menurun bila dibandingkan dengan yang diberi ransum yang mengandung bahan tersebut pada taraf 0, 5, dan 10 persen.

<table>
<thead>
<tr>
<th>Zat makanan</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abu</td>
<td>0.85</td>
<td>1.44</td>
<td>0.81</td>
</tr>
<tr>
<td>Protein Kasar</td>
<td>2.21</td>
<td>1.154</td>
<td>2.10</td>
</tr>
<tr>
<td>Serat Kasar</td>
<td>11.16</td>
<td>15.46</td>
<td>10.61</td>
</tr>
<tr>
<td>Lemak</td>
<td>0.21</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>BETN</td>
<td>81.21</td>
<td>82.09</td>
<td>81.21</td>
</tr>
<tr>
<td>Energi bruto (kal/gr)</td>
<td>3558</td>
<td>3427</td>
<td>3558</td>
</tr>
</tbody>
</table>

Sumber:
1. Lubis (1995)
Gambar. 1. Alir Proses Ekstraksi Tepung Tapioka dan Tepung Onggok Industri Rakyat (Direktorat Bina Peternakan dan Fapet IPB, 1985)
Sifat Urea dan Pemanfaatannya dalam Pakan Ternak

Urea merupakan salah satu sumber nitrogen bukan protein (NBP) yang berbentuk kristal putih, bersifat mudah larut dalam air dan mengandung 45 persen Nitrogen (Parakkasi, 1995). Urea dibuat dengan jalan mereaksikan amonia dan karbon-dioksida seperti reaksi berikut:

$$\text{NH}_4 + \text{CO}_2 \rightarrow \text{NH}_4 - \text{O} - \text{C} - \text{O} - \text{NH}_4 \rightarrow \text{H}_2\text{N} - \text{C} - \text{NH}_2$$

Urea dalam proses fermentasi akan diuraikan kembali oleh enzim urease menjadi amonia dan karbon-dioksida, selanjutnya amonia akan digunakan untuk membentuk asam amino. Menurut Fardiaz (1992), nitrogen dalam media fermentasi mempunyai fungsi fisiologis bagi mikroorganisme, yaitu sebagai bahan untuk mensintesis protein, asam nukleat dan koenzim. Salah satu pembatas dalam penggunaan urea yaitu kecepatan perubahannya menjadi NH₃ empat kali lebih cepat dibandingkan dengan kecepatan penggunaan NH₃ menjadi sel mikroba.

Parakkasi (1995) mengemukakan bahwa pada penambahan urea sebagai sumber nitrogen bukan protein (NBP) ada beberapa syarat yang harus dipenuhi yaitu:

1. Ketersediaan karbohidrat yang mudah dicerna (molases, pati, dan lain-lain) yang cukup. Karbohidrat mudah dicerna digunakan 6 bagian untuk setiap bagian urea, uilainya sama dengan 9 bagian bungkil kedelai
2. Urea harus dicampur dengan baik
3. Diberikan waktu adaptasi sekitar 2-3 minggu
4. Jangan memakai urea untuk mensuplai lebih dari 1/3 N protein ekuivalen dalam ransum penggemukan

5. Jangan memakai urea lebih besar dari 1 persen dari ransum lengkap atau lebih besar dari 5 persen konsentrat

6. Pemberian urea seharusnya disertai dengan penambahan mineral

Sifat Zeolit dan Pemanfaatannya dalam Pakan Ternak

Zeolit adalah kelompok mineral hydrous aluminium silikat dari beberapa logam terutama Ca dan Na, kadang-kadang dari Ba, Sr dan K dan jarang dari Mg dan Mn. Zeolit mempunyai struktur kristal tetrahedra dari alumino silikon-oksigen yang berisi molekul air yang mudah lepas, kation yang dipertukarkan mudah bereaksi dengan asam dan mengembang bila didekatkan dengan api (Anwar et al., 1985).

Astiana (1989) menyatakan bahwa struktur yang membangun zeolit mempunyai banyak rongga-rongga kecil yang dapat menyimpan air dan kation. Air dapat dilepaskan sebagian atau seluruhnya tanpa mengubah struktur kristalnya, kemudian dapat diserap kembali, disamping itu zeolit mempunyai kapasitas tukar kation yang relatif tinggi.

Anwar (1987) juga menyatakan bahwa struktur zeolit yang berpori dengan cairan didalamnya yang mudah lepas, membuat zeolit mempunyai sifat spesial yaitu
mampu menyerap senyawa, menyangkut ukuran halus, mengganti ion dan sebagai katalisator. Rumus umum zeolit adalah \(M_n \text{Al}_2 \text{O}_3 \times \text{SiO}_2 \times \text{H}_2 \text{O} \) dimana \(M \) adalah alkali, \(n \) adalah valensi kation dan \(x \) adalah 2-10 serta \(y \) adalah angka 2-7.

Harianto (1983) menerangkan bahwa penggunaan zeolit dalam bidang peternakan disamping sebagai bahan tambahan dalam ransum untuk meningkatkan produksi ternak, juga ditaburkan di kandang untuk mengurangi kandungan air, amonia, dan asam belerang dari kotoran ternak, khususnya unggas. Amonia dan asam belerang yang terbentuk sangat merusak, antara lain dapat menghambat pertumbuhan dan menurunkan daya tahan terhadap penyakit. Selain itu zeolit yang ditambahkan dalam ransum cenderung meningkatkan pertambahan bobot badan, efisiensi penggunaan pakan dan laju pertumbuhan berat badan ayam broiler, mengurangi pembesaran gas amonia dan menurunkan kotoran dan bau baik dalam keadaan kering maupun basah (Susanti, 1990).

Fermentasi Medium Padat

Chalal (1985) membagi proses fermentasi menjadi dua menurut jenis medium yaitu fermentasi medium padat dan fermentasi dengan medium cair. Fermentasi medium padat merupakan fermentasi dimana medium yang digunakan tidak larut di dalam fase cair, tetapi mengandung cukup air untuk keperluan organisme, sedangkan fermentasi medium cair adalah proses fermentasi yang substratnya larut atau tersuspensi di dalam fase cair.

Beberapa keuntungan fermentasi padat bila dibandingkan dengan medium cair adalah penggunaan substrat alami yang sifatnya tunggal, persiapan inokulum sederhana, dapat menghasilkan produk dengan kepekatan yang lebih tinggi, kontrol terhadap kontaminasi lebih rendah, kondisi inkubasi hampir menyerupai kondisi alami hingga tidak memerlukan kontrol suhu dan pH yang teliti dan aerasi dapat berlangsung lebih optimum (Harjo et al., 1989).

Bila ditinjau dari komposisi kimia yang dimiliki onggok, maka penggunaan onggok sebagai bahan utama medium fermentasi perlu penambahan komponen-komponen lainnya seperti nitrogen, vitamin dan mineral. Bahan onggok, dedak padi, dan dedak gandum dapat digunakan sebagai substrat pada fermentasi pada medium padat, meskipun masih memerlukan penambahan sumber nitrogen dan unsur-unsur mineral lainnya (Prescott and Dunn, 1982).

Secara umum substrat yang digunakan dalam fermentasi medium padat harus menyediakan semua zat makanan yang dibutuhkan oleh mikroba untuk memperoleh
energi, pertumbuhan, bahan pembentuk sel, dan biosintesa produk-produk metabolisme (Rachman, 1989).

Kapang sebagai Inokulum Fermentasi

Kapang adalah fungi multiseluler yang mempunyai filameu. Pertumbuhannya pada makanan mudah dilihat karena penampakannya yang berserabut. Pertumbuhan mula-mula berwarna putih, tetapi jika spora telah timbul akan terbentuk warna sesuai dengan jenis kapang (Fardiaz, 1989)

Fermentasi adalah proses penguraian unsur organik kompleks terutama karbohidrat untuk menghasilkan energi melalui reaksi enzim yang dihasilkan oleh mikroorganisme, yang biasanya terjadi dalam keadaan anaerob dan diiringi dengan pembebasan gas (Sungguh, 1993)

Inokulum adalah kultur mikroba yang diinokulasikan kedalam medium fermentasi pada saat kultur mikroba tersebut berada pada fase pertumbuhan eksponensial. Menurut Rachman (1989) kriteria penting kultur mikroba untuk dapat digunakan dalam proses fermentasi adalah 1) sehat dan berada dalam keadaan aktif sehingga mempersingkat fase adaptasi; 2) tersedia cukup sehingga menghasilkan inokulum dalam takaran yang optimum; 3) berada dalam bentuk morfologis yang sesuai; 4) bebas kontaminasi.

Keterbatasan penggunaan kapang sebagai inokulum fermentasi adalah memiliki kadar protein lebih rendah dari mikroorganisme lainnya yaitu 31-50 persen dan sifatnya yang membutuhkan suatu lingkungan pertumbuhan benar-benar steril.
Meskipun demikian kapang memiliki beberapa keuntungan, yaitu pertumbuhannya relatif mudah dan cepat; kadar asam nukleat kapang yang relatif rendah dibanding bakteri, ganggang dan khamir; tekstur dan flavor lebih mudah diterima konsumen (Scherllart, 1975).

Kapang Aspergillus niger

Aspergillus niger memiliki kelebihan baik dalam penggunaan substrat maupun dalam menghasilkan enzim-enzim ekstraseluler seperti selulase, amilase, pektinase, katalase dan glukosa oksidase, sehingga produk fermentasi tersebut menghasilkan senyawa yang lebih sederhana. *Aspergillus niger* membutuhkan unsur utama seperti karbon, nitrogen, pospor, dan sulfur dalam pertumbuhannya. Selain itu juga membutuhkan mineral Fe, Zn, Mn, Cu, Li, Na, K dan Rb (Hardjo *et al.*, 1989). Sedangkan garam-garam Mg dan Cu dapat berfungsi sebagai pengendap senyawa-
senyawa kimia yang dapat mengganggu pertumbuhan kapang, namun pada konsentrasi diatas 0.306 mg dapat menjadi racun bagi *Aspergillus niger*.

Menurut Lehniger (1991), kapang *Aspergillus niger* menghasilkan enzim urease untuk memecah urea menjadi asam amonia dan karbondioksida yang selanjutnya digunakan untuk pembentukan asam amino.

\[\]

Pengaruh Lama Fermentasi terhadap Kualitas Pakan

Lama fermentasi berhubungan dengan kesempatan mikroorganisme dan komposisi nutrisi yang tersedia pada medium serta efektivitas sistem metabolisme mikroorganisme dalam memanfaatkannya (Utari, 1997).

Berdasarkan laju pertumbuhan, pertumbuhan mikroorganisme dapat menjadi tiga fase, yaitu fase adaptasi, fase pertumbuhan eksponensial dan fase stasioner. Jika mikroorganisme diinokulasikan ke dalam suatu media mula-mula akan mengalami fase adaptasi untuk menyesuaikan diri dengan substrat dan kondisi lingkungan sekitarnya (Fardiaz, 1988). Fase selanjutnya adalah fase eksponensial, tetapi karena kondisi lingkungan berubah dimana zat makanan di dalam substrat dikonsumsi dan zat-zat metabolik dilepaskan mengakibatkan pertumbuhan terus menurun. Setelah fase ekponensial tercapai, laju pertumbuhan terus menurun sampai nilainya nol (fase
stasioner). Pada fase ini jumlah sel konstan, sehingga pada fase stasioner jumlah sel yang hidup sama dengan jumlah sel yang mati. Bila fermentasi dilanjutkan, tidak akan menambah jumlah massa sel, melainkan jumlah sel hidup akan berkurang, karena adanya lisis yang menyebabkan penurunan massa sel.

Menurut Halid (1991) perlakuan lama fermentasi 2, 4 dan 6 hari bepengaruh terhadap komposisi zat makanan medium, waktu fermentasi lebih lama menghasilkan onggok fermentasi dengan kadar protein kasar (PK), serat kasar (SK), dan acid detergent fiber (ADF) semakin tinggi. Sebaliknya nilai N-Amonia, pH, koefisien cerna bahan kering(KCBK), dan koefisien cerna bahan organik (KCBO) makin turun. Produksi onggok fermentasi yang dihasilkan dari fermentasi selama 6 hari memiliki KCBO semakin rendah dibandingkan 4 hari tetapi kadar PK, SK, dan ADF tidak berubah.

Taram (1995) melaporkan bahwa perlakuan lama fermentasi dengan jenis kapang Aspergillus niger selama 6 hari, mampu meningkatkan kandungan protein murni dari 0.75 persen sampai 25.72 persen dan kandungan serat kasar sebesar dari 15.46 persen menjadi 16.80 persen sedangkan kehilangan bahan kering sebesar
37.72 persen dari 22.72 persen menjadi 13.75 persen. Secara statistik kandungan protein murni dan serat kasarnya tidak berbeda nyata dengan lama fermentasi 4 hari, yaitu masing-masing 23.43 persen dan 17.31 persen.

Faktor Lingkungan dalam Fermentasi

Agar mikroorganisme dapat tumbuh dan berkembang dengan baik pada media biakan, maka harus diperhatikan faktor-faktor seperti suhu, aerasi, pH, keperluan oksigen dan air.

Waktu Inkubasi dan Perubahan Selama Fermentasi

Saono (1974) menyatakan bahwa kecepatan tumbuh dan waktu regenerasi dari inokulum yang digunakan dalam proses fermentasi bervariasi, tergantung jenis inokulumnya. Kecepatan tumbuh pada medium ubi kayu berkisar antara 0.03-0.18/jam, serta waktu regenerasinya 4-20 jam.

Perubahan terhadap kandungan energi bruto selama fermentasi belum banyak dilaporkan. Kandungan energi bruto suatu bahan makanan ditentukan oleh kandungan bahan organiknya (Parakkasi, 1995).

Onggok-Urea-Zeolit Fermentasi

MATERI DAN METODE

Waktu dan Tempat Penelitian

Materi Penelitian

Bahan

Bahan yang digunakan dalam penelitian ini adalah ongkok sebagai media fermentasi. Urea dengan konsentrasi 3 persen dan Zeolit sebesar 2.5 persen. Inokulum yang digunakan adalah kapang *Aspergillus niger*. Bahan untuk keperluan fermentasi dan analisa kimia diperoleh dari Laboratorium Ilmu dan Teknologi Pakan, Fakultas Peternakan, IPB. Larutan mineral yang digunakan adalah formula Ramos terdiri dari: \((\text{NH}_4)_2\text{SO}_4\) 75 gram; urea 40 gram; \(\text{NaH}_2\text{PO}_4\) 15 gram; \(\text{MgSO}_4 \cdot 7\text{H}_2\text{O}\) 5 gram; KCL 1,5 gram; \(\text{CaCl}_2\) 0,5 gram; dan \(\text{FeSO}_4 \cdot 7\text{H}_2\text{O}\) 0.75 gram dilarutkan dalam satu liter aquades.

Alat

Peralatan yang digunakan adalah timbangan, oven, tanur, alat pengukus, autoklav, inkubator, gilingan, talam, bunsen, ose, peralatan gelas untuk analisa kimia, kantong plastik serta peralatan untuk Analisis Proksimat.
Metode Penelitian

Perbanyakan Inokulum

Pembuatan Starter

Media yang digunakan untuk membuat starter adalah campuran dari 50 gram ampas tahu dan 50 gram onggok. Campuran ini disterilisasai dalam autoclave pada suhu 121 °C salama 15 menit. Setelah itu ditambahkan 75 ml larutan mineral, diaduk dengan sendok steril sampai larutan mineral Ramos merata pada substrat. Selanjutnya kapang hasil peremajaan (inokulum) yang ada dalam tabung reaksi, disuspendikan dengan 25 ml larutan mineral dan dicampur dengan media starter sampai rata,
kemudian dimasukkan dalam kantong ukuran 2 kg yang permukaannya telah
dilubangi. Inkubasi dilakukan pada suhu kamar selama empat hari. Starter kemudian
dikeringkan, digiling, dan disaring. Starter yang diperoleh berupa serbuk hitam.

Fermentasi Bahan

Pertama disiapkan media fermentasi dengan cara menambahkan zeolit 2.5
persen serta urea 3 persen dan starter 0.2 persen pada onggok steril dan kemudian
diaduk sampai rata. Setelah itu dimasukkan dalam plastik yang telah dilubangi.
Kemudian diinkubasikan dalam suhu kamar selama 4, 6, 8, dan 10 hari. Untuk
menghentikan aktivitas kapang dilakukan pengeringan dalam oven 60 °C selama 48
jam.
Pembuatan Onggok-Urea-Zeolit Fermentasi (Cassabio)

Cara pembuatan ongkok urea zeolit fermentasi (Cassabio) seperti pada Gambar 2.

- Larutan mineral formula Ramos: \((\text{NH}_4\text{)}_2\text{SO}_4\) 75 g, Urea 40 g, \(\text{NaH}_2\text{PO}_4\) 15 g, \(\text{MgSO}_4.7\text{H}_2\text{O}\) 5 g, KCl 1.5 g, CaCl\(_2\) 0.5 g dan FeSO\(_4.7\text{H}_2\text{O}\) 0.75 g dalam 1 liter
- Inokulum *Aspergillus niger* dalam Media Tauge Agar (ETA)

\[
\text{Onggok 50 g + Ampas Tahu 50 g} \Rightarrow \text{Inkubasi 4 hari, suhu ruang} \Rightarrow \text{Starter} \Rightarrow \text{digiling} \Rightarrow \text{Urea 3\% + air} \Rightarrow \text{Inkubasi 4, 6, 8, dan 10 hari} \Rightarrow \text{Zeolit 2.5\% + Onggok} \Rightarrow \text{Pengeringan oven 80\(^\circ\)C} \Rightarrow \text{Komplek Onggok}
\]

Gambar 2. Pembuatan Onggok Urea-Zeolit Fermentasi dengan *Aspergillus niger*
Rancangan Penelitian

Rancangan percobaan yang digunakan adalah rancangan acak lengkap dengan faktor perlakuan lama fermentasi (4; 6; 8; dan 10 hari) dengan 3 kali ulangan. Data yang diperoleh diolah dengan analisis ragam dan jika berbeda nyata selanjutnya diuji dengan metode Duncan (Steel dan Torrie, 1993). Model matematika untuk rancangan yang digunakan adalah sebagai berikut:

\[X_{ij} = \mu + \alpha_i + \varepsilon_{ij} \]

Keterangan:

\[X_{ij} \] = Variabel respon karena pengaruh perlakuan.

\[\mu \] = Rataan umum.

\[\alpha_i \] = Pengaruh faktor lama fermentasi ke-\(i\).

\[\varepsilon_{ij} \] = Galat percobaan.
Metode Analisa Zat Makanan

1. Kadar Bahan Kering

Penentuan Kadar Air adalah sebagai berikut: cawan dikeringkan dalam oven pada suhu $105^\circ C$ selama 1 jam, kemudian dimasukkan dalam eksikator dan ditimbang (x), setelah itu sampel ditimbang kira-kira 5 gram (y) dan dimasukkan ke dalam cawan dan sampel dioven pada suhu $105^\circ C$ selama 8 jam, kemudian didinginkan dalam eksikator, lalu ditimbang (z). Bahan kering dapat diketahui dengan menggunakan rumus sebagai berikut:

$$\frac{(x + y - z) \times 100}{y} \%$$

Bahan Kering $= (100 - \text{Kadar Air}) \%$

2. Kadar Abu

Cawan porselein dikeringkan dalam oven pada suhu $105^\circ C$ selama beberapa jam, kemudian didinginkan dalam eksikator dan ditimbang (x). Sampel ditimbang kira-kira 5 gram (y) dan dimasukkan ke dalam cawan porselein. Setelah itu dipijarkan sampai tidak berasap, lalu dimasukkan dalam tanur listrik pada suhu $600^\circ C$. Setelah abu menjadi putih seluruhnya, dimasukkan dalam eksikator dan ditimbang (z). Kadar Abu dapat diketahui dengan menggunakan rumus berikut ini:

$$\frac{(z - x) \times 100}{y} \%$$
3. Kadar Serat Kasar

Sampel kira-kira 1 gram (x) dimasukkan dalam gelas piala 500 ml dan ditambahkan 50 ml H_2SO_4 0.3 N, lalu dipanaskan dari mendidih selama 30 menit. Setelah itu ditambahkan 25 ml NaOH 1.5 N dan dididihkan kembali selama 30 menit. Cairan disaring dengan kertas saring (a) dengan corong Buchner dan dicuci berturut-turut dengan: 50 ml air panas, 50 ml H_2SO_4, 50 ml air panas, dan 25 ml aceton. Kertas saring dan isinya dimasukkan dalam cawan porselein, lalu dioven pada suhu 105° C sampai kering. Setelah itu dimasukkan dalam eksikator selama 1 jam dan ditimbang (y), lalu dipijarkan dalam tanur sampai putih dan didinginkan kembali serta ditimbang (z). Pehentuan nilai kadar serat kasar dengan menggunakan rumus berikut ini:

\[
\text{Kadar Serat Kasar} = \frac{(y - z - a) \times 100 \%}{x}
\]

4. Kadar Protein Kasar

Sampel kira-kira 0.3 gram (x) dimasukkan ke labu destruksi dan ditambah katalis secukupnya serta 25 ml H_2SO_4 pekat. Kemudian dipanaskan dalam ruang asam sampai larutan menjadi jernih dan berwarna hijau kekuningan. Setelah itu didinginkan dan dimasukkan dalam labu penyuling dan diencerkan dengan 300 ml air serta ditambah batu didih dan 100 ml NaOH 33 persen. Labu penyuling dipasang dengan cepat diatas alat penyuling hingga 2/3 cairan dalam labu penyuling menguap yang ditangkap larutan H_2SO_4 berindikator dalam labu erlenmeyer. Hasil penyulingan dalam labu erlenmeyer dititip dengan larutan NaOH 0.3 N sampai warna
menjadi biru kehijauan. Volume NaOH dihitung sebagai z ml, dan dibandingkan dengan titar blanko y ml. Penentuan nilai kadar protein kasar dengan menggunakan rumus berikut ini:

\[
\text{Protein Kasar} = \frac{(y - z) \times \text{titar NaOH} \times 0.014 \times 6.25}{x} \times 100\%
\]

5. Energi Bruto

Sampel dalam bentuk pellet ditimbang 0.5 - 1 gram. Sampel dimasukkan ke dalam cawan kecil, kemudian dilewatkan kawat platina sepanjang 10 cm dan dimasukkan lagi kedalam Bomb Calorimeter. Sebelum diisi gas oksigen sebanyak 25 atmosfer, bomb Calorimeter diisi dengan aquadest sedikit. Bomb Calorimeter dimasukkan kedalam jaket yang sudah diisi air kemudian ditutup. Suhu distabilkan dan dicatat sebagai a °F. Sampel dibakar dengan selama 5 menit, kemudian suhu distabilkan dan dicatat sebagai b °F sebagai suhu akhir. Cawan dan bomb dibilas dengan aquadest yang telah dicampurkan dengan indikator methil orange. Air bilasan dititrasi dengan Na₂CO₃. Kawat platina yang terbakar diukur sebagai k cm.

Penentuan nilai energi bruto dengan menggunakan rumus berikut ini:

\[
\text{Energi Bruto (kal/\text{gr})} = \frac{(b - a) \times 1348 - k \times ti}{\text{Berat sampel}}
\]
HASIL DAN PEMBAHASAN

Komposisi Bahan Baku Media

Hasil analisa kimia terhadap bahan baku (media fermentasi onggok) disajikan dalam Tabel 2.

Tabel 2. Hasil Analisa Kandungan Zat Makanan dalam Onggok (%BK)*

<table>
<thead>
<tr>
<th>Zat Makanan</th>
<th>Kandungan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan Kering</td>
<td>90.54</td>
</tr>
<tr>
<td>Abu</td>
<td>0.75</td>
</tr>
<tr>
<td>Protein Kasar</td>
<td>1.85</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>8.40</td>
</tr>
<tr>
<td>Lemak</td>
<td>0.33</td>
</tr>
<tr>
<td>Beta-N</td>
<td>79.21</td>
</tr>
<tr>
<td>Energi Bruto (kal/gram)</td>
<td>3426</td>
</tr>
</tbody>
</table>

Berdasarkan Tabel 2 di atas diketahui bahwa onggok mempunyai kandungan karbohidrat (serat kasar dan bahan ekstrak taupa nitrogen) yang tinggi yaitu 87.61 persen maka onggok dapat digunakan sebagai sumber energi oleh kapang untuk pertumbuhannya. Selain itu onggok mempunyai kandungan protein kasar yang rendah yaitu 1.85 persen. Hal ini yang mengakibatkan pemanfaatan onggok sebagai pakan ternak kurang optimal. Maka dalam proses fermentasi perlu penambahan urea sebagai sumber nitrogen untuk sintesis protein sel Aspergillus niger.
Tabel 2 menunjukkan bahwa onggok memiliki kandungan serat kasar yang cukup rendah yaitu 8.4 persen. Bila dibandingkan dengan hasil penelitian sebelumnya (Tabel 1), kandungan serat kasar onggok yang digunakan dalam penelitian ini lebih rendah. Perbedaan nilai tersebut kemungkinan disebabkan proses pembuatan onggok belum sempurna, sehingga masih mempunyai kandungan pati yang cukup tinggi. Selain itu onggok mempunyai kandungan energi bruto yang tinggi yaitu 3426 kal/gram, sehingga onggok sangat potensial digunakan sebagai sumber energi bagi pakan ternak.

Perubahan Kandungan Zat Makanan Onggok Selama Fermentasi

Kadar Abu

Kadar abu Cassabio berkisar antara 4.05 persen sampai 5.04 persen (Gambar 3). Dari analisis ragam untuk kadar abu Cassabio didapatkan bahwa kadar abu Cassabio tidak dipengaruhi oleh lama fermentasi. Sedangkan peningkatan kadar abu Cassabio dibandingkan onggok disebabkan penambahan zeolit, karena zeolit adalah bahan anorganik.

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Lama Fermentasi (hari)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Abu (%)</td>
<td>4.06 ± 0.09</td>
</tr>
<tr>
<td>Protein Kasar (%)</td>
<td>4.87 ± 1.85</td>
</tr>
<tr>
<td>Serat Kasar (%)</td>
<td>7.81 ± 0.60</td>
</tr>
<tr>
<td>Energi Bruto (kal/gr)</td>
<td>3912.67 ± 59.48</td>
</tr>
</tbody>
</table>

Keterangan: Superskrip berbeda pada baris yang sama menunjukkan berbeda nyata (P<0.05)

Gambar 3. Grafik Rataan Kadar Abu Cassabio Selama Proses Fermentasi

Pengujian secara statistik tidak memperlihatkan adanya perbedaan yang nyata antara kadar abu dengan lama fermentasi. Hal ini disebabkan penambahan zeolit dalam Cassabio mempunyai konsentrasi yang sama sehingga kadar abu Cassabio tidak menunjukkan perbedaan yang nyata.

Kadar Protein Kasar

Kandungan protein kasar Cassabio berkisar antara 4.87 persen sampai 8.35 persen (%BK) seperti terlihat pada Gambar 3. Terjadinya perbedaan kadar protein kasar Cassabio pada lama fermentasi yang berbeda erat kaitannya dengan waktu yang digunakan oleh kapang untuk tumbuh dan berkembangbiak.
Gambar 4. Grafik Rataan Kadar Protein Kasar Cassabio Selama Proses Fermentasi

Pada fase stasioner laju sama dengan nol, dan jumlah massa sel total pada fase tersebut konstan. Bila inkubasi dilanjutkan setelah fase stasioner dicapai tidak akan menambah massa sel, tetapi massa sel hidup akan berkurang. Selama fase adaptasi sampai tercapainya fase stasioner, inokulum terus menggunakan komponen-komponen penyusun media untuk kelangsungan hidupnya. Lama fermentasi 10 hari kemungkinan sudah mengakibatkan terhentinya kesempatan kapang untuk terus tumbuh dan berkembangbiak sehingga jumlah komponen media yang dapat diubah menjadi massa sel juga akan lebih sedikit. Sebaliknya lama fermentasi 8 hari memberi kesempatan bagi inokulum untuk tumbuh dan berkembangbiak sampai tercapainya fase stasioner.

Peningkatan kandungan protein murni dapat terjadi karena urea yang ditambahkan ke dalam media fermentasi diurai oleh enzim urease menjadi NH₄ dan CO₂. Ion NH₄ ini selanjutnya akan diikat oleh zeolit yang mempunyai sifat absorbif sehingga ion NH₄ tersebut tidak akan menguap. Amonia ini akan digunakan oleh kapang untuk pembentukan protein sel tubuhnya.
Lubis (1995) melaporkan bahwa kandungan protein kasar hasil fermentasi dengan *Aspergillus niger* selama 6 hari dapat meningkatkan kadar protein kasar dari 2.78 hingga 13.80 persen. Hasil penelitian ini jauh di bawah hasil penelitian dari Estiningdriati (1997) yang menghasilkan protein kasar sekitar 30.18 persen. Hal ini mungkin disebabkan dalam penelitian tersebut ditambahkan larutan mineral yang terdiri dari gabungan (NH₄)₂SO₄; NaH₂PO₄; MgSO₄.7H₂O; KCL; CaCl₂; dan FeSO₄.7H₂O. Penambahan mineral tersebut menyebabkan proses fermentasi akan berlangsung dengan baik karena kebutuhan nutrisi mineral kapang cukup tersedia. Selanjutnya kapang akan tumbuh lebih baik dalam substrat.

Pengujiann secara statistik memperlihatkan bahwa perlakuan lama fermentasi cenderung meningkatkan kadar protein kasar (P=0.08). Hal ini karena dalam fermentasi Cassabio ditambahkan urea dengan konsentratnya yang sama (3 %). Peningkatan ini terjadi karena urea yang ditambahkan mampu merangsang pertumbuhan kapang *Aspergillus niger* sehingga mengakibatkan kenaikan jumlah sel kapang, dimana peningkatan jumlah sel kapang secara langsung akan meningkatkan kandungan protein kasar dari Cassabio karena sel kapang mengandung protein yang cukup tinggi.

Kadar Serat Kasar

Kandungan kadar serat kasar Cassabio selama perlakuan berkisar antara 6.47 persen sampai 8.10 persen (Gambar 5). Dari hasil uji Duncan dapat diketahui pengaruh lama fermentasi empat hari dan sepuluh hari berbeda nyata (P < 0.05)
dengan lama fermentasi enam hari dan delapan hari terhadap kadar serat kasar Cassabio.

Perbedaan kadar serat kasar Cassabio diakibatkan oleh perlakuan lama fermentasi erat kaitannya dengan waktu yang dipergunakan oleh kapang untuk pertumbuhan dan perkembangbiakannya. Memperpanjang lama fermentasi, berarti memberi kesempatan kapang untuk terus melakukan pertumbuhan dan perkembangbiakan sampai tercapai fase stasioner. Lama fermentasi yang lebih singkat selama 4 hari kurang optimal untuk kapang *Aspergillus niger* untuk menghasilkan enzim selulase. Sebaliknya dengan waktu yang lebih lama (6 dan 8 hari) kemampuan kapang untuk menghasilkan enzim pemecah serat telah optimal sehingga kadar serat kasar pada lama fermentasi enam hari dan delapan hari mengalami penurunan. Tetapi dengan lama fermentasi 10 hari dimana kapang mencapai fase stasioner, kemampuan kapang untuk menghasilkan enzim selulase semakin berkurang sehingga kadar serat kasar Cassabio mengalami kenaikan.
Gambar 5. Grafik Rataan Kadar Serat Kasar Cassabio Selama Proses Fermentasi

Penurunan ini diakibatkan kapang Aspergillus niger mensintesa enzim pengurai, yaitu selulase yang akan merombak selulosa dalam produk. Menurut

Kandungan Energi Bruto

Hasil analisa terhadap kandungan energi bruto *Cassabio* selama fermentasi disajikan pada Gambar 6. Pada Gambar 6 terlihat bahwa kandungan energi bruto yang tertinggi terdapat pada lama fermentasi 4 hari, setelah itu terjadi penurunan kandungan energi bruto. Dari hasil uji Duncan dapat diketahui bahwa pengaruh lama fermentasi 4 hari, berbeda nyata (P<0.05) dengan lama fermentasi 6, 8 dan 10 hari terhadap kandungan energi bruto *Cassabio*.

Penurunan kandungan energi bruto *Cassabio* selama fermentasi erat kaitannya dengan pemanfaatan energi substrat untuk pertumbuhan dan perkembangan kapang. Energi tersebut didapat dari media fermentasi, sehingga selama fermentasi berlangsung terjadi perombakan energi. Pada lama fermentasi yang lebih singkat (4 hari) kandungan energi bruto lebih tinggi.
Gambar 6. Grafik Rataan Energi Bruto Cassabio selama Proses Fermentasi

KESIMPULAN DAN SARAN

Kesimpulan

Dilihat dari effesiensi waktu dalam produksi di lapangan penggunaan lama fermentasi 6 hari lebih disarankan karena kandungan komposisi zat makanan Cassabio tidak jauh berbeda dengan perlakuan lama fermentasi 8 hari.

Saran

Masih perlu diadakan penelitian lebih lanjut, untuk meningkatkan kualitas onggok fermentasi dengan penambahan mineral Sulfur dan Phospor. Diharapkan dengan penambahan mineral tersebut dalam proses fermentasi akan menghasilkan produk onggok fermentasi yang mempunyai kualitas lebih tinggi.
DAFTAR PUSTAKA

LÀMPIRAN
Lampiran 1. Analisis ragam (ANOVA) untuk data Kadar Abu Cassabio Selama Proses Fermentasi

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>4 hari</th>
<th>6 hari</th>
<th>8 hari</th>
<th>10 hari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.334</td>
<td>4.324</td>
<td>5.027</td>
<td>5.261</td>
<td>18.946</td>
</tr>
<tr>
<td>2</td>
<td>4.466</td>
<td>5.200</td>
<td>4.926</td>
<td>4.757</td>
<td>19.853</td>
</tr>
<tr>
<td>3</td>
<td>3.381</td>
<td>3.782</td>
<td>4.343</td>
<td>5.102</td>
<td>16.608</td>
</tr>
</tbody>
</table>

Anova Kadar Abu Cassabio

<table>
<thead>
<tr>
<th>Sumber</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>Keragaman hitung</th>
<th>0.05</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>3</td>
<td>1.61023</td>
<td>0.53674</td>
<td>1.762</td>
<td>4.07</td>
<td>7.59</td>
<td>31</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>2.13155</td>
<td>0.30450</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 2. Analisis ragam (ANOVA) untuk data Kadar Protein Kasar Cassabio Selama Proses Fermentasi

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Lama Fermentasi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hari</td>
<td>6 hari</td>
</tr>
<tr>
<td>1</td>
<td>3.414</td>
<td>3.976</td>
</tr>
<tr>
<td>2</td>
<td>4.254</td>
<td>4.897</td>
</tr>
<tr>
<td>3</td>
<td>6.962</td>
<td>6.213</td>
</tr>
</tbody>
</table>

Anova Kadar Protein Kasar Cassabio

<table>
<thead>
<tr>
<th>Sumber</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F</th>
<th>F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keragaman</td>
<td></td>
<td>hitung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlakuan A</td>
<td>3</td>
<td>24.7858</td>
<td>8.26196</td>
<td>3.3283</td>
<td>4.07</td>
<td>7.59</td>
</tr>
<tr>
<td>Eror</td>
<td>8</td>
<td>19.8584</td>
<td>2.48231</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>44.6443</td>
<td>10.7443</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

43
Lampiran 3. Analisis ragam (ANOVA) untuk data Kadar Serat Kasar Cassabio Selama Proses Fermentasi

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Lama Fermentasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hari</td>
</tr>
<tr>
<td>1</td>
<td>8.318</td>
</tr>
<tr>
<td>2</td>
<td>7.968</td>
</tr>
<tr>
<td>3</td>
<td>7.142</td>
</tr>
</tbody>
</table>

Anova Kadar Serat Kasar Cassabio

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F</th>
<th>F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkataan A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6.05956</td>
<td>2.09185</td>
<td>5.370 *</td>
<td>4.07</td>
<td>7.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>3.00876</td>
<td>0.37609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>9.06832</td>
<td>2.39595</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

* = nyata pada taraf (P<0.05)
Lampiran 4. Analisis sidik ragam (ANOVA) untuk data Energi Bruto Cassabio Selama Proses Fermentasi

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>4 hari</th>
<th>6 hari</th>
<th>8 hari</th>
<th>10 hari</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3981</td>
<td>3355</td>
<td>3599</td>
<td>3362</td>
<td>14297</td>
</tr>
<tr>
<td>2</td>
<td>3884</td>
<td>3710</td>
<td>3649</td>
<td>3676</td>
<td>14919</td>
</tr>
<tr>
<td>3</td>
<td>3873</td>
<td>3553</td>
<td>3377</td>
<td>3572</td>
<td>14375</td>
</tr>
</tbody>
</table>

Anova Energi Bruto Cassabio

<table>
<thead>
<tr>
<th>Sumber</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F</th>
<th>F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keragaman</td>
<td></td>
<td>hitung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perlakuan A</th>
<th>3</th>
<th>313824.</th>
<th>104608.</th>
<th>5.1199</th>
<th>4.07</th>
<th>7.59</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>1</td>
<td>8*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eror</td>
<td>8</td>
<td>163450.</td>
<td>20431.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>477274.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

* Nyata pada taraf pada (P<0.05)
Lampiran 5. Contoh Uji Duncan Kadar Serat Kasar Cassabio

<table>
<thead>
<tr>
<th>Sumber</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F</th>
<th>F</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keragaman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hitung</td>
<td>0.05</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Perlakuan A</td>
<td>3</td>
<td>6.05956</td>
<td>2.09185</td>
<td>5.3705</td>
<td>4.07</td>
<td>7.59</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>4</td>
<td>9*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eror</td>
<td>8</td>
<td>3.00876</td>
<td>0.37609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>9.06832</td>
<td>2.39595</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
S_x = \left(\frac{KTG}{r} \right)^{1/2} \\
= \left(\frac{0.376095}{3} \right)^{1/2} \\
= 0.354
\]

\[LSR = S_x \times SSR\]
<table>
<thead>
<tr>
<th></th>
<th>Jarak perlakuan</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>db</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>SSR</td>
<td>8</td>
<td>3.26</td>
<td>3.39</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.74</td>
<td>5.00</td>
<td>5.14</td>
</tr>
<tr>
<td>LSR</td>
<td>8</td>
<td>1.15</td>
<td>1.20</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.678</td>
<td>1.77</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Uji Jarak Berganda

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rataan</th>
<th>X1-B</th>
<th>X1-C</th>
<th>X1-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>8.101</td>
<td>1.635*</td>
<td>1.457*</td>
<td>0.292</td>
</tr>
<tr>
<td>A</td>
<td>7.810</td>
<td>1.344*</td>
<td>1.166*</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.644</td>
<td>0.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6.465</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antar perlakuan dibandingkan dan jika selisih < 1.3 berarti tidak nyata (tn), >1.3 berarti nyata (*), dan jika >1.73 berarti sangat nyata.