Oleh : Sulistiyani Purnaningsih G07499026

DEPARTEMEN FISIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR

2006

ABSTRAK

SULISTIYANI PURNANINGSIH. Penentuan Energi Aktivasi Ion untuk Melewati Membran Teflon pada Berbagai Larutan Elektrolit. Dibimbing oleh Dr. Kiagus Dahlan dan Jajang Juansah, M. Si

Kaseno (1999) menyatakan bahwa dalam teknologi pemisahan, membran adalah bahan yang dapat memisahkan dua komponen dengan cara yang spesifik yaitu menahan atau melewatkan salah satu komponen lebih cepat dari komponen lainnya. Kemampuan pemisahan yang dimiliki oleh membran untuk melewatkan suatu senyawa kimia atau molekul diakibatkan oleh adanya perbedaan sifat fisika atau kimia antara membran dengan senyawa kimia.

Konduktansi membran merupakan salah satu sifat kelistrikan karakteristik membran. Konduktansi membran dapat ditentukan dengan mengukur arus dan tegangan membran. Konduktansi membran berbanding lurus terhadap pertambahan suhu. Penentuan tegangan membran dilakukan dengan cara meletakkan membran di dalam chamber yang berisi larutan elektrolit. Dalam penelitian ini digunakan 9 variasi larutan elektrolit berbagai konsentrasi. Nilai tegangan membran digunakan untuk menghitung nilai konduktansi membran. Dari pengolahan nilai konduktansi, kita dapat mengetahui nilai energi aktivasi ion masing-masing larutan. Dari hasil penelitian ini, dapat dilihat bahwa variasi konsentrasi larutan dan valensi ion memiliki pengaruh yang cukup signifikan terhadap nilai energi aktivasi ionnya.

Kata Kunci : Membran, konduktansi, konsentrasi, energi aktivasi.

Skripsi

Sebagai Salah Satu Syarat untuk memperoleh gelar Sarjana Sains pada Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

Oleh:
Sulistiyani Purnaningsih
G07499026

DEPARTEMEN FISIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

INSTITUT PERTANIAN BOGOR

2006

Judul : Penentuan Energi Aktivasi Ion untuk Melewati Membran Teflon

pada Berbagai Larutan Elektrolit

Nama: Sulistiyani Purnaningsih

NRP: G07499026

Menyetujui,

Pembimbing I

Pembimbing II

Dr. Kiagus Dahlan

NIP. 131 663 021

Jajang Juansah, M.Si

NIP. 132 311 933

Prof. Dr. Ir. Yonny Koesmaryono, M.S.

NIP. 131 473 999

Riwayat Hidup

Penulis dilahirkan di Magelang, Jawa Tengah pada tanggal 2 September 1981 dari pasangan Ngatidjan dan Seniyati. Penulis merupakan anak keenam dari tujuh bersaudara.

Penulis menyelesaikan pendidikan dasar di SDN Gelangan 2 Magelang, sampai dengan tahun 1993. Pada tahun yang sama penulis melanjutkan pendidikan di SLTPN 8 Magelang, kemudian penulis melanjutkan pendidikan di SMUN 3 Magelang. Setelah menyelesaikan pendidikan SMU pada tahun 1999, penulis melanjutkan pendidikan sarjana strata satu pada Departemen Fisika, Institut Pertanian Bogor melalui jalur Undangan Seleksi Masuk IPB (USMI).

Selama menjalani studinya, penulis aktif di berbagai Organisasi Kemahasiswaan, diantaranya sebagai staf Komisi Eksternal Dewan Perwakilan Mahasiswa (DPM) FMIPA pada tahun 2000, Waka I DPM FMIPA IPB 2001, Staf Komisi Adkesma DPM KM IPB 2001-2002, dan anggota BP Rantap MPM KM IPB 2001-2002.

Penulis juga pernah menjadi asisten Pendidikan Agama islam (PAI) untuk mahasiswa TPB pada tahun 2002, serta asisten mata kuliah Fisiska Dasar pada tahun 2001-2002.

KATA PENGANTAR

Assalamualaikum Wr. Wb.,

Puji syukur ke hadirat Allah SWT atas segala karunia dan rahmat-Nya, penulis dapat menyelesaikan tugas akhir berupa penelitian guna menyelesaikan studi dan mendapatkan gelar Sarjana Sains. Penulis memilih judul " Penentuan Energi Aktivasi Ion untuk Melewati Membran Teflon pada Berbagai Larutan Elektrolit" ini.

Ucapan terima kasih penulis sampaikan terutama kepada Dr. Kiagus Dahlan dan Jujang Juansah M.Si selaku Pembimbing dan kepada banyak pihak yang telah membantu dalam menyelesaikan karya ilmiah ini.

Penulis menyadari bahwa karya ilmiah ini jauh dari sempurna, untuk itu kritik, saran, ide atau pendapat sangat penulis harapkan.

Semoga karya ilmiah ini dapat memberikan kontribusi positif dalam perkembangan dunia Fisika, khususnya di bidang Fisika membran.

Wassalamualaikum Wr. Wb.,

Bogor, Agustus 2006

Penulis

DAFTAR ISI

H	aləmaı
LEMBAR PENGESAHAN	i
RIWAYAT HIDUP	ii
KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR GAMBAR	v
DAFTAR LAMPIRAN	v
PENDAHULUAN	
Latar Belakang	i
Tujuan	1
Hipotesis	ì
Perumusan Masalah	ı
TINJAUAN PUSTAKA	
Membran	ı
Klasifikasi Membran	1
Membran Teflon	2
Sifat Listrik Membran	3
Konduktansi Membran	3
Konduktivitas Larutan Elektrolit	3
Energi Aktivasi	3
Efek Suhu	4
Efek Konsentrasi Larutan Elektrolit Eksternal	4
Efek Valensi Ion Larutan Elektrolit Eksternal	4
BAHAN DAN METODE	
Waktu Dan Tempat Penelitian	4
Alat Dan Bahan	4
Metode Penelitian	5
Persiapan Penelitian	5
Persiapan Eksperimen	5
Prosedur Eksperimen	5
Eksperimen	5
Pengambilan Data	6
Analisis Data	6
HASIL DAN PEMBAHASAN	
Karakteristik I-V Membran Teflon pada Berbagai Suhu	6
Pengaruh Konsentrasi Larutan Elektrolit Eksternal	7
Pengaruh Valensi Ion Larutan Elektrolit Eksternal	3
CIMPILLAN DAN CADAN	^

PB Universit

DAFTAR PUSTAKA	9
LAMPIRAN	10

DAFTAR GAMBAR

Membran Teflon
Kurva Hubungan Konduktansi dan Suhu Membran PTGC pada 0,2 mM KCI
Alat-Alat Penelitian
Diagram Skematik Alat Eksperimen pada Chamber
Grafik I-V Membran Teflon Berbagai Suhu pada Larutan NaCl
Grafik Hubungan Konduktansi terhadap Suhu pada Larutan NaCl I mM
Grafik Hubungan Konsentrasi Larutan terhadap Energi Aktivasi Ion pada Larutan
NaCI
Grafik Hubungan Energi Aktivasi terhadap Konsentrasi pada Larutan Bervalensi I
Grafik Hubungan Energi Aktivasi terhadap Konsentrasi pada Ion Negatif Cl' Untuk
Larutan KCI, CaCl ₂ , Dan AlCl ₃
Grafik Hubungan Energi Aktivasi Larutan Untuk Konsentrasi 1 mM
DAFTAR LAMPIRAN
DAI TAN DAINTIGH.
Diagram alir penelitian
Data konduktansi larutan elektrolit NaCl dan KCl untuk konsentrasi 1 mM, 10 mM
dan 100 mM
Data konduktansi larutan elektrolit Na ₂ SO ₄ dan K ₂ SO ₄ untuk konsentrasi 1 mM, 10
mM dan 100 mM
Data konduktansi larutan elektrolit MgCl2 dan CaCl2 untuk konsentrasi 1 mM, 10
mM, dan 100 mM
Data konduktansi larutan elektrolit MgCO3 dan CaCO3 untuk konsentrasi 1 mM, 10
mM dan 100 mM
Data konduktansi larutan elektrolit AiCl ₃ untuk konsentrasi 1 mM, 10 mM dan 100
mM
Grafik Hubungan Arus terhadan Tegangan dada Larutan Naci i mim
Grafik Hubungan Arus terhadap Tegangan pada Larutan NaCl 10 mM
Grafik Hubungan Arus terhadap Tegangan pada Larutan NaCl 10 mM
Grafik Hubungan Arus terhadap Tegangan pada Larutan NaCl I mM
Grafik Hubungan Arus terhadap Tegangan pada Larutan NaCl 10 mM

14.	Grafik Hubungan Arus terhadap Tegangan pada Larutan Na2SO4 10 mM	19
15.	Grafik Hubungan Arus terhadap Tegangan pada Larutan Na2SO4 100 mM	20
16.	Grafik Hubungan Arus terhadap Tegangan pada Larutan K2SO4 1 mM	20
17.	Grafik Hubungan Arus terhadap Tegangan pada Larutan K2SO4 10 mM	21
18.	Grafik Hubungan Arus terhadap Tegangan pada Larutan K2SO4 100 mM	21
19.	Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCi2 1 mM	22
20.	Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCl2 10 mM	22
21.	Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCl2 100 mM	23
22.	Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCl2! mM	23
23.	Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCl2 10 mM	24
24.	Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCl2 100 mM	24
25.	Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCO3 1 mM	25
26.	Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCO3 10 mM	25
27.	Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCO3 100 mM	26
28.	Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCO3 1 mM	26
29.	Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCO3 10 mM	27
30.	Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCO3 100 mM	27
31.	Grafik Hubungan Arus terhadap Tegangan pada Larutan AICI3 1 mM	28
32.	Grafik Hubungan Arus terhadap Tegangan pada Larutan AICI3 10 mM	28
33.	Grafik Hubungan Arus terhadap Tegangan pada Larutan AlCl3 100 mM	29
34.	Grafik Hubungan Konduktansi terhadap Suhu Larutan NaCl I mM pada konsentrasi	
	I mM, 10 mM, dan 100 mM	30
35.	Grafik Hubungan Konduktansi terhadap Suhu Larutan KCI I mM pada konsentrasi I mM	, 10
	mM, dan 100 mM	31
36.	Grafik Hubungan Konduktansi terhadap Suhu Larutan Na2SO4 1 mM pada konsentrasi 1	
	mM, 10 mM, dan 100 mM	32
37.	Grafik Hubungan Konduktansi terhadap Suhu Larutan K2SO4 I mM pada konsentrasi 1	
	mM, 10 mM, dan 100 mM	33
38.	Grafik Hubungan Konduktansi terhadap Suhu Larutan MgCl2 1 mM pada konsentrasi 1 r	nM,
	10 mM, dan 100 mM	34
39.	Grafik Hubungan Konduktansi terhadap Suhu Larutan CaCl2 I mM pada konsentrasi I m	ıM,
	10 mM, dan 100 mM	35
40.	Grafik Hubungan Konduktansi terhadap Suhu Larutan MgCO3 I mM pada konsentrasi I	
	mM, 10 mM, dan 100 mM	36
41.	Grafik Hubungan Konduktansi terhadap Suhu Larutan CaCO3 I mM pada konsentrasi I	
	mM, 10 mM, dan 100 mM	37
42.	· · · · · · · · · · · · · · · · · · ·	
	mM, 10 mM, dan 100 mM	38

IPB				
43.	Grafik	Hubu	ngan Konsentrasi terhadap Energi Aktivasi (AU) pada Larutan bervalensi 1	
1	(N	aCI, K	CI, Na2SO4, dan K2SO4)	-
44.	Grafik	Hubu	ngan Konsentrasi terhadap Energi Aktivasi (AU) pada Larutan bervalensi 2	
	(M	igCl2,	CaCl2, MgCO3, dan CaCO3)	•
45.	Grafik	Hubu	ngan Konsentrasi terhadap Energi Aktivasi (AU) pada Larutan bervalensi 3	
	(A	ICI3)		
46.	Grafik	Hubu	ngan Energi Aktivasi Larutan Konsentrasi 1 mM, 10 mM, dan 100 mM	•
47.	Grafik	Hubu	ngan Konsentrasi terhadap Energi Aktivasi (ΔU) pada Larutan valensi 1,	
	va	lensi 2,	dan valensi 3	
48.	Data j	ari-jari	atom unsur utama dan data energi aktivasi larutan untuk konsentrasi	
	861.	~ \ \ 10	m)4 dan 100 m)4	

• -

PENDAHULUAN

Teknologi membran telah banyak dimanfaatkan dalam bidang industri, biologi, kimia, fisika, dan kesehatan, sehingga banyak penelitian mengenai fenomena membran baik membran alam maupun membran sintentik. Teknologi membran tergolong teknologi yang hemat dan bersih, karena tidak memerlukan energi yang besar dalam pengoperasian dan diperlukan zat-zat kimia pendukung.

Membran merupakan pilihan yang tepat untuk keperluan penyaringan, pemisahan, dan pemurnian zat-zat yang peka terhadap senyawa kimia dan lingkungan.

Fokus penelitian ini adalah karakterisasi membran secara fisika, yaitu melalui sifat yang dapat dilihat dari konduktansi membran. Besamya energi aktivasi ion, yaitu energi minimal yang harus dimiliki ion untuk melewati energi barrier membran dapat dianalisis dari pengukuran membran konduktansi ini. Mekanisme transportasi ion yang terjadi danat diketahui nilai konduktansi membran hubungannya dengan energi aktivasi.

Tujuan

Tujuan penelitian ini adalah untuk mengkaji pengaruh perbedaan konsentrasi larutan elektrolit dan valensi ion terhadap nilai energi aktivasi ion ketika melintasi membran teflon.

Hipotesis

Variasi konsentrasi larutan eksternal dan valensi ion akan mempengaruhi nilai energi aktivasinya. Nilai energi aktivasi ini dapat kita analisa melalui nilai konduktansi membran yang terukur. Semakin besar konsentrasi larutan eksternal yang diaplikasikan pada membran, nilai konduktansinya akan semakin besar. Selain itu, akan diteliti pula bahwa variasi nilai valensi ion eksternal pada membran juga akan mempengaruhi nilai konduktansinya. Jenis muatan ion larutan eksternal akan memberikan gambaran terhadap jenis muatan membran secara kualitatif.

Perumusan masalah

Membran secara umum berfungsi sebagai filter pada suatu sistem transport. Proses transport melalui membran ditentukan oleh bentuk, ukuran, dan muatan porinya yang dapat ditentukan melalui teknik-teknik

mikroskopik atau dengan aliran partikelpartikel bermuatan.

Kemampuan ion melewati membran dapat ditentukan melalui pengukuran sifat listrik interaksi antara ion dan membran. Sedangkan energi aktivasi ion dapat dianalisis dari pengukuran konduktansi membran. Hanya ion-ion yang memiliki energi minimal sama dengan energi aktivasi ion sajalah yang dapat melewati membran. Dengan demikian kita dapat menentukan kemampuan ion dalam melewati membran.

TINJAUAN PUSTAKA

Membran

Membran merupakan fase permiabel atau semipermiabel yang biasanya berupa padatan polimer tipis yang dapat menahan pergerakan bahan tertentu (Scoot dan Hughes, 1996). Menurut Osada dan Nakagawa (1992), membran adalah suatu selaput semipermiabel yang berupa lapisan tipis, dapat memisahkan dua fasa dengan cara menahan komponen tertentu dan melewatkan komponen lainnya melalui pori-pori. Kaseno (1999) menyatakan bahwa dalam teknologi pemisahan, membran adalah bahan yang dapat memisahkan dua komponen dengan cara yang spesifik yaitu atau melewatkan salah komponen lebih cepat dari komponen lainnya. Kemampuan pemisahan yang dimiliki oleh membran untuk melewatkan suatu senyawa kimia atau molekul diakibatkan oleh adanya perbedaan sifat fisika atau kimia antara membran dengan senyawa kimia.

Proses pemisahan ini pada hakikatnya merupakan perpindahan materi secara selektif yang disebabkan oleh gaya yang berhubungan dengan parameter tertentu antara dua media yang dipisahkan seperti perbedaan konsentrasi, tekanan, temperatur dan potensial listrik.

Klasifikasi Membran

Membran dapat diklasifikasikan atas beberapa hal, antara lain berdasarkan bahan pembuatannya, ada atau tidaknya pori, morfologi dan sifat geometris (Mallevialle et al., 1996).

Berdasarkan bahan pembuatannya, membran dapat dibedakan menjadi membran organik dan anorganik. Membran organik dibedakan menjadi dua, yaitu membran alami dan membran sintetis.

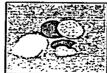
Berdasarkan ukuran pori dikenal membran nanofiltrasi, mikrofiltrasi, ultrafiltrasi dan hiperfiltrasi. Berdasarkan proses yang menyebabkan transfer zat atau mekanisme pemisahan dikenal dengan membran filtrasi dan elektrodialisis.

Berdasarkan morfologi. terdiri dari membran simetrik dan asimetrik. Membran simetrik memiliki struktur pori yang homogen dengan ketebalan antara 10-200 Sedangkan membran asimetrik memiliki ukuran dan kerapatan yang tidak sama. Membran jenis ini memiliki dua lapisan yaitu lapisan kulit yang tipis dan rapat dengan ketebalan 20,5 µm serta lapisan pendukung yang berpori dengan ketebalan 50-200 um.

Berdasarkan bentuk, membran terbagi menjadi dua yaitu membran datar yang memiliki bentuk melebar dan penampang lintang yang besar, dan membran turbular. Beberapa jenis membran datar, antara lain, membran datar yang terdiri dari satu lembar, membran datar bersusun yang terdiri dari beberana lembar bertingkat dengan menempatkan pemisah antara dua membran yang berdekatan, dan membran bergulung yang merupakan membran yang tersusun bertingkat dan digulung dengan pipa sentral membentuk spiral. Membran turbular terdiri dari membran sekat berongga dengan diameter <0,5 mm, membran kapiler dengan diameter 0,5-5,0 mm dan membran turbular dengan diameter >5,0 mm.

Berdasarkan fungsi, membran terbagi menjadi membran mikrofiltrasi, membran ultrafiltrasi, membran osmosis balik, membran dialisis. dan membran elektrodialisis. Membran mikrofiltrasi digunakan pada proses pemisahan antara partikel. berfungsi untuk тепуаліпа makromolekul >500.000 g/mol atau partikel berukuran 0,1-10 µm, dan tekanan 0,5-2 atm. Membran ini memiliki struktur asimetrik dan simetrik. Membran ultrafiltrasi digunakan pada proses pemisahan makromolekul >5000 g/mol atau partikel berukuran 0,001-0,1 µm dan tekanan 1,0-3,0 atm. Membran ini memiliki struktur asimetrik. Tekanan osmotik diabaikan karena adanya beda konsentrasi. Membran osmosis balik berfungsi menyaring garam-garam organik >50 g/mol atau partikel berukuran 0,0001-0,001 µm dan tekanan 8,0atm. Membran dialisis berfungsi memisahkan larutan koloid yang mengandung elektrolit dengan bobot molekul kecil. Zat terlarut pada larutan konsentrasi tinggi akan menembus membran ke arah larutan yang konsentrasinya rendah, sehingga konsentrasi merupakan gaya pendorong. elektrodialisis berfungsi memisahkan larutan

melalui pemberian muatan listrik yang menjadi gaya pendorong.


Pada proses pembuatannya, membran dapat dibuat bermuatan tetap atau netral. Membran bermuatan tetap terbentuk karena molekul-molekul ionik menempel pada lathie membran tersebut secara kimiawi. Membran terbuat dari bahan polimer yang membentuk suatu jaringan lathie yang tidak menghantar. lon-ion ini tidak bisa berpindah-pindah dan membentuk lapisan tipis bermuatan pada membran sehingga disebut membran bermuatan tetap. lon-ion ini berperan penting dalam karakteristik kelistrikan membran.

Membran bermuatan tetap hanya dapat dilalui oleh ion-ion tertentu saja. Membran bermuatan tetap yang hanya dapat dilalui oleh kation saja disebut membran penukar kation (MPK), sedangkan jika anion saja disebut Membran penukar anion (MPA). Selain itu ada juga gabungan dari keduanya yang disebut Double Fixed Charge Membrane. MPA dan MPK memiliki karakter yang berbeda-beda, namun pada aplikasinya dapat digunakan bersamaan. Membran bermuatan tetap ini dapat digunakan dalam proses-proses industri, seperti elektrodialisis, fuel cell atau berbagai proses filtrasi lainnya.

Membran yang relatif tidak memiliki muatan tetap disebut dengan membran netral. Membran ini banyak digunakan pada aplikasi bidang-bidang sains dan teknologi. Membran netral terdiri dari polimer yang tidak mengikat ion-ion sebagai ion tetap. Membran netral juga dapat bersifat selektif terhadap larutan-larutan kimiawi. Selektifitas membran netral ditentukan juga oleh unsur-unsur penyusun (monomer), ukuran pori, ukuran kimia, daya tahan terhadap suhu dan tekanan, resistivitas, konduktansi dan karakteristik kelistrikan lainnya.

Membran Teflon

Membran teflon terbuat dari zat padat, polimer tetrafluoroethylene (C₂F₂), F₂C[dbond]CF₂, disingkat PTFE, yang secara kimia bersifat lembam dan stabil pada temperatur sekitar 572°F (300°C / 573 K). Titik leleh Teflon 327°C (600 K), tetapi sifat fisiknya terdegradasi pada 260°C (533 K) (gambar 1).

Gambar 1. Membran Teflon

Membran teflon yang digunakan dalam penelitian ini berdiameter 25 mm dan berjarijari 0.2 nm.

Sifat Listrik Membran Konduktansi membran

Konduktivitas membran muncul karena adanya interaksi ion dengan membran. Konduktansi (G) membran dapat diperoleh dengan menggunakan pendekatan

G = n Gp....(1)Dengan n adalah jumlah pori membran dan Gp adalah konduktansi tiap pori dengan asumsi pori-porinya identik. Ada beberapa hal yang mempengaruhi nilai Gp diantaranya faktor geornetri pori membran, konsentrasi pori membran, dan mobilitas ionnya. Dengan asumsi bahwa ion di dalam suatu medium di sekitarnya akan mengalami elektrostatik, maka ion tersebut memiliki energi diri sebesar U. Energi ini merupakan integral dari medan listrik di permukaan, sehingga besarnya energi diri (U) untuk suatu ion yang bervalensi z dan berjari-jari ion d pada medium tak terbatas dengan konstanta dielektrik ε adalah

 $U = z^2 q^2 / 8\pi \epsilon_0 \epsilon_d$(2) Nilai U sangat bergantung pada ε. Nilai ε

untuk membran nilainya sekitar 3-4 dan ε larutan air 78,5. Untuk melewati pori membran akibat adanya interaksi dengan ε membran yang bergantung dari seberapa dekatnya ion pada membran, diperlukan

energi aktivasi

 $\Delta U = z^2 q^2 \alpha / 4\pi \epsilon_0 \epsilon_m b.....(3)$

Dengan b jari-jari pori, ε₀ konstanta resapan, ε_m konstanta dielektrik membran, z bilangan valensi ion, q muatan ion dan α tergantung konstanta dielektrik dan geometri (pendekatan 0,2). C₀ sebagai konsentrasi ion yang jauh dari membran dan C sebagai konsentrasi ion yang berada pada pusat pori membran., maka γ kooefisien partisi dari konsentrasi pada kesetimbangan dikalkulasikan melalui statistik Boltzman yaitu

 $\gamma = C_0/C = \exp(-\Delta U/RT)$(4) Nilai Gp tiap pori membran terhadap ion yang mengalir diberikan oleh

 $Gp = q^2 C_o (z_p \gamma_p D_p + z_n \gamma_n D_n) \pi b^2 / kTL ...(5)$

 $\gamma_p = \exp(-z_p^2 q^2 \alpha / 4\pi \epsilon_0 \epsilon_m bRT)$

 $\gamma_n = \exp(-z_n^2 q^2 \alpha / 4\pi \epsilon_0 \epsilon_m bRT)$

b = Jari-jari pori

L = Tebal membran

K = Konstanta Boltzman (1,38662 x 10⁻²³ J/K)

T = Suhu(K)

R = Konstanta molar gas (0, 891441 J/mol K)

Konduktivitas larutan elektrolit

Bila suatu larutan elektrolit dialiri arus maka akan terjadi proses transport ion. Transport ion ini dipengaruhi oleh resistivitas dan konduktivitas larutan elektrolit.

Konduktivitas larutan elektrolit didefinisikan sebagai ukuran kemampuan larutan membawa arus listrik. Konduktivitas larutan dipengaruhi oleh kehadiran ion-ion, mobilitas ion, ion valensi, transport ion, aktivitas ion, dan suhu. Ion-ion dalam larutan akan mengalir dan menembus membran dengan aktivitas berbeda-beda.

Svante Arrhenius pada tahun 1887 mengusulkan sebuah teori ionisasi untuk menjelaskan sifat-sifat larutan elektrolit. Pokok-pokok teori Arrhenius adalah sebagai berikut:

- 1. Molekul elektrolit pada larutan dengan pelarut air akan berdissosiasi menjadi dua partikel atau lebih yang kita sebut dengan ion.
- Ion-ion bermuatan listrik (positif atau negatif) dan muatan-muatan inilah yang dapat menyebabkan arus listrik dapat mengaliri larutan.

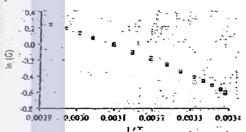
Pada pengenceran tak berhingga, elektrolit kuat maupun lemah akan berionisasi sempurna. Arrhenius menyarankan suatu besaran yaitu derajat ionisasi α.

a = C γ.....(7)

Energi aktivasi

Jika menggunakan tinjauan energi, pada umumnya berbagai proses itu berlangsung dengan suatu 'syarat'. 'Syarat ini dalam beberapa proses dimodelkan sebagai suatu 'Barrier /Potensial Penghalang' sebesar ΔU (disebut juga Energi Aktivasi).

Nilai konduktansi terhadap suhu dan energi aktivasi dengan menggunakan pendekatan distribusi boltzman adalah


 $G = Go \exp(-\Delta U/kT)$(8) dimana k : konstanta Boltzman, T : temperatur (K), Go dan ΔU harganya spesifik untuk setiap proses.

Pada penelitian ini dilakukan variasi suhu 30 °C sampai 60 °C dengan selang 5 °C. Dengan variasi ini akan terjadi kenaikan nilai konduktansi, yang berguna untuk menentukan nilai energi aktivasi ion.

Selain mengkaji pengaruh perbedaan konsentrasi larutan elektrolit eksternal terhadap nilai konduktansi, penelitian ini juga akan mengkaji hubungan valensi ion terhadap energi aktivasi ion ketika melewati membran teflon. Diharapkan dari hasil penelitian ini, danat menganalisa seberapa pengaruh perbedaan konsentrasi landan elektrolit eksternal dan valensi ion ini terhadap nilai energi aktivasi ion.

Efek suhu

Nilai Gp berisi parameter-parameter yang nilainya belum diketahui kecuali Dp dan Dn yang dimungkinkan karena suhu. Pori-pori membran ultrafiltrasi secara signifikan lebih besar dari ion maka Dp dan Dn seharusnya berbeda tergantung larutan eksternal. Setelah koreksi dan variasi suhu dalam konduktansi harus menjadi konsekuensi dari variasi konsentrasi ion dalam pori dan menghasilkan koefisien partisi y dan jari-jari pori membran b. Sehingga untuk menentukan b dari kemiringan plot grafik dari In G terhadap I/T pada konsentrasi larutan elektrolit eksternal pada membran tertentu.

Gambar 2. Grafik hubungan konduktansi terhadap suhu membran PTGC pada 0,2 mM KCl.

Pada umumnya banyak penelitian tentang membran sintetik terutama mengenai variasi suhu yang digunakan untuk mengukur konduktansi membran berkisar pada suhu 20-50 °C (gambar 2). Dengan menganggap Gp adalah sama maka dapat diketahui (Coster, Smith J.R. Dahlan K, 1990).

Efek konsentrasi larutan elektrolit

Konsentrasi larutan eksternal menentukan jumlah ion dalam larutan, semakin besar konsentrasi larutan kuantitas ion yang ada dalam larutan tersebut semakin banyak. Kenaikan kuantitas ion dalam sistem menyebabkan penurunan resistivitas larutan tersebut. Konsentrasi larutan mempengaruhi mobilitas ion dan secara tidak langsung mempengaruhi konduktivitas larutan dan memberikan efek nada karakteristik konduktansi membran yang akan digunakan. Nilai konduktansi membran larutan elektrolit eksternal berbanding lurus dengan nilai konduktansi pori Gp. Kenaikan konsentrasi larutan, diikuti dengan peningkatan nilai konduktansi pori.

Efek valensi ion larutan elektrolit eksternal

Jenis valensi ion ditentukan oleh jenis larutan elektrolit eksternal. Valensi ion larutan berpengaruh terhadap nilai energi aktivasi ΔU dan secara kualitatif jenis muatan membran yang digunakan dapat ditentukan melalui variasi ion eksternal dalam sistem transport ion melewati membran.

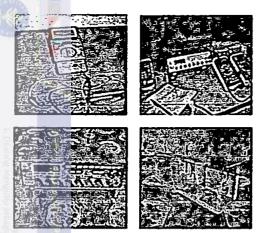
Interaksi valensi ion eksternal dengan membran menurut persamaan (5) secara tidak langsung mempengaruhi nilai konduktansi pori melalui koofesien partisi pada dua persamaan dibawahnya.

Energi aktivasi selain dipengaruhi oleh jenis valensi ion juga dapat dipengaruhi oleh jari-jari ion. Ukuran jari-jari ion unsur utama dapat kita lihat pada lampiran 48 tabel 1.

BAHAN DAN METODE

Waktu dan tempat penelitian

Penelitian dilaksanakan pada bulan Juni 2006-Agustus 2006 di Laboratorium Biofisika Departemen Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam

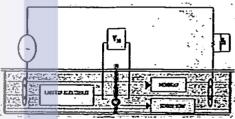

Alat dan bahan

Alat eksperimen karakterisasi membran (gambar 3):

- 1. Multimeter
- 2. Waterbath
- 3. Heater (pemanas)
- 4. Osiloskop
- 5. Penguat sinyal
- 6. Termostate dan sensornya
- 7. Chamber membran

Sedangkan bahan-bahan yang akan dipakai untuk keperluan diatas adalah sebagai berikut

- 1. Aquades
- Larutan elektrolit (KCl, NaCl, Na₂SO₄, K₂SO₄, CaCl₂, MgCl₂, CaCO₃, MgCO₃, AlCl₃)
- 3. Membran teflon
- Elektroda perak Ag/AgCl



Gambar 3. Alat-alat penelitian

Metode Penelitian

Metode yang digunakan pada penelitian kali ini adalah mengukur nilai energi aktivasi membran dengan menggunakan parameter konduktansi. Pengukuran dilakukan dengan menggunakan rangkaian yang didalamnya terdapat osiloskop, multimeter dan lain-lain yang digunakan untuk menentukan nilai karakteristik membran yaitu konduktansi yang diturunkan dari impedansinya.

Perlengkapan eksperimen utama berupa chamber dengan empat elektroda terpisah, sepasang elektroda pertama digunakan untuk memasang arus listrik bolak-balik dan sepasang elektroda lainnya untuk mengukur beda potensial membran dari larutan eksternalnya (gambar 4).

Gambar 4. Diagram skematik alat eksperimen pada chamber

Persiapan penelitian

Persiapan penelitian meliputi studi literatur yang diperlukan dalam penelitian baik berupa pengumpulan sumber-sumber acuan berupa buku, jurnal, skripsi, referensi dan sebagainya. Selain itu dipersiapkan dasar-dasar teori serta perumusan fisika dan matematika yang dibutuhkan dalam penelitian.

Persiapan eksperimen

Persiapan eksperimen yang dilakukan meliputi persiapan alat dan bahan membran,

persiapan pembuatan larutan elektrolit dan persiapan alat uji yang dipakai. Selanjutnya adalah pembuatan prosedur eksperimen secara lengkap.

Perlengkapan selanjutnya adalah pemanas (heater) dan termostate. Alat-alat ini digunakan untuk memvariasikan suhu larutan elektrolit terhadap nilai konduktansi membran akibat pengaruh konsentrasi ion dan valensi ion

Prosedur eksperimen

Prosedur eksperimen lengkap penelitian ini adalah sebagai berikut:

Pengesetan alat eksperimen sedemikian rupa. Posisi chamber bersatu dengan waterbath dan pemanas suhu agak berjauhan dengan set alat lainnya. Hal ini dilakukan untuk menghindari efek pemanasan karena suhu pada waterbath.

Persiapan waterbath, meliputi pengisian air pada waterbath, usahakan agar air dapat menutup dinding chamber. Posisi termostate harus sedekat mungkin dengan letak membran, sebab alat inilah yang mendeteksi suhu larutan saat eksperimen, yang disebut suhu aktual.

Persiapan membran yang digunakan meliputi penempatan membran pada chamber. Elektroda di kedua sisi diletakkan tegak dan sejajar bidang horizontal, sedekat mungkin dengan membran dan stabil.

Eksperimen

Pada dilakukan eksperimen pengukuran parameter dapat yang menunjukkan berapa besar energi aktivasi ion, yaitu melalui pengukuran nilai konduktansi teflon уалд kita gunakan. Parameter-parameter yang divariasikan dalam hal ini adalah konsentrasi larutan elektrolit dan valensi ionnya

Larutan yang digunakan untuk variasi valensi ion adalah KCl, NaCl, Na₂SO₄, K₂SO₄, CaCl₂, MgCl₂, CaCO₃, MgCO₃, dan AlCl₃. Adapun variasi konsentrasi yang digunakan adalah 1 mM, 10 mM, dan 100 mM. Pembuatan larutan dilakukan dengan menggunakan metode pengenceran dan pemekatan dengan menggunakan timbangan digital dan dilarutan dalam gelas ukur 300 ml. Jadi larutan elektrolit yang digunakan pada *chamber* adalah larutan teknis.

Dari pengesetan yang telah dilakukan diharapkan didapatkan nilai konduktansi membran, dengan variasi suhu setiap kenaikan 5 °C mulai 30 °C sampai dengan 60 °C, dan ketelitian 1 K atau 1 °C dari masing-masing

konsentrasi larutan eksternal. Nilai didapat melalui pembacaan nilai tegangan membran dan tegangan standar yang terbaca melalui nilai yang ada di DVM, kemudian hasil pembacaan dicatat pada tabel data.

Pengambilan data

Pengambilan data dimulai pada larutan KCl dengan konsentrasi 1 mM, 10 mM, dan 100mM tanpa membran. Pada pengambilan data awal suhu diset pada nilai terendah yaitu 30 °C, lalu dilanjutkan dengan penambahan setiap 5 °C sampai dengan suhu maksimum 60 °C Lalu nilai yang tertera pada DVM yang merupakan nilai tegangan membrannya dicatat pada tabel Pengambilan data selanjutnya dilakukan pada larutan KCl dengan membran teflon dipasang pada chamber.Prosedur ini dilakukan 2 kali dengan konsentrasi dan membran yang sama. Lalu dilanjutkan dengan menggunakan larutan elektrolit yang lain.

Analisis data

Analisis data dilakukan dengan menggunakan metode regresi linear. Setelah mendapatkan nilai impedansi R, maka kita dapat menentukan nilai konduktansi yaitu

$$G = 1/R$$

Dalam penelitian ini digunakan nilai R yang diturunkan dari impedansi membran Z pada persamaan:

$$R = Z(1 + tg^2\theta)$$

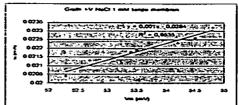
Dengan θ adalah beda fase dua gelombang terhadap perioda gelombang citra pada osiloskop yang besamya:

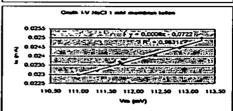
$$\Theta = (\Delta \nu T) \times 360^{\circ}$$

Nilai impedansi membran Z diperoleh dari hubungan matematis sebagai berikut

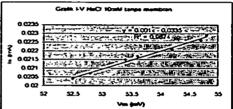
$$Z = (Vm/Vs) \times Rs$$

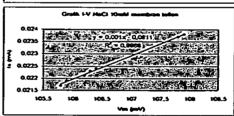
Dengan Vm adalah potensial membran, Vs potensial standar dan Rs hambatan standar. Karena nilai $\theta \pm 0$ sehingga R =Z sehingga nilai konduktansi langsung dapat diperoleh dari kebalikan resistansinya.

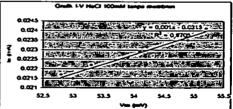

HASIL DAN PEMBAHASAN

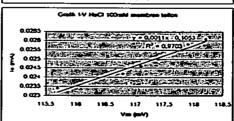

Karakteristik I-V Membran Teflon pada Berbagai Suhu

Salah satu karakteristik yang diamati dalam penelitian ini adalah karakteristik I-V membran teflon dikaitkan dengan perubahan suhu yang diberikan. Hasil karakteristik I-V diperlihatkan pada lampiran 7-33, yang menunjukkan bahwa semakin tinggi suhu larutan, semakin besar gradien grafik I-V.


Grafik I-V NaCl 1mM, 10 mm, dan 100 mM dapat kita lihat pada gambar 5.


a. 1 mM



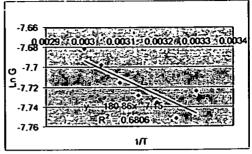

b. 10 mM

c. 100 mM

Gambar 5. Grafik I-V membran teflon dalam pada berbagai suhu pada larutan NaCl.

Dapat dilihat dari grafik I-V bahwa kenaikan suhu mengakibatkan gradien atau kemiringan grafik naik secara linear. Pertambahan nilai suhu berbanding lurus dengan pertambahan nilai konduktansi membran, sehingga pertambahan suhu secara tidak langsung mempengaruhi karakteristik membran itu sendiri.

Hasil perhitungan nilai konduktansi pada berbagai konsentrasi larutan dapat dilihat pada lampiran 2-6. Meningkatnya nilai konduktansi karena pertambahan suhu dapat disebabkan beberapa faktor, antara lain faktor larutan. Ketika suhu dinaikkan, akan ada tambahan energi kinetik dari panas yang diberikan. Hal ini akan mengakibatkan ion-ion dan elektron mudah lepas, dan mudah bergerak, sehingga arus yang dibawa oleh ion-ion akan semakin besar pula. Akibatnya aliran arus yang melewati membran akan meningkat, sehingga nilai konduktansi pun meningkat.

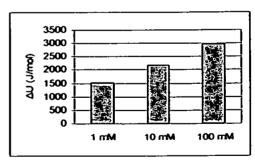

Selain faktor larutan, faktor membran juga berpengaruh dalam hal ini. Kenaikan suhu, akan menyebabkan kemampuan membran untuk mempertahankan bentuk pori-porinya semakin berkurang, ion-ion semakin mudah melewati membran dan aliran arus ion pun semakin besar, sehingga nilai konduktansi membran akan meningkat.

Pengaruh Konsentrasi Larutan Elektrolit Eksternal

larutan eksternal Variasi konsentrasi menentukan jumlah ion dalam lanıtan. Kenaikan konsentrasi akan meningkatkan kuantitas ion yang ada dalam larutan tersebut. Kenaikan kuantitas ion dalam sistem akan menurunkan resistivitas larutan tersebut. Konsentrasi larutan mempengaruhi mobilitas ion dan secara tidak langsung mempengaruhi konduktivitas larutan dan memberikan efek pada karakteristik konduktansi membran yang akan digunakan. Nilai konduktansi membran larutan elektrolit eksternal berbanding lurus dengan nilai konduktansi pori Gp. Kenaikan nilai konsentrasi larutan, diikuti dengan kenaikan nilai konduktansi pori.

Variasi konsentrasi ion larutan elektrolit eksternal yang digunakan dalam penelitian ini cukup memberikan hasil yang signifikan terhadap nilai konduktansi membran secara langsung. Kenaikan konsentrasi, diikuti konduktansi membran yang dihasilkan. Dari nilai konduktansi membran ini, kita dapat memplotkan grafik Ln G membran terhadap I/T (lampiran 34-42). Dari gradien grafik, akan diperoleh suatu nilai yang apabila dikalikan dengan konstanta Boltzman dan

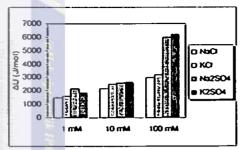
bilangan avogadro akan menghasilkan suatu nilai baru lagi yang dinamakan Energi aktivasi, seperti terlihat pada gambar 6, untuk larutan NaCl I mM.



Gambar 6. Grafik Hubungan Konduktansi terhadap suhu pada larutan NaCl 1 mM.

Nilai energi aktivasi untuk NaCl I mM dapat kita hitung dari gambar 6 dengan m (gradien) = -180,86; k (konstanta Boltzman = 1,38662 x 10⁻²³ J/K; dan bilangan avogadro L = 6,022 x10⁻²³ K/mol adalah 1510.221809 J/mol

Jika menggunakan tinjauan energi, pada umumnya berbagai proses berlangsung dengan suatu 'syarat'. 'Syarat ini dalam beberapa proses di modelkan sebagai suatu 'Barrier /Potensial' Penghalang' sebesar ΔU (disebut juga Energi Aktivasi).


Energi aktivasi masing-masing larutan yang digunakan dalam penelitian ini dapat kita lihat pada lampiran 43-45. khusus untuk larutan NaCl, dapat kita lihat pada gambar 7.

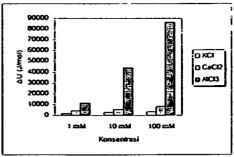
Gambar 7. Grafik hubungan antara konsentrasi larutan tarhadap energi aktivasi ion pada larutan NaCl

Dari gambar 7 dapat kita lihat bahwa nilai aktivasi bervariasi terhadap energi pertambahan konsentrasi. Konsentrasi ion menentukan banyaknya ion yang ada pada larutan. Kenaikan konsentrasi larutan, akan meningkatkan jumlah ion yang terdapat dalam larutan tersebut. Data yang diperoleh besar menunjukkan bahwa semakin konsentrasi, nilai konduktansi pada sistem tersebut semakin meningkat juga.

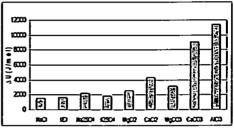
Energi aktivasi untuk masing-masing konsentrasi larutan berbagai valensi yang digunakan dalam penelitian ini dapat kita lihat pada lampiran 46, dan untuk larutan bervalensi I dapat kita lihat pada gambar 8.

Gambar 8. Grafik hubungan energi aktivasi terhadap konsentrasi pada larutan bervalensi 1

Pada konsentrasi rendah, ion-ion yang ada dimungkinkan hampir seluruhnya mampu melewati membran. Namun pada konsentrasi tinggi, jumlah ion yang mampu melewati membran maupun yang terhalang semakin besar. Nilai membran juga konduktansi membran yang semakin besar menunjukkan bahwa ion yang mampu melewati membran semakin banyak, namun nilai energi aktivasi yang semakin besar juga menyatakan bahwa jumlah ion yang terhalang oleh membran juga semakin banyak.


Dari nilai ΔU yang telah didapat dari eksperimen (lampiran 48 tabel. 2), kita juga dapat melakukan pendekatan perhitungan secara teoritis, melalui persamaan 3.

Energi aktivasi untuk larutan KCl dengan nilai ε_m 3 dan jari-jari membran b 10^{-9} , q -1,6 x 10^{-19} , π 3,14, ε_0 8,85x 10^{-12} , didapat nilai ΔU sebesar 9,275 x 10^3 . Nilai ΔU hasil perhitungan teoritis ini cukup mendekati ordenya dengan nilai ΔU .


Pengaruh Valensi Ion Larutan Elektrolit Eksternal

Variasi valensi ion yang digunakan pada penelitian ini adalah K*Cl*, Na*Cl*, K*2SQ4*2, Na*2SQ4*2, Ca*2CQ3*2, Mg*2CQ3*2, Ca*2Cl*2, Mg*2Cl*2 dan Al*3Cl*3, yang merupakan jenis elektrolit kuat dan mewakili valensi 1,2 dan 3. Pengaruh perbedaan valensi ion terhadap nilai energi aktivasi ion atau energy barrier membran dapat kita lihat pada lampiran 47.

Energi aktivasi ion negatif Cl' berbagai valensi dapat kita lihat pada gambar 9, dan energi aktivasi berbagai larutan elektrolit untuk konsentrasi 1 mM dapat kita lihat pada gambar 10.

Gambar 9. Grafik hubungan energi aktivasi terhadap konsentrasi pada ion negatif Cl' untuk larutan KCl, CaCl₂, dan AlCl₃.

Gambar 10. Grafik energi aktivasi larutan untuk konsentrasi 1 mM.

Dari gambar 9 dan gambar 10 dapat kita lihat bahwa semakin besar konsentrasi larutan, nilai energi aktivasi ionnya akan semakin besar dan semakin tinggi nilai valensi ion positif yang melewati membran, nilai energi aktivasi ionnya juga semakin besar. Hal ini terjadi karena perubahan konsentrasi dan nilai valensi ion akan mempengaruhi nilai konduktansi membran yang akan mengakibatkan perubahan nilai energi valensi.

Dari grafik (lampiran 47) dan khususnya pada gambar 9 untuk ion negatif yang sama (CI) dapat dilihat bahwa nilai energi aktivasi terbesar adalah AlCl3 untuk konsentrasi 1, 10 dan 100 mM. Dari grafik juga dapat dilihat bahwa secara umum, nilai AU elektrolit bervalensi 3 > valensi 2 > valensi 1. Hal ini berarti bahwa membran teflon yang dipakai pada penelitian ini adalah membran yang bermuatan, sehingga semakin besar muatan atau valensi ion larutan elektrolit eksternalnya, maka energy barrier atau penolakan membrannya semakin besar pula. Lebih jauh lagi sebenarnya kita dapat menduga muatan membrannya kualitatif, namun pada penelitian ini, tidak akan membahas hal tersebut lebih lanjut.

SIMPULAN DAN SARAN

Simpulan

Konduktansi membran berbanding lurus terhadap pertambahan suhu, dan karakteristik I-V membran teflon bersifat Ohmik.

Pertambahan konsentrasi larutan elektrolit eksternal mengakibatkan kenaikan nilai konduktansi membran. Hal ini berimplikasi terhadap nilai energi aktivasi ion yang menjadi semakin besar pula. Dari perbandingan nilai ΔU juga dapat disimpulkan bahwa valensi ion juga berpengaruh terhadap nilai energi aktivasi yang dihasilkan. Secara umum, semakin besar valensi ion, nilai ΔU membrannya semakin besar pula.

Saran

Penelitian ini dapat dikembangkan lagi dengan menggunakan alat yang dapat mempertahankan suhu pada saat pencatatan nilai arus sumber dan tegangan membran.

DAFTAR PUSTAKA

Azis, Eti Rohaeti. 1995. Pembuatan dan karakterisasi membran Polisulfon. Laporan Magang Penelitian Dosen MIPA Universitas: Kimia, ITB. Bandung. Tidak diterbitkan.

Atkins, A.W. 1995. Physical Chemistry International Student Fifth Edition. Addison Wesley. New York.

Futselaar, Harry. 1964. The Transverse Flow Membrane Module. The Netherland. Den Haag.

Giancoli, Douglas C.1999. Fisika jilid 1. Jakarta: Erlangga.

Hartomo AJ, Widiatmoko. 1964. Teknologi Pemumian Air. Yogyakarta: Andi Offset.

Juansah, Jajang. 2000. Karakteristik Arus Tegangan Membran Polisulfon dalam Larutan Elektrolit pada Berbagai Frekuensi, Konsentrasi dan Suhu [Skripsi]. Bogor : Institut Pertanian Bogor.

Kaseno. 1999. Teknologi Membran: Prinsip Dasar, Pembuatan dan Aplikasinya. Makalah Seminar Pengembangan Teknologi Membran di Indonesia. BPPT. Jakarta.

Mallevialle, J., Odendaal, P. E., Wicseher, M. R. 1996. Water Treatment Membrane Processess. Mc. Graw Hill. New York.

Ningsih, Ucu. 2002. Kajian Berbagai Jenis Membran untuk Pemisahan Mikroba dari Limbah Cair Industri Karet (Skripsi). Bogor : Institut Pertanian Bogor.

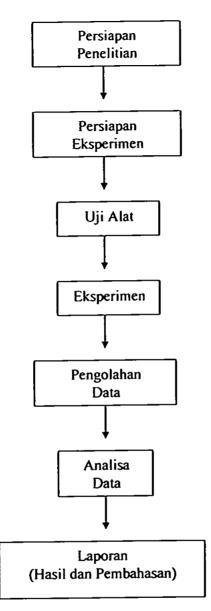
Osada, Y., Nakagawa, T. 1992. Membrane Science and Technology. Marcel Dekker, Inc. New York.

Rahmat, Mamat. 2000. Penentuan Impedansi Membran pada Berbagai Konsentrasi Larutan Eksternal dengan Metode Spektroskopi Impedansi [Skripsi]. Bogor: Institut Pertanian Bogor.

Scott, K., R. Hughes. 1996. Industrial Membran Separation Technology. Blackie Academic and Profesional, London.

Tippler, Paul A. 2001. Fisika Untuk Sains dan Tekhnik. Jakarta: Erlangga.

Yustina, Nina.2001. Pengaruh Konsentrasi dan Valensi Ion Larutan Elektrolit Eksternal terhadap Konduktansi Membran Milipore pada Berbagai Suhu [Skripsi]. Bogor: Institut Pertanian Bogor.



a Mick cipta mills 1898 Univ

LAMPIRAN

Technicistic Ing University

IPB Universit

Lampiran 2. Data konduktansi tarutan elektrolit NaCl dan KCl untuk konsentrasi 1 mM, 10 mM, dan 100 mM

5+5T	tan [] T (°C) T (°K) 1/T (1/°K)				tanpa me	mbran (Is	nutan)		dengan mei	mbran tefli	on (lotal)		Hasil					
anıtan	1 1	Tec	T ('K)	1/T (1/°K)	Vs (mV)	Vm (mV)	Is (mA)	Z=(Vm/Vs)xRs	Vs (mV)	Vm (mV)	Is (mA)	Z=(Vm/Vs)xRs	Rm =Zm= Z1-Z1	G membren	Ln G membren	Gradien	konstanta	ΔU (J/mol)
	1 mM	30	303	0.003300330	20.4	52.3	0.0204	2583,72549		111,00	0.023	4828,086957	2282.381468	0.000442018		-180,86	8.35022584	1510.22180
		33	308	0.003246753	21.3	52.7	0.0213			111,35	0.0232	4799,588966			7.751843287			
		40	313	0.003194888	21.8	83.4	0.0218	2449,541284	23,60	111,80	0.0238	4737.288138						
1561	7	45		0.003144654	21.9	53.5	0.0219	2442.922374	23.70		0.0237	4715.189873						
	-	50	323	0.003095975	22.3	54.2	0.0223	2430,493274	24.05		0.02405							
5111	1	55	328	0.003048780	22.6	54.5	0.0226	2411,504425			0.02445							
111	100	80	333	0.003003003	23.2	54.8	0.0232	2382.088988	25.00	113.25	0.025	4530	2187,931034	0.000481289	-7.681528551		,	
19.5	- 6												****		W W 2 2 2 2 4 4 4 5	262.67	8.35022584	2108 6330
	10 mM			0.003300330	20.4	52.5	0.0204	2573,529412		105.8	0.0217	4875.578037				-202.07	8.33044364	2183,0230
		35	308	0.003246753	20.7	52.8	0.0207	2550.724638		105.9	0,0219	4835,616438 4805,429864					ļ	
		40	313	0.003194888	21,5	53.4	0.0215	2483,72093		108.2	0,0221							
		43	318	0.003144654	21.7	53.6	0.0217	2470.048083		106.3	0.0223							
		50		0.003095975	22.1	54.2	0.0221	2452,488688		107.8	0.0224					.		
	ŀ	55	328	0.003048760	22.6	54.7	0.0226			107.9	0.0237	4533.813445				1		
		60	333	0.003003003	22.9	54.8	0.0229	2393,0131	23.0	107,9	0.0236	4000,010440	2140,000040	0,000,00		1 !		
	100	30	324	0.003300330	21.5	53	0.0215	2465.116279	33.4	115,7	0.0234	4944,444444	2479.328165	0.000403333	-7,815742901	-354,72	8.35022584	2961,9920
	100 m	35		0.003300330		52.8	0.0217			116.8	0.0242							_
		40		0.003194888		53.3	0.0222	2400,900901		117.1	0.0246	4760,162602				1		
		45		0.003144654		53.9	0.0228	2384.955752		117.4	0.025	4898,000000	2311.044248	0.000432705	7.745454757			
		30		0.003095975		84.1	0.0229	2382.445415		117.8	0.0255	4619.607843	2257.182428	0.000443034	7.721883741]		
		1 88 T		0.003048780		84.9	0.0235	2338,170213		117.0	0.0258	4589,767442		0.000447708	-7,711368672		'	1
		60	333			55.2	0.0241	2290,458432		118,2	0.0261	4528.735832	2238,279201	0.000448777	2 -7.713462636]		
			- 000	0.00000	1	1	-									l		
(CI	1 mM	30	303	0.003300330	17.1	20.1	0.0171	1175,438596		84.2	0.0244	3450.819672					8.35022584	1614,683
2		35		0.003246753		20,4	0.0173	1179,190751		84.8	0.0247						ļ	
		40	313	0.003194888	18.2	21.2	0.0182	1164.835165	24.8	84,7	0.0248							
		45	318	0.003144654	18.4	21,3	0.0184			89.5	0.0254							
		50	323	0.003095975	21,3	24.2	0.0213			89.6	0,0258							ŀ
		55		0.003048780		24.6	0.0215			92.4	0.0283	3265.017684				爿		
		60	333	0.003003003	21,9	24.9	0.0219	1138.986301	28,4	92.5	0.0284	3257.04225	2120,055952	0,00047188	8 -7.85919776	4	·	1
									ļ	ļ	1 447		A A A A A A A A A A A A A A A A A A A	0.00033373	5 -8.005183997	-297,74	8.35022584	2488.198
	10 mM	4 30		0.003300330		21.2	0.0187	1133,68984		101.6	0.0246						3,00022004	2.700,700
		35		0.003246753		23.1	0,0191	1209,424084		102.1	0.0248							
		40		0.003194888		24,7	0.0195	1266.66666		102.9	0.0249							
	1	45		0.003144854		24.0	0.0194			104.8	0.0251						1	
	1	50	323			25.3	0.0198			104.9	0.0254							
	10.0	55	328			26	0.0197			105.1	0.0259							
	-	60	333	0.003003003	20.2	27.5	0.0202	1301,388131	45,9	103,1	1 0,0258	4037,81003	2000,020011	0,0000.004		1		1
	100 -	1 36	304	0.003300330	20.8	23.2	0.0208	1115,38461	50 1	126.0	0.0201	6268,65671	8 5153,27210	0.00019405	1 -8.547387151	-380,41	8,35022564	3178.500
	100 m	N 30		0.003300330		24.8	0.0208			128.2	0.0208				7 -8.511723303	3	1	
	(6)	40		0.003246753		24.1	0.0218			128.8					1 -8.505459726	5]		
	1	45		0.003144654		24.9	0.0217			128.9	0.0212			0.00020688	-8.48433598			
		50		0.003095978		25.2	0.0219			127.1	0.0217		7 4708.45792	0.00021247	4 -8,45889087			1
	V	55		0.003048780		25.8	0.022			127,3	0.0218		1 4666,72226				1	
				0.003003003						128	0.0223		4 4584,06815	8 0.00021814	7 -8.43034169	1	1	

PB Universit

Lampiran 3. Data konduktansi larutan elektrolit Na2SO4 dan K2SO4 untuk konsentrasi 1 mM, 10 mM, dan 100 mM

2752	- 1	T			tanpa membran (tarutan) Vs (mV) Vm (mV) is (mA) Z=(VmVs)xRs					dengan me	mbran tell	on (total)		Hasii				
Lantan	1	T (C)	T /K	1/T (1/"K)	Va /mV	I Vm (mV)	la (mA)	Z=/Vm/Va\xRa	Va /mV\	Vm (mV)	Is (mA)	IZ=(Vm/Vs)xRs	Rm = Zm= Z1-Z1	G membran	Ln G membran	Gradion	konstanta	_ΔU (J/mol)
				0.003300330	15.2	52.5	0.0152	3440,789474		109.6	0.0152	7210.526316	3769,736842	0.000265271	-8.234760475	-260,98	8.35022564	2179.241888
1402004	1 (1314)	33		0.003248753		82.7	0.0163	3233,128834		109.8	0.01565		3782,845607	0.000284351				
		40		0.003194888		53.3	0.0179	2977,853831		110	0.0159	8918,238994	3940.585382	0.000253769				
11181		48		0.003144654		33.9	0.0182	2981,538482		111.2	0.0162	6864,197531	3902.659069	0.000258238	-8.269413412			
		30		0.003095975		84.2	0.0194	2793.814433		111.9	0.0171	6543,859649			-8.229523177			
		55		0.003048780		54.7	0.0213	2568.075117		112.4	0.0185	6075,675676	3507.600558	0.000285095	-8,182687481		1	
	100	80		0.003003003		54.8	0.0219	2502.283105		113.4	0.0187	6064,171123			-8,178046025			
1915	1	100	333	0.003003003	****	34,0	0,02,10	2002.200.00		1,,0,-								
1010	10 mM	38	303	0.003300330	15.2	57.6	0.0152	3789,473684	15.2	79.2	0.0152	5210,526316	1421,052632	0.000703704	-7,259153166	-312.77	8.35022564	2611,700073
	TO THIN			0.003248783		57.6	0.0159	3835,220126		81:2	0.0171	4748.538012						
111		40		0.003194888	19.2	58.2	0.0192	3031.25		83.4	0.0193	4321,243523						
		45		0.003144854	19.6	58.9	0.0198	3005,102041		83.5	0.0198	4260,204082						
1833		50		0.003095975		59.1	0.0233	2538.480887		87.8	0.0235	3727,659574					İ	
10 10 1		35		0.003048780		59.2	0,0245	2416.326531		88.6	0.0248	3601.626016		0.000843889	-7.077750752			
		80		0.003003003		59.6	0.0257	2319,066148		89.4	0.0253	3533.596838		0.000823383	7,102113018			
		1 80	333	0.003003003	23.1	58.0	0.0257	2319,000140	25.5	30.4	0,0200	5500,050000	1214,0000					
1 1 1	100 :: 1	- 32	484	0.003300330	18.1	58.7	0.0181	3845,982733	18.1	118.0	0.0161	7204,988944	3559,008211	0.000280977	-8.177236831	-719.39	8.35022584	6007.068823
	100 m	N 30	303	0,003246753	18.4	58.9	0.0184	3201.086957		118.2	0.0173	6716,763006						
1 51				0.003246753		59.1	0.0195	3030,769231		121.0	0.0191		3304 309303	0.000302635	-8.102982745	1		
1 1 1	1	40		0.003144854		60.2	0.0204	2950,980392		122.8	0.0201	6109,452736	3158.472344	0.000316609	-8.057843754	i i		
1 55		45		0.003095975		81.9	0.0204			123.8	0.0204		3182 82418	0.000318203	-8.059125774	1	1	1
		50		0.003048780		82.1	0.0213			124.7	0.0213			0.000318201	-8.052827941	1		
1 55		55		0.003003003		62.3	0.0221		35 6	125.8	0.0229					i		
		60	333	0.003003003	23.1	02.3	0.0231	2000,00000	22,0	125.0	0.0220	5-10-1,1 10 101	4.077.202.			1	1	[
WARA		1 30	888	0.003300330	20.4	40.3	0.0204	1975,490196	20.00	119.85	0.0209	-5734,449761	3758,95958	0.000268031	-8.231897487	-220,56	8.35022564	1841,72576
K2804	1 mm	35		0.003300330		42.9	0.0228	1881.578947		120.05							·	
				0.003194888		43.2	0.0228			120.15								
4 4		40		0.003144654		43.4	0.0234	1854.70085		121,15								
19		45		0.003144654		43.4	0.0235			121.45						1		
1 1		50					0.0237	1873.41772		121.55						1		
E		55		0.003048780		44.4	0.0237									1	i	
1.3		60	333	0.003003003	24.5	44.8	0.0245	1832,65306	24,45	121.80	0,0220	5429.044090	3337.10103	0.000477000		1		
		+	+	 	84.5	14.7	A 8822	2209.302326	57.2	458 5X	0.0245	5247,443763	3038,14143	7 0.000329146	-8,019001238	-317.27	8.35022584	2649,27608
1	10 mlV			0.003300330		47.5	0.0215											
				0.003248753		48.1	0.0217											
		40		0.003194888		48.8	0.0226					5044,747082					ŀ	
	-	45		0.003144854		49,2	0.0229	2148,471810	5 25.70 8 8 8 8	120.00								
	100	50		0.003095975		49,8	0.0237	2101.26582	3 20.US	130,00								ļ
	130	55		0.003048780		50.7	0.0241		4	130.30								
	-	80	333	0.003003003	24,9	51.2	0.0249	2058.224	46.90	130.65	0.0289	4000.07/323	2000,00244	0.00033700	-1.001001010	1	Ì	
	1		1	1	 	+	A 8822	AAAA*	4 77 A	188 8	0.0442	2945,701357	883,201357	5 0.00113224	-6.783553213	-743.83	8.35022584	8209,47829
	100 m			0.003300330		42.0	0.0208			130.2	0.0448						0.000	7
				0.003248753		43.4	0,0212			130.6	0.0448						1	l
	1			0.003194888		43,4	0.0213				0.0448						1	1
	0.0	45	318	0.003144854	21.6	43.0	0.0218			131.3	0.0454						1	
		50		0.003095975		45.2	0.0218			131,9							1	l
		55		0.003048780		47.1	0.0221			132,4	0.0465				8 -8.605248863			1
		T AA	1111	0.003003003	22.9	1 48.1	0.0229	2100.43668	11 45,7	132.6	0.0467	2839,40042	/30,003/4	/ 0.00 130324	U -0,000x-0000	4		

IPB Univers

Lampiran 4. Data konduktansi larutan elektrolit MgCl2 dan CaCl2 untuk konsentrasi 1 mM, 10 mM, dan 100 mM

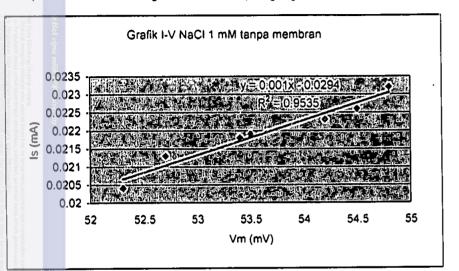
Landson Landson Color	F-1986					1	tanpa me	embran (la	rutan)		dengan me	mbran talia	on (total)		Hasil				
Minute 10	Lenten		t col	T (*K)	1/T (1/5K)	Vs (mV)	Vm (mV)	Is (mA)	Z=(VmVs)xRs	Va (mV)	Vm (mV)	is (mA)	Z=(Vm/Vs)xRs	Rm = Zm= Zt-Zi (3 membran		Gradien	konstanta	ΔU (J/mol)
10 mW 50 005 0.00050000 23.5 44.8 0.0019 10132000 10150 10050 0.0035 478 102.00 0.0005478 102.00054 10050 10		i mM	30	303	0.003300330	20.2	40.1	0.0202	1985,148515	23.30	117.15	0.0233	5027,898998	3042,748481	0.000328651	8.020516491		8.35022564	2643.931944
Col. 15 0.003164485 21 41 0.00216 913.32000 23.58 116.20 0.028324 440.7920701 2807.58007 0.00036407 7.00226 7.00227												0.02455	4826.88391	2900.616629		-7.972678624			
10 mt 30 303 0.003300300 18.5 44.6 0.0185 24.7 0.0225 19.5		um.				21,9	41.9	0.0219	1913,242009	25.25	119.20	0.02525						l	
To mix			45	318	0.003144654	22.5	42.6	0.0225	1893,333333	25.60	119,50	0.0256							•
## 155 338	12 13 1	=					42.7		1872,807018	25.90	120.05	0.0259							
Common C	19115						42.9		1873.382445	28,15	120.65	0.02615	4613,76673	2740,404285					
10 mM 30 303 0.0033260753 18.5 44.8 0.0185 2410.810811 19.8 123 0.0186 6212.121212 3801.310401 0.000283569 -8.243101136 -558.55 8.35022564 4684.018531 313 0.003148575 18.8 44.7 0.0186 2377.636974 19.9 133.1 0.0196 6185.928046 3306.270074 0.000282586 -8.24695318 46.5 13.5 0.000314854 19.8 45.8 0.0187 2324.870596 21.8 132.3 0.0218 233.5 0.000314854 0.00034784 19.8 45.8 0.0186 2377.636974 19.9 133.1 0.0186 0.0186 2377.636974 19.9 133.1 0.0186 0.00034785 0.000314864 0.00034786 0.000	1111	100					43.4		1846,808511	28,30	120.90	0.0263	4598.958175	2750,149884	0.000363617	7.919410613			
10 mm 30 308 0.00334978 18 44 0.018 3277,889374 18 18 1731 0.0018 0.00324978 18 18 18 18 18 18 18	1418									1									
10 ml 30 303 0.003030030 312 461 0.0232 216,37951 22.9 124.8 0.0227 44.022684 3195,38527 0.000313049 0.00003130		10 mM	30	303	0.003300330	18.5	44.8	0.0185	2410,810811	19.8	123	0.0198						8.35022584	4884,018531
10 ml 30 0.00314648 19.7 45.8 0.0169 2318,195066 21.8 132.3 0.0216 5708,333333 383,400237 0.0000345955 -0.1266540244 45.8 132.4 0.0226 21.8 132.4 0.0228 0.0227 0.00034028 0.000340280 0.0003402	1055		35	308	0.003246753	18.8	44.7	0.0188	2377.859574	19,9	123.1	0,0199							
## 15 18 0 003314484 19.8 #\$.9 0.0188 2318.181618 22.4 123.4 0.0224 150.0032871 3100.746783 0.000313408 -8.08601026 ## 15 0 323 0.003036978 0.0 #\$.40.2028 224.812200 227. 123.5 0.0227 440.0236204 195.33327 0.000313408 -8.08601026 ## 15 0 333 0.003030030 21.2 4.61 0.0232 2116.958787 22.8 124.1 0.0228 844.28248 3281.966681 0.00030852 -8.06009792 ## 15 0 333 0.003030030 31.70 44.8 0.0317 1406.940083 30.30 159.40 0.0032 446.78783 333.00248 -8.11744788 ## 15 0 313 0.00334783 32.05 46.1 0.0322 141.30031 31.80 140.00 0.0324 441.833333333 12864.85789 0.00035428 -7.970735122 ## 15 0 313 0.00314488 32.8 47.8 0.0324 141.30031 31.80 140.85 0.00324 281.185015 281.855016 0.00338428 -7.970735122 ## 15 0 323 0.00304978 32.8 47.8 0.00324 141.30031 31.80 140.85 0.0323 142.8 180.0031488 32.8 47.8 0.00325 141.30031 31.80 141.10 0.0335 12.8 180.0031488 32.8 18.3 18.0031488 32.8 18.0033468 1.00030852 141.30031 31.8 180.0031488 32.8 18.00030852 141.30031 31.8 18.0031488 32.8 18.0033468 1.00030852 141.30031 31.8 18.00031488 32.8 18.00030852 141.30031 31.8 18.00031488 32.8 18.00030852 141.30031 31.8 18.00031488 32.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.8 18.00030852 141.30031 31.	1111								2324,873096	21.8	123.3	0.0218	5708.333333	3383.480237			ŀ		
\$\ \begin{array}{c c c c c c c c c c c c c c c c c c c	1352										123.4	0.0224]	Ì	
\$5 338 0.000000000 32 32 46.1 0.0232 216.096917 22.9 124.8 0.0232 216.09691 0.000000000 21.000000000 21.000000000 32.2 46.1 0.0232 216.09691 12.9 124.8 0.0232 44.00000000000000000000000000000000000	1221		_								123.5	0.0227	5440,528634	3195.336327]		
Co mm 30 303 0.0030030303 23.2 46.1 0.0232 2116.37651 22.0 124.8 0.0226 5446.761659 3333.402249 0.000203994 -6.111748768												0.0228	5442.982458	3261.986981]	l I	
Too ms 30 305 0.003300335 31.70 44.8 0.0317 1408.640083 30.30 159.40 0.0303 4600.680066 3193.720003 0.000313114 6.088041881 .953.22 8.35022564 7959.602085 33.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.003164885 32.90 47.0 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.00316485 32.90 0.0031648	FIRE											0.0229	5449.781659	3333,402349	0.000299994	-8,111748788	l	1	Ì
38 308 0.003348783 32.03 46.1 0.05205 1436.377933 33.40 140.40 0.05234 435.3333333 1844.885786 0.00034428 7.907925122 40 313 0.00354868 32.40 47.2 0.0523 1415.00334 33.80 141.00 0.0335 428.1155015 2816.854706 0.00034428 7.9444.004 45 318 0.00314485 32.44 47.8 0.03248 1475.035439 33.80 141.00 0.0335 428.95524 2735.69785 0.000354506 7.9444.004 65 52.00 0.00034605 52.40 141.00 0.0325 14175.035439 33.80 141.00 0.0335 4208.935224 2735.69785 0.000354506 7.9422286 141.00 0.0325 14175.035439 33.80 141.00 0.0335 4208.935224 2735.69785 0.000354506 7.9422286 141.00 0.0325 14175.035439 33.80 141.00 0.0335 141.00 0.0335 141.00 0.000354506 7.988427210 141.00 0.0325 141.00 0.0335 141.00 0.000354506 7.988427210 141.00 0.0325 141.00 0.0325 141.00 0.0335 141.00 0.000354506 7.988427210 141.00 0.0325 141.00 0.0325 141.00 0.0325 141.00 0.000354506 7.988427210 141.00 0.0325 141.0	11		<u> </u>		***************************************						 								
\$\frac{3}{2}\$\$ \frac{3}{2}\$\$ \frac{3}{2}\$\$ \frac{1}{2}\$\$ \frac{3}{2}\$\$ \	100	100 mk	30	303	0.003300330	31.70	44.6	0.0317	1408,940083	30.30	139.40	0,0303	4600,680066	3193,720003	0,000313114	-8.068941861		8.35022564	7959.802085
## 1	111	1001111											4333.333333		0.000345428	-7,970725122			
15 318 0.003144854 32.48 47.8 0.03248 14175.034538 33.80 141.100 0.0341 417.100 0.03	1 11											0.0329	4281,155015	2819,854708	0.000354628	-7.94444084			·
Second Color Seco	1 11								1473.035439	33.50	141,00	0.0335	4208.955224	2735,919785	0,000385508	-7.91422298			
Section Sect	1 65								1471.582181	34,10	141,10	0.0341	4137.829912	2668.247731	0.000375059	7.888427419]		
Cacl2 1 mM 30 303 0.003300330 18.8 42.4 0.0186 2523.805524 18.15 114.6 0.01815 8314.04587 3780.240083 0.000263838 8.24018457 .528.53 8.35022584 4306.844306 353 308 0.003246783 19 44.7 0.018 2352.831879 18.7 118.7 0.0187 6187.185775 3834.534108 0.000263838 8.24018457 .528.53 8.35022584 4306.844306 313 0.00314888 19.2 44.9 0.0192 2333.333333 18.3 118.2 0.0193 8020.725388 3867.32053 0.000247194 8.212874727 40 313 0.00314888 19.5 44.5 0.0192 3231.7948718 20 116.6 0.02 5830 3512.051282 0.000284734 8.1535555 50 323 0.003059575 20.5 46.1 0.0250 2248.760488 20 116.6 0.02 5830 3512.051282 0.000284734 8.15355555 50 323 0.003059575 20.5 46.1 0.0250 2248.760488 20 116.6 0.02 5830 3512.051282 0.000284734 8.15355555 50 323 0.003059575 20.5 46.1 0.0250 2248.760488 20 117.7 0.0206 5855.853848 3433.773463 0.000284018 8.158465585 50 323 0.003300330 14 47.2 0.0216 2185.185165 21.7 118 0.0217 5457.788018 3252.60283 0.000284734 8.8355557 80 323 0.003300330 14 47.1 0.014 3384.285714 16.2 10.217 5457.788018 3252.60283 0.000284734 8.1535555 40.000284718 40.000284718 40.00000000000000000000000000000000000	1 2 2								1481,707317	35.20	141.30	0,0352	4014.204548			-7,838961142]		
CaCl2 1 mM 30 303 0.003300330 18.8 42.4 0.0188 2523.608524 18.15 114.8 0.01815 8314.049587 3760.240083 0.000263836 -8.24184507 -528.53 8.35022544 4596.644306 35 308 0.003248755 16 44.7 0.018 2352.831879 18.7 115.7 0.0187 6187.185775 3834.534160 0.000260788 -8.251603245 40 313 0.003194888 19.2 44.8 0.0182 2333.3333333 19.3 116.2 0.0183 8020.7323369 3887.392035 0.000271184 -8.21287427 45 316 0.003144854 19.5 45.2 0.0185 2317.948718 20 116.6 0.02 5830 3812.051282 0.000284734 -8.163895557 50 323 0.003065975 20.5 46.1 0.0205 2248.780488 20.4 117.2 0.0204 5745.080309 3496.317551 0.000286015 -8.159465565 55 328 0.003048780 20.9 48.5 0.0206 22248.860385 20.8 117.7 10.0217 3437.788018 3222.802833 0.000307446 -8.087210827 10 mM 30 303 0.003300330 14 47.2 0.0216 2185.185185 21.7 118 0.0217 3437.788018 3222.802833 0.0003307446 -8.087210827 10 mM 30 303 0.003300330 14 47.1 0.014 3344.285714 18.2 122.7 0.0162 7574.074074 4206.78838 0.000237542 -8.345167655 -629.60 8.35022564 50 323 0.003030330 14 47.1 0.014 3344.285714 18.2 122.7 0.0162 7574.074074 4206.78838 0.000237542 -8.345167655 -629.60 8.35022564 50 323 0.003030330 14 47.1 0.014 3342.285714 18.2 122.7 0.0162 7574.074074 4206.78838 0.000237542 -8.345167655 -629.60 8.35022564 50 323 0.003030303 11.4 17.1 0.014 3342.285714 18.2 122.7 0.0162 7574.074074 4206.78838 0.000237542 -8.345167655 -629.60 8.35022564 50 323 0.00303033 17.3 55.1 0.0154 3253.246753 17.7 118 0.0217 345.60 0.000281630 -8.174887713 40 313 0.003194888 15.4 50.1 0.0154 3253.246753 17.7 18 125.4 0.0185 6853.333333 3686.233850 0.000270884 -8.2146535076 50 323 0.00306975 18.1 50.7 0.0185 3253.8766977 18 124.8 0.018 6853.333333 3686.233850 0.000270884 -8.2146535076 50 323 0.00306976 18.1 50.7 0.0185 3253.8766977 18 124.8 0.0186 6853.333333 3686.00387 0.000270884 -8.2146535076 50 323 0.003069780 18.6 51.3 0.0278 1885.017422 29.4 134.8 0.0284 4885.034014 2700.018503 -0.000318853 -8.050221164 50 323 0.0030698078 20.7 0.00381830 -7.000318485 -7.00101977 50 325 0.003068078 20.7 0.0	8.7								1513,677812	37,20		0.0372	3801,075269	2287.397457	0.000437178	-7,735169969	1		1
33 308 0.003246783 19 44.7 0.016 2233.831579 18.7 118.7 0.0167 3834.785775 3834.334168 0.0002807184 8.2160324878			 "				T.,,	1									1		
\$\frac{35}{300}\$ 0.003248783 19	CaCI2	1 mM	30	303	0.003300330	16.8	42.4	0.0168	2523.809524	18,15	114.6	0,01815				-8,240184637		8.35022584	4396.644306
40 313 0.003194888 19.2 44.8 0.0192 2333,3333333 19.3 118.2 0.0193 6020,725389 3687,392055 0.0002271194 -8.2(2674727) 45 318 0.003144884 19.5 45.2 0.0198 2317,948718 20 118.6 0.02 5830 3512.051282 0.000228734 -8.16395557 50 323 0.003005975 20.5 46.1 0.0206 2248,700488 20.4 117.2 0.0204 5745.098038 3498.317551 0.000288015 -8.159485585 5328 0.003048760 20.9 46.5 0.0209 2224.880383 20.6 117.7 0.0208 5858.653846 3433.773463 0.000291223 -8.141415071	-							0.019	2352,631576	18.7	115.7	0,0187							
45 318 0.003144854 19.5 45.2 0.0168 2317.948718 20 116.8 0.02 535.0 3512.051282 0.000284734 -8.163955577 50 323 0.003045780 20.9 48.5 0.0205 2224.860383 20.8 117.7 0.0208 5858.653846 3433.773463 0.002281225 -8.141415071 60 333 0.003045780 20.9 48.6 0.0205 2224.860383 20.8 117.7 0.0208 5858.653846 3433.773463 0.002281225 -8.141415071 60 333 0.003063003 21.6 47.2 0.0216 2185.185185 21.7 118 0.0217 5437.786018 3252.602833 0.000307446 -8.087210827	1 1						44.8	0.0192	2333,333333	19.3	118.2							ļ	
SO 523 0.003065978 20.5 48.1 0.0208 2248.760488 20.4 117.2 0.0204 5745.098039 3498.317551 0.000288018 -8.158465985 58.3 528 0.003048780 20.9 48.5 0.0209 2224.880383 20.8 117.7 0.0208 5858.653948 3433.773463 0.000281228 -8.141415071 58.3 538 0.003003003 21.6 47.2 0.0218 2185.185185 21.7 118 0.0217 3437.788018 3252.802833 0.000307448 -8.087210827 -8.000307448 -8.087210827 -8.0003003003 1.4 47.1 0.0218 2185.185185 21.7 118 0.0217 5437.788018 3252.802833 0.000307444 -8.087210827 -8.0003003003 1.4 47.1 0.0218 3384.285714 18.2 12.7 0.0182 7574.074074 4206.78838 0.000237542 -8.345167655 -629.60 8.35022584 5260.558651 -8.345167655 -629.60 8.35022584 5260.558651 -8.345167655 -629.60 8.35022584 -8.345167655 -629.60 -8.24165367 -8.345167655 -629.60 -8.24165367 -8.345167655 -629.60 -8.24165367 -8.345167655 -629.60 -8.24165367 -8.345167655 -629.60 -8.24165367 -8.345167655 -629.60 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367 -8.24165367	1 1						45.2	0.0195	2317,948718	20	116.6				0.000284734				
55 328 0.003048760 20.9 48.8 0.0208 2224.880383 20.8 117.7 0.0208 5658.6853468 3433.773463 0.000201225 -8,141415071 60 333 0.003003003 21.8 47.2 0.0218 2185.185185 21.7 118 0.0217 5437.788018 3252.802833 0.000307446 -8.087210827 10 mM 30 303 0.003300330 14 47.1 0.014 3384.285714 16.2 122.7 0.0162 7574.074074 4206.78636 0.000237842 -8.345187635 -829.99 8.35022564 5260.558651 35 308 0.003248753 14.2 48.9 0.0142 3443.681972 17.6 123.1 0.0176 8994.318182 3550.85621 0.000286398 -8.218656198 15.4 50.1 0.0184 3252.246785 17.7 124.1 0.0177 7011.296435 3758.052682 0.0002860095 -8.218656198 15.4 50.1 0.0184 3252.246785 17.7 124.1 0.0177 7011.296435 3758.052682 0.0002860095 -8.218656198 15.4 50.1 0.0184 3253.246785 17.7 124.1 0.0177 7011.296435 3758.052682 0.000286095 -8.218656198 15.4 50.1 0.0184 3253.246785 17.7 124.1 0.0177 7011.296435 3758.052682 0.000286095 -8.218656198 15.4 50.1 0.0184 3253.246785 17.7 124.1 0.0177 7011.296435 3758.052682 0.000286095 -8.218656198 15.4 50.1 0.0184 3253.246785 17.7 124.1 0.0177 7011.296435 3758.052682 0.000286095 -8.218656198 15.8 50.2 0.0185 3238.709877 18 124.8 0.018 6933.333333 3694.623656 0.000270684 -8.214833978 18.1 50.7 0.0181 3149.068523 18.3 125.4 0.0183 6953.3579.10860 0.000270684 -8.214833978 18.1 50.7 0.0181 3149.068523 18.3 125.4 0.0183 6852.459018 3703.300693 0.000270623 -8.217004083 18.3 125.4 0.0183 6852.459018 3703.300693 0.000270623 -8.217004083 18.3 125.4 0.0183 6852.459018 3703.300693 0.000270623 -8.217004083 18.3 125.4 0.0183 6852.459018 3703.300693 0.000370885 -8.0003048780 18.8 50.3 0.	1 3							0.0205	2248,760488	3 20,4	117.2	0.0204							
80 333 0.00300303 21.8 47.2 0.0218 2185.185183 21.7 118 0.0217 5437.788018 3252.602833 0.000307446 -8.087210827 10 mM 30 303 0.003300330 14 47.1 0.014 3384.285714 18.2 122.7 0.0162 7874.074074 4209.78838 0.000237842 -8.345187655 -829.99 8.35022584 5280.558851 35 308 0.003246785 14.2 48.9 0.0142 3443.681972 17.8 123.1 0.0176 6994.318182 3550.85621 0.000281638 -8.174887713 40 313 0.003194888 15.4 50.1 0.0154 5253.246783 17.7 124.1 0.0177 7011.299435 3758.052882 0.000286595 -8.231656198 45 318 0.003144654 15.8 50.2 0.0155 5238.706877 18 124.8 0.018 6933.3333 3894.623659 0.000270628 -8.217603976 56 323 0.003005975 18.1 50.7 0.0161 3149.068323 18.3 125.4 0.0183 6852.459018 3703.390693 0.000270628 -8.217064083 55 328.706877 18 128.8 0.0191 6828.272251 3537.910806 0.000270623 -8.217064083 55 328 0.003048786 18.8 51.3 0.0168 3090.361448 19.1 128.8 0.0191 6828.272251 3537.910806 0.000270623 -8.217064083 57.000000000000000000000000000000000000	1							0.0209	2224.880383	20.8	117.7	0.0208							
10 mM 30 303 0.003300330 14 47,1 0.014 3384.285714 18,2 122,7 0.0162 7574.074074 4200.78836 0.000237842 -8.345167655 -629.99 8.35022564 5260.558651 35 0.003246783 14,2 48,9 0.0142 3443.681972 17,8 123,1 0.0176 6994.316162 3550.65621 0.000266095 -8.231658198 40 313 0.003194688 15,4 50,1 0.0154 3253.246783 17,7 124,1 0.0177 7011.299435 3758.052682 0.000266095 -8.231658198 45 316 0.003144654 15,8 50,2 0.0155 3238.706677 18 124,8 0.018 6933.33333 3694.623655 0.000270664 -8.214633978 50 323 0.003095975 16,1 50,7 0.0161 3149.66323 18,3 125,4 0.0183 6852.459016 3703.300693 0.000270364 -8.217604083 65 328 0.003048780 16,8 51,3 0.0163 3090.361446 19,1 126,6 0.0191 6628.272251 3357.910806 0.000282653 -8.171291664 60 333 0.003003003 17,3 83,1 0.0173 3069.364162 20,4 127,2 0.0204 6235.294118 3165.929956 0.000316863 -8.060202118 100 mN 30 303 0.003300300 27,3 47,6 0.0273 1743.589744 27,7 133,5 0.0277 4819.494585 3075.90484 0.000325108 -8.031354394 -988.88 8.35022564 8257.371131 100 mN 30 303 0.003300300 27,3 47,6 0.0273 1743.589744 27,7 133,5 0.0282 4751,77305 2888.810087 0.000346163 -7.968599962 10.003144654 28,7 50,3 0.0278 1865.683453 28,8 134,3 0.0282 4751,77305 2888.810087 0.000346163 -7.968599962 10.0003144654 28,7 54,1 0.0287 1885.017422 29,4 134,8 0.0284 4585.034014 2700.016502 0.000370388 -7.9013197 10.000346785 28,7 54,1 0.0287 1885.017422 29,4 134,8 0.0284 4585.034014 2700.016502 0.000370388 -7.9013197 10.000346785 28,7 54,1 0.0287 1885.017422 29,4 134,8 0.0284 4585.034014 2700.016502 0.000370388 -7.9013197 10.000346785 28,7 54,1 0.0287 1885.017422 29,4 134,8 0.0284 4585.034014 2700.016502 0.000370388 -7.9013197 10.000346785 28,7 54,1 0.0287 1885.017422 29,4 134,8 0.0284 4585.034014 2700.016502 0.000370388 -7.9013197 10.000346785 28,7 54,1 0.0287 1885.017422 29,4 134,8 0.0284 4585.034014 2700.016502 0.000370388 -7.9013197 10.000346785 28,1 56,3 0.00346786 28,3 87 0.00346786 28,3 87 0.00346786 28,3 87 0.00346786 28,3 87 0.00346786 28,3 87 0.00346786 28,3 87 0.00346786 28,3 87 0.00346786 28,3 87 0.00346786 28,3 87	1								2185,18518	21.7	118	0.0217	5437,788018	3252.602633	0.000307446	-8.087210827	4		
10 m/M 30 303 0.003300330 14 47.1 0.014 3304.285/107 17.8 123.1 0.0178 8964.318182 3550.85621 0.000281638 8.174887713 355 308 0.003248753 14.2 48.9 0.0145 3253.246753 17.7 124.1 0.0177 7011.299435 3758.052682 0.000286063 8.231658198 40 313 0.003194888 15.4 50.1 0.0154 3253.246753 17.7 124.1 0.0177 7011.299435 3758.052682 0.000286063 8.231658198 45 318 0.003144654 15.5 50.2 0.0155 3238.709877 18 124.8 0.018 6933.333333 3694.623658 0.000270023 8.214633978 50 323 0.003095978 18.1 50.7 0.0161 3149.068323 18.3 125.4 0.0163 6852.459016 3703.390693 0.000270023 8.217004083 55 328 0.003048780 16.6 51.3 0.0168 3090.381446 19.1 126:6 0.0191 6828.272251 3337.910808 0.000270023 8.217004083 80 333 0.003300330 17.3 83.1 0.0173 3069.364162 20.4 127.2 0.0204 6235.294118 3165.929958 0.000315863 -8.05129118 100 m/h 30 303 0.003300330 27.3 47.8 0.0273 1743.589744 27.7 133.5 0.0277 4819.494585 3075.904641 0.000328108 -8.031354394 -988.88 8.35022564 8257.371131 335 308 0.003246753 27 50.3 0.027 1862.962963 28.2 134 0.0262 4751.77305 2888.810087 0.000346163 -7.068599662 40 313 0.003144654 28.7 50.3 0.027 1862.962963 28.2 134 0.0262 4751.77305 2888.810087 0.000346163 -7.068599662 45 318 0.003144654 28.7 50.7 68599662 20.00276854 29.3 57 0.0278 1865.962963 28.2 134 0.0262 4751.77305 2888.810087 0.000346163 -7.068599662 45 318 0.003144654 28.7 50.7 68599662 20.000376388 -7.901013197 20.00376388 27.9 50.003065978 28.1 58.3 0.0287 1885.017422 29.4 134.8 0.0294 4585.034014 2700.016592 0.000376388 -7.901013197 29.9 135.9 0.0296 4545.150302 2470.738541 0.000404738 -7.84054595 50 323 0.003065978 28.1 58.3 0.0287 1885.017422 29.4 134.8 0.0294 4585.034014 2700.016592 0.000376388 -7.901013197 29.9 135.9 0.0296 4545.150302 2470.738541 0.000404738 -7.84054595 50 323 0.003065978 28.1 58.3 0.0287 1885.017422 29.4 134.8 0.0294 4585.034014 2700.016592 0.000376388 -7.901013197 20.0037638 -7.901013197 20.0037638 29.3 29.9 135.9 0.0296 4545.150302 2470.738541 0.000404738 -7.84054595 20.000376388 -7.901013197 20.00376388 -7.901013197 20.00376388 -7.901013			 	1 000	0.0000000		 			1		1				I	<u> </u>		- 1111 1111
35 308 0.003246753 14.2 48.9 0.0142 3443.861972 17.6 123.1 0.0176 6994.318182 3550.85821 0.000286095 -8.231858193 40 313 0.003194888 15.4 80.1 0.0154 3253.246763 17.7 124.1 0.0177 7011.299435 3758.052882 0.000286095 -8.231853976 45 318 0.003144654 15.8 50.2 0.0155 3238.709677 18 124.8 0.018 6933.33333 3694.623856 0.000270684 -8.214633976 50 323 0.003095978 18.1 50.7 0.0161 3149.068323 18.3 125.4 0.0183 6852.459018 3703.390893 0.000270023 -8.217004083 55 328 0.003048780 18.8 51.3 0.0168 3090.381448 19.1 128:6 0.0191 6828.272251 3537.910806 0.000286253 -8.171291864 55 328 0.003048780 18.8 51.3 0.0173 3089.384162 20.4 127.2 0.0204 6235.294118 3185.929958 0.000315883 -8.080202118 50 333 0.003003003 17.3 53.1 0.0173 3089.384162 20.4 127.2 0.0204 6235.294118 3185.929958 0.000315883 -8.080202118 50 333 0.003003003 27.3 47.8 0.0273 1743.589744 27.7 133.5 0.0277 4819.494585 3075.904641 0.0003285108 -8.031354394 -988.88 8.35022584 8257.371131 50 313 0.003144854 28.7 50.3 0.0278 1895.89459 28.2 134 0.0282 4761.77305 2888.810087 0.0003246163 -7.988599982 476.304444 276.510991 0.000334543 -7.988599982 50 323 0.003144654 28.7 50.0278 1895.89459 29.9 135.9 0.0288 4883.194444 276.510991 0.000334545 -7.988599982 50 323 0.003144654 28.7 54.1 0.0287 1885.017422 29.4 134.8 0.0284 4885.034014 2707.015592 0.000370388 -7.901013197 50 323 0.003065978 28.1 56.3 0.0287 1885.017422 29.4 134.8 0.0294 4885.034014 2707.015592 0.000370388 -7.901013197 50 323 0.003065978 28.1 56.3 0.0287 1885.017422 29.4 134.8 0.0294 4885.034014 2707.015592 0.000370388 -7.901013197 50 323 0.003065978 28.1 56.3 0.0287 1885.017422 29.4 134.8 0.0294 4885.034014 2707.015592 0.000370388 -7.901013197 50 323 0.003065978 28.1 56.3 0.0287 1885.017422 29.4 134.8 0.0294 4885.034014 2707.015592 0.000370388 -7.901013197 50 323 0.003065978 28.1 56.3 0.0287 1885.017422 29.4 134.8 0.0294 4885.034014 2707.015592 0.000370388 -7.901013197 50 323 0.003065978 28.1 56.3 0.00287 1885.017422 29.4 134.8 0.0294 4885.034014 2707.015592 0.000370388 -7.901013197 50 323 0.0003065978 28.1		10 mM	30	303	0.003300330	14	47.1	0.014	3384.285714	18,2	122.7	0.0162	7574,074074					8.35022584	5260.558651
40 313 0.003194888 15.4 50.1 0.0154 3253.246763 17.7 124.1 0.0177 7011.299435 3758.052882 0.000286695 -8.231858198 45 318 0.003144654 15.8 50.2 0.0155 3238.709877 18 124.6 0.018 6933.333333 3694.623656 0.000270684 -8.214633978 50 323 0.003095978 16.1 50.7 0.0161 3149.086323 18.3 125.4 0.0183 6852.459018 3703.390693 0.000270023 -8.217004083 53 328 0.003048780 18.6 51.3 0.0163 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.00027023 -8.21704084 60 333 0.003048780 18.6 51.3 0.0173 3089.364162 20.4 127.2 0.0204 6235.294118 3165.929958 0.000315863 -8.060202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.050202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.050202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.050202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.050202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.050202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.050202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.050202118 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -8.051354394 988.88 8.35022584 8257.371131 50 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000315863 -7.968599962 10.000315863 18.0 10.000	5.		33	308	0.003246753				3443.66197	17.6	123.1	0.0176						1	l
45 318 0.003144654 15.8 50.2 0.0185 3238.709877 18 124.8 0.018 6933.333333 3694.623658 0.000270684 -8.214633976 50 323 0.003095978 16.1 50.7 0.0161 3149.086323 18.3 125.4 0.0163 6852.459018 3703.390693 0.000270623 -8.21706408 55 328 0.003048780 18.8 51.3 0.0183 3090.381448 19.1 126.6 0.0191 6828.272251 3537.910808 0.000270623 -8.171291684 60 333 0.00300300 17.3 83.1 0.0173 3089.384162 20.4 127.2 0.0204 6235.294118 3165.929958 0.000315863 -8.060202118 60 333 0.003300330 27.3 47.8 0.0273 1743.589744 27.7 133.5 0.0277 4819.494585 3078.904841 0.000325168 -8.031354394 988.88 8.35022584 8257.371131 35 308 0.003246763 27 50.3 0.027 1862.962963 28.2 134 0.0282 4751.77305 2888.810087 0.000346163 -7.968599962 4751.77305 2888.810087 0.000346163 -7.968599962 4751.77305 477.510991 0.000346163 -7.968599962 4751.77305 477.510991 0.000346163 -7.968599962 4751.77305 477.510991 0.000346163 -7.96859966 479.25703836 479.2				313	0.003194888	15.4		0.0154	3253,24675	17.7	124,1	0.0177							
50 323 0.003065978 18.1 50.7 0.0161 3149.068323 18.3 125.4 0.0163 6852.459016 3703.390693 0.000270023 -8.217004083 55 328 0.003048780 18.8 51.3 0.0168 3090.361448 19.1 126.6 0.0191 6828.272251 3537.910806 0.000282853 -8.171291884 60 353 0.00330303 17.3 53.1 0.0173 3069.364162 20.4 127.2 0.0204 6235.294118 3165.929958 0.000315883 -8.080202118 100 mN 30 303 0.003300330 27.3 47.8 0.0273 1743.589744 27.7 133.5 0.0277 4819.494585 3075.904841 0.000325108 -8.031354394 -988.88 8.35022564 8257.371131 35 308 0.003246753 27 50.3 0.027 1882.962963 28.2 134 0.0282 4761.77305 2888.610087 0.000346163 -7.968599962 40 313 0.003144888 27.8 52.7 0.0278 1862.662963 28.2 134 0.0282 4761.77305 2888.610087 0.000346163 -7.968599962 40 313 0.003144884 28.7 54.1 0.0287 1885.017422 29.4 134.8 0.0284 4885.034014 2707.016502 0.000370388 7.9901013197 50 323 0.0033048780 29.3 57 54.1 0.0281 1885.017422 29.4 134.8 0.0294 4885.034014 2707.016502 0.000370388 7.9901013197 50 323 0.0033048780 29.3 57 0.0281 2003.558719 29.9 135.9 0.0294 4885.034014 2707.016502 0.000370388 -7.991013197 50 323 0.0033048780 29.3 57 0.0281 2003.558719 29.9 135.9 0.0294 4845.150502 2541.591783 0.000304478 -7.84054585 50 323 0.003048780 29.3 57 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.738541 0.000404738 -7.81227158									3238,70967	7 18	124.8	0.018							
55 328 0.003048780 18.8 51.3 0.0188 3090.361446 19.1 126.6 0.0191 6828.272251 3537,910806 0.000282853 -8.171291864 60 333 0.003003003 17.3 53.1 0.0173 3089.384162 20.4 127.2 0.0204 6235.294118 3185.929958 0.000315863 -8.080202118 100 m) 50 303 0.003300330 27.3 47.8 0.0273 1743.589744 27.7 133.5 0.0277 4819.494585 3075.904641 0.000325108 -8.031354394 -988.88 6.35022564 8257.371131 35 308 0.003248753 27 50.3 0.027 1862.962963 28.2 134 0.0262 4761.77305 2888.610087 0.000346185 -7.968599962 40 313 0.003194888 27.8 52.7 0.0278 1695.683453 28.8 134.3 0.0284 4683.19444 2767.510991 0.000331338 -7.923703836 45 318 0.003144854 28.7 54.1 0.0287 1685.017422 29.4 134.8 0.0294 4585.034014 2700.016592 0.000370388 -7.90103107 50 323 0.003048780 28.3 58.3 0.0281 2003.558719 29.9 135.9 0.0294 4585.034014 2700.016592 0.000370388 -7.84054585 50 323 0.003048780 29.3 57 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.738541 0.000404738 -7.84054585	1								3149,06832	18.3	125.4	0.0183	6852,45901	3703,390693					
80 333 0.003300303 17.3 83.1 0.0173 3089.364162 20.4 127.2 0.0204 6235.294118 3165.929958 0.000315863 -8.080202118 100 m) 30 303 0.003300330 27.3 47.6 0.0273 1743.589744 27.7 133.5 0.0277 4819.494585 3075.904841 0.000325108 -8.031354394 -988.88 6.35022584 8257.371131 35 308 0.003248753 27 80.3 0.027 1862.962963 28.2 134 0.0262 4761,77305 2888.810087 0.000348163 -7.988599962 40 313 0.003194888 27.8 52.7 0.0278 1895.883453 28.8 134.3 0.0284 4883.194444 2787.510991 0.000361336 -7.925703636 45 318 0.003144654 28.7 54.1 0.0287 1885.017422 29.4 154.8 0.0264 4585.034014 2700.016592 0.000370388 -7.901013197 50 323 0.003095875 28.1 58.3 0.0281 2003.558719 29.9 135.9 0.0299 4545.150502 2541.591783 0.00039454 -7.84054585 55 328 0.003048780 29.3 87 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.736541 0.000404738 -7.81227158										8 19.1	126:6	0.0191	6628,27225	1 3537.910806	0.000282653				ł
100 ml 30 303 0.003300330 27.3 47.6 0.0273 1743.589744 27.7 133.5 0.0277 4819.494585 3075.904841 0.000325108 -8.031354394 -988.88 8.35022584 8257.371131 35 308 0.003248763 27 50.3 0.027 1862.962963 28.2 134 0.0282 4751.77305 2888.810087 0.000348163 -7.988599962 40 313 0.003194888 27.6 52.7 0.0278 1695.863453 28.8 134.3 0.0288 4883.194444 2767.510991 0.000381338 -7.923703838 40 318 0.003144654 28.7 54.1 0.0287 1885.017422 29.4 134.8 0.0284 4885.034014 2700.018592 0.000370388 -7.901013197 45 318 0.003144654 28.7 54.1 0.0287 1885.017422 29.4 134.8 0.0294 4885.034014 2700.018592 0.000370388 -7.901013197 50 323 0.003065975 28.1 56.3 0.0281 2003.558719 29.9 135.9 0.0299 4545.150502 2541.591763 0.000393454 -7.84054585 50 323 0.003048780 29.3 57 0.0293 1945.392491 31 138.9 0.031 4418.129032 2470.738541 0.000404738 -7.81227158		Auto												3165,929956	0.000315863	-8.06020211	3		
30 303 0.0033048763 27 80.3 0.027 1882,962963 28.2 134 0.0282 4751,77305 2888,810087 0.000348163 -7,968599962 38.3 134 0.0282 4751,77305 2888,810087 0.000348163 -7,968599962 38.3 134 0.0282 4751,77305 2888,810087 0.000348163 -7,928703636 38.3 134 0.0282			J	1 555	1 3,000,000	 	†	1		1	T							1	
35 308 0.003246753 27 80.3 0.027 1862.962963 28.2 134 0.0262 4761,77305 2888.610087 0.000346183 -7,968599962 40 313 0.003194888 27.8 52.7 0.0278 1695.683453 28.8 134.3 0.0284 4683.19444 2787.510991 0.000361338 -7,923703836 45 318 0.003144854 28.7 54.1 0.0287 1685.017422 29.4 134.8 0.0294 4585.034014 2760.016592 0.000370388 -7,901013197 50 323 0.003095975 28.1 56.3 0.0281 2003.658719 29.9 135.9 0.0294 4585.150502 2541.591783 0.000393454 -7,84054585 50 323 0.003048780 29.3 57 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.738541 0.000404738 -7,81227158		100 m	N 30	303	0.003300330	27.3	47.8	0.0273	1743,58974	4 27.7	133.5	0.0277				3 -8.03135439		8.35022584	8257,371131
40 313 0.003194888 27.8 52.7 0.0278 1695.685453 28.8 134.3 0.0288 4683.194444 2767.510991 0.000381338 -7.923703838 45 318 0.003144654 28.7 54.1 0.0287 1685.017422 29.4 134.8 0.0294 4585.034014 2700.016592 0.000370388 -7.901013197 50 323 0.003095975 28.1 58.3 0.0281 2003.558719 29.9 135.9 0.0299 4545.150502 2541.591783 0.000393454 -7.84054585 55 328 0.003048780 29.3 57 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.738541 0.000404738 -7.81227158		100 111									134	0.0282						1	1
45 318 0.003144654 28.7 54.1 0.0287 1885.017422 29.4 134.8 0.0294 4585.034014 2700.018592 0.000370388 -7.901013197 50 323 0.003095975 28.1 58.3 0.0281 2003.558719 29.9 135.9 0.0299 4545.150502 2541.591783 0.000393454 -7.84054585 55 328 0.003048780 29.3 57 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.738541 0.000404738 -7.81227158		(1)											4883,19444						
50 323 0.003065878 26.1 56.3 0.0281 2003.558719 29.9 135.9 0.0299 4545.150502 2541.591763 0.000393484 -7,84054585 55 328 0.003048780 29.3 87 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.738541 0.000404738 -7,81227158		-		1 318	0.003144854								4585,03401	4 2700,016592				1	l .
55 328 0.003048780 29.3 87 0.0293 1945.392491 31 138.9 0.031 4416.129032 2470.738541 0.000404738 -7.81227158													4545,15050					1	
		4									138.9	0.031	4418,12903					l	
														4 2220,240712	0.00045040	2 7.70537089	립	1	

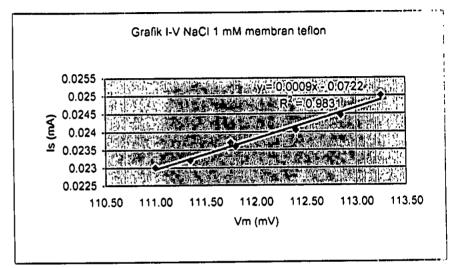
IPB Univers

Lampiran 5. Data konduktansi larutan elektrolit MgCO3 dan CaCO3 untuk konsentrasi 1 mM, 10 mM, dan 100 mM

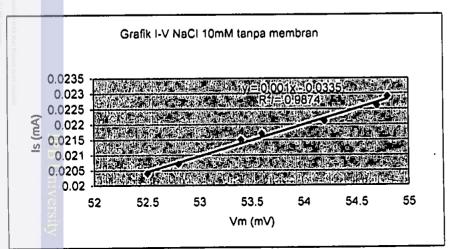
13355	8	_	_	 		tanca me	mbran (la	nutan)	T	dengan me	mbran tell	on (lolal)	ī	Hasil				
Larutan	1 1	T CC	T CK	1/T (1/TK)	Va (mV)	Vm (mV)	is (mA)	Z=(VmVs)xRs	Vs (mV)	Vm (mV)	ls (mA)	Z=(Vm/Vs)xRs	Rm +2m= 21-21	G membran	Ln G membran	Gradien	konstanta	ΔU (J/mol)
MgCO3					20.1	47.1	0.0201	2343,283582	20,60	102.8	0,0206	4990.291262	2647.00768	0.000377785	-7,881185104	-384,17	8.35022564	3207.906184
magood		35		0.003248753		49.7	0.0228	2179.824561		103.1	0.0208	4956,730769	2776.906208	0.000360113	-7.929092712	L		
1111		40			22.9	49.8	0.0229	2174,872489		103.8	0.0211	4919.43128		0.000364331	-7.917448478	• 1		
11121		45	318	0.003144654	23.1	50.0	0.0231	2184,502185		103,9	0.0219	4744.292237	2579,790073	0.000387628	-7,855463308			
HAT!	1 2	30		0.003095975	24.5	52.1	0.0245	2126,530612	22.50	104,1	0,0225				-7.824100431			ł
i di ili		33		0.003048780	26.3	83.2	0.0263	2022,813688		104.5	0.023	4543,478261						
1111	1	80		0.003003003	26.9	53.9	0,0269	2003,717472		105.2	0.0237	4438,818565	2435,101093	0.000410661	-7.797743551			
3618		 	+	-	1					1								
1010	10 mh	d 30	303	0.003300330	20.2	53.3	0.0202	2638,613861	21,60	117.70	0.0216				-7.941103528	-621.24	8,35022564	5187,494177
1255	101111	35		0.003246753		53.9	0.0208	2591,346184		118,85					-7,897822098			
1311		40		0.003194888		54.8	0.0217	2525.345622	22.80	119,90		5258,77193			-7.913311159	!		
		45		0.003144654		54.9	0.0219	2508.849318				5169.527897			-7.887087881			
1653		30		0.003095975		55.2	0.0223	2475.336323	24.00			5037.5		0.000390295	-7.848607387			
5525		55		0.003048780		55.3	0.0224		24,60	121,65		4945,121951			-7.814549845		ļ	
1 11		80	333			58.1	0.0221	2538,481538	25.50	122,65	0.0255	4809,803922	2271.342383	0.000440268	-7.728128294			
11		 ``	+													- A - A - A	8.35022564	8715.965523
1 11	100 m	N 30	303	0.003300330	44,1	80.1	0.0441	1382.811791		127.0	0.0422						8.35022564	8713,903323
	10011	35		0.003248753		82.3	0.0442	1409.502262		127.6	0.0433					1		ļ
1 11	1	40		0.003194888	44.8	82.9	0.0446			127.9	0.0442					Į I		
1 11		45		0.003144654		65.4	0,0448			128.2	0.0452					1	•	Ì
1 11	1	50	323	0.003095975	44,9	64.2	0.0449			129.0	0.0461		1388,420544	0.0007307		-		
1 11		55	328	0.003048780	45.0	84.9	0.045	1442.22222		129,1	0.0472					-		ļ
3 37		60	333	0.003003003	45.7	65.3	0.0457	1428.884026	49.9	129.8	0.0499	2601,20240	1172.31837	0.00085301	1 -7,060/3836/	4		
			7-			l					ļ.,,,,,,		*****	0.00010031	9,207185088	-1087.6	8.35022564	9081,705406
CaCO	1 mM	30		0,003300330		41.8	0.0118	3542.37288		124.3	0.0092						0.000,1.00	555 11 55 55
5 3		35		0.003248753		42.7	0.0126			128.2							1	
1 5		40	313	0.003194888	12.8	42,8	0.0128			128.7	0.0101					1		
9 8		45		0,003144654		42.9	0.0129			127.0	0.0109							1
1		30	323	0.003095975	13.5	43.4	0.0135			127.2								
		55	328	0.003048780	13.8	43.5	0,0138			127.7]	
		60	333	0.003003003	14,4	44.3	0.0144	3076,38888	9 12.1	127.8	0.0121	10581.9834	/ /485,59458	2 0.0001333	9 -0,820/33/3	4		
18													6848,10158	4 0.00015041	9 -8.802086817	- 1825	8.35022584	12717.39365
1.2	10 m	M 30	303			53.1	0.0082			127.3	0.0097						0.000,000	1,0
-		35				55.1	0,0083			127.4	0.0098							1
1		40		0.003194888		55.7	0,0088			127.8	0.0104						ŀ	
	70.74	45		0.003144654		56,1	0.0091			128.9	0.0108							
		30				58.2	0.0098			131,3	0.0112						Ì	1
	107.00	58		0.003048780			0.0107				0.013							
	100	60	333	0.003003003	10.80	57.1	0,0108	5287.03703	7 14.7	135	0.0147	9183,87348	8 3080.03043	V.00023003	-0.20,00000	4	1	1
							ļ		<u> </u>	1	A AA#	2498	0 1498	0 6.67557E-0	5 -9.81447125	-2024.8	8.3502256	16905.0318
	100	mN 30	303	0.003300330	4,8	48.0	0.0048				0.005						1.000	
		38	308	0.003248753	5.2	48,1	0.0052										1	
	2	40	313	0.003194888	5,4	49.7	0.0054											1
	00			0.003144654	5.6	49.9	0.0056										1	l
			323				0.006				0.008						I	1
			326				0.0076				0.008						1	
		6/	33.	0.003003003	8.50	50.6	0.0083	5 5952,94117	טע.ט טיי	130.95	0.008	14/10,4001	5, 5,00,0411	0.000.1410		4		

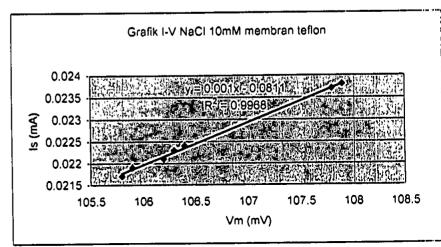
IPB University

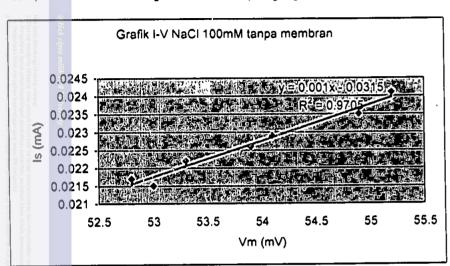

Lampiran 6. Data konduktansi larutan elektrolit AICI3 untuk konsentrasi 1 mM, 10 mM, dan 100 mM

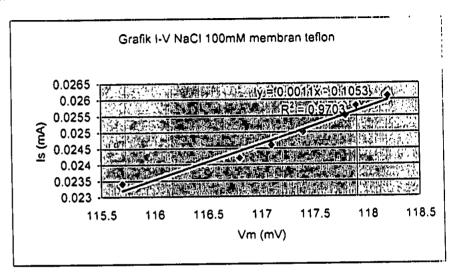

2250						tenpa m	embran (la	irutan)		dengan ma				Hasil				
Lorutan	11	T (*C)	T (*K)	1/T (1/°K)	Vs (mV)	Vm (mV)	la (mA)	Z=(Vm/Vs)xRs	Va (mV)	Vm (mV)	Is (mA)	Z=(Vm/Vs)xRs	Rm = Zm= ZI-Zi		Ln G membran	Gradien	konstanta	ΔU (J/mol)
AICI3	1 mM	30	303	0.003300330	20	54,4	0,02	2720	19.6	116.2	0.0198	5928.571429	3208.571429		-8.073581079	-1384.3	8.35022564	11392.21284
0.110.1	1	33	308	0.003248753	20.8	54.7	0.0208	2655,339806	21,4	117.9	0.0214	5509.345794	2854,005989	0.000350385	-7.956478896			
11115	#	40	313	0.003194888	21,5	55.2	0.0215	2587,44188	21.7	118.2	0.0217	5447.004608	2879,582748	0.000347275			l.	l
1111		45	318	0.003144654	22,1	58.3	0.0221	2547.511312	22.6	119.0	0,0226	5265.486726	2717.975413	0.000367921	-7,907642549		1	
8111		50	323	0.003095975	22.5	57.5	0.0225	2555.555556	23.7	119.8	0.0237	5054.852321	2499.298765	0,000400113				
5161		55	328	0.003048780	22.7	59.1	0.0227	2603.524229	24.9	121,2	0.0249	4867.46988	2263.94565	0.000441707			Į.	
1111		60	333	0.003003003	23.1	60.2	0.0231	2606.060606	26.1	122.4	0.0261	4689.655172	2083.594566	0.00047994	-7.641849838			
111	- 2																* * * * * * * * * * * * * * * * * * * *	
18 28	10 mM	30	303	0.003300330	15.1	56.3	0.0151	3728,478821	17,20	119.70	0.0172	6959,302326	3230.825504	0.000309518			8.35022564	43918,84678
111		35	308	0.003246753	15.9	57.5	0.0159	3818.352201	18,00	120.50	0.018	6694,444444	3076.092243	0.000324877	-8.032085282]		
315		40	313	0.003194888	16.3	59,1	0.0163	3625.766871	20.70	123,10	0.0207	5946.859903	2321,093032	0.000430832	7.749793488	Į I		
1000		45	318	0.003144654	17.1	62.1	0.0171	3831.578947	23.20	125.90	0.0232	5426,724138	1795,145191	0.000557058				
		50	323	0.003095975	17.8	62.8	0.0178	3528,089888	25.50	128,10	0.0255	5023.529412	1495,439524	0.0006887	-7.310175439]		
10 10		55	328	0.003048760	18.3	63.5	0.0183	3469.945355	31.10	133.70	0.0311	4299.03537	829,0900148			Į.		
111		60	333	0.003003003	19,2	64.7	0,0192	3369,791667	32,50	134,90	0.0325	4150,769231	780.9775841	0.001280447	-6.660546422	1		
1 11				<u> </u>		1	Ī								W-11072444	1000	A 68000804	86449.88605
11	100 mA	30	303	0.003300330	15.9	81.9	0.0189	3893.081761	18.3	123.4	0.0163	6743.169399	2850,087638	0.000350866			8,35022564	80449,880003
1 38		35	308	0.003248753	18,2	82.1	0,0182	5833,333333	19,8	124,9	0.0198	6308.080808					1	
13		40	313	0.003194888	18.4	62.3	0.0164	3798,760486	20.2	125.3	0.0202	6202.970297	2404,189809				ŀ	
100		45	318	0.003144654	16.5	82,4	0.0165	3781,818182	23,7	128.9	0.0237	5438,818565	1857,000384				1	1
3 8		50	323	0.003095975	16,9	62.9	0.0169	3721.893491	27.3	132.4	0.0273	4849,81885			-7.028133485			
11		55	328	0.003048780	17.7	63.8	0.0177	3804,519774	37.5	142.8	0.0375	3802.666667	198,1468927	0.005046761			1	أ
3"		60	333	0.003003003	18.2	84.1	0,0182	3521,978022	39.2	144.2	0.0392	3878.571429	156.5934066	0.008385965	-5.053852879	4		
100				 	T	T	I	T T			I	1	l	l	<u> </u>			

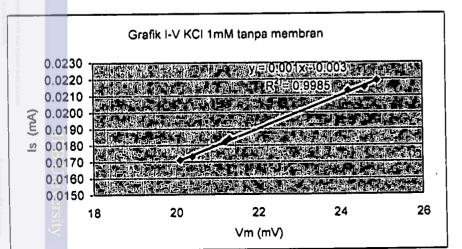
IPB Universi

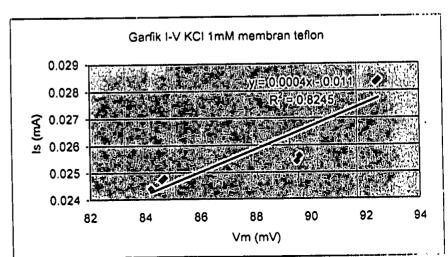



Lampiran 7. Grafik Hubungan Arus terhadap Tegangan pada Larutan NaCl 1 mM

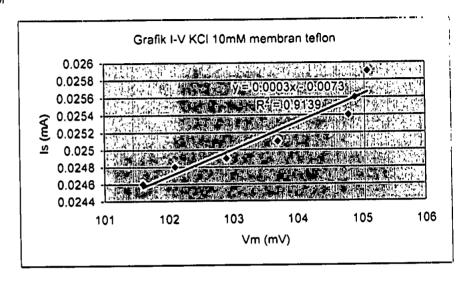

Lampiran 8. Grafik Hubungan Arus terhadap Tegangan pada Larutan NaCl 10 mM

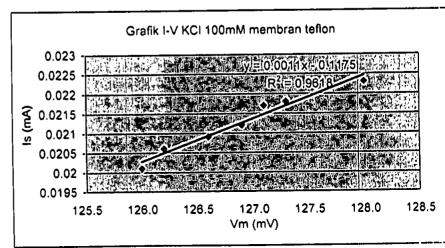


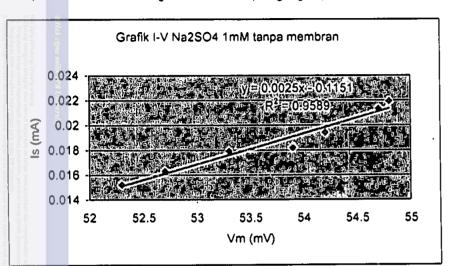


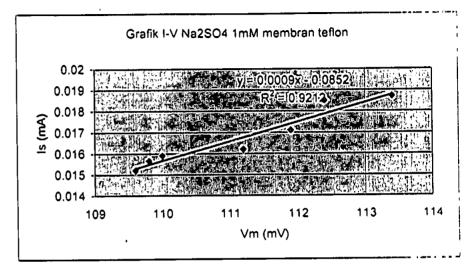

Lampiran 9. Grafik Hubungan Arus terhadap Tegangan pada Larutan NaCl 100 mM

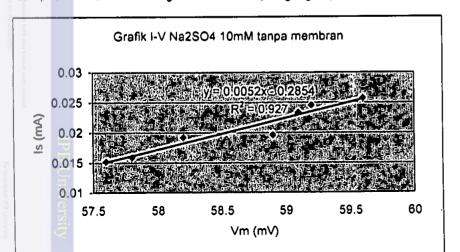
Lampiran 10. Grafik Hubungan Arus terhadap Tegangan pada Larutan KCI 1 mM

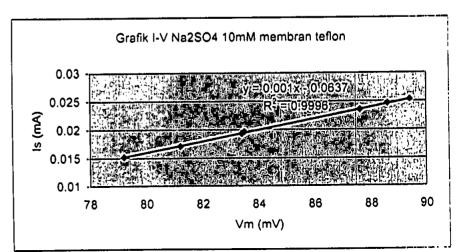


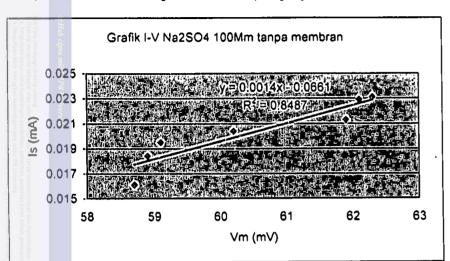

Lampiran 11, Grafik Hubungan Arus terhadap Tegangan pada Larutan KCI 10 mM

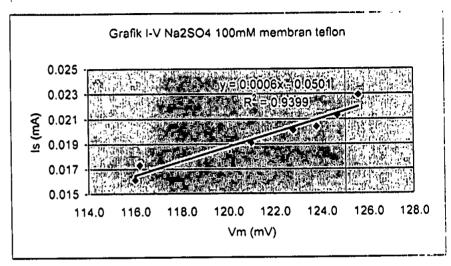

Lampiran 12. Grafik Hubungan Arus terhadap Tegangan pada Larutan KCI 100 mM

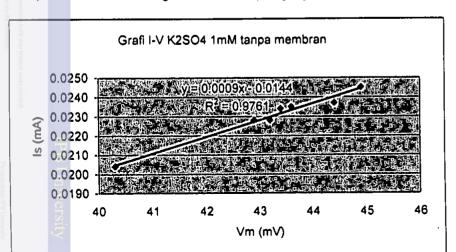


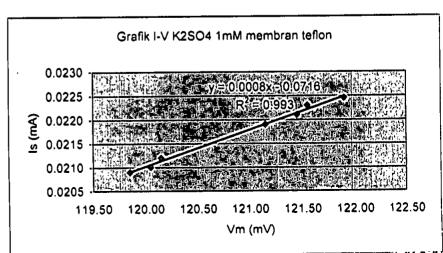


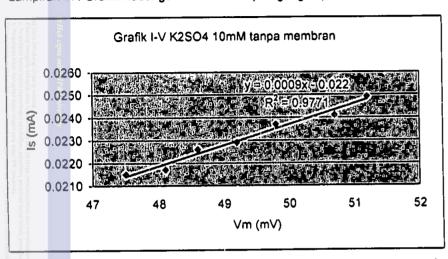

Lampiran 13. Grafik Hubungan Arus terhadap Tegangan pada Larutan Na2SO4 1 mM

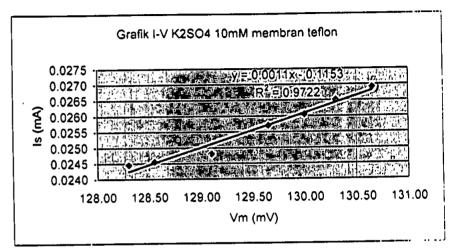

Lampiran 14. Grafik Hubungan Arus terhadap Tegangan pada Larutan Na2SO4 10 mM

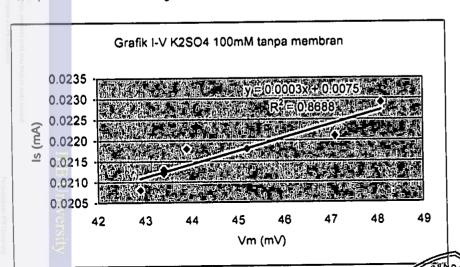


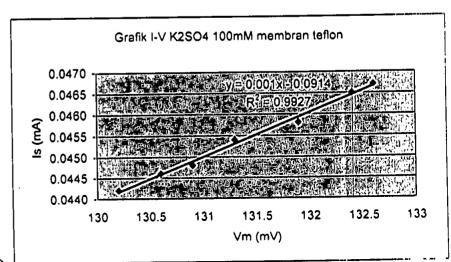

IPB University

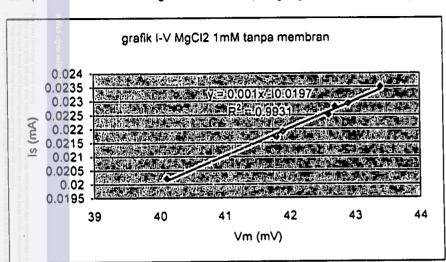

Lampiran 15. Grafik Hubungan Arus terhadap Tegangan pada Larutan Na2SO4 100 mM

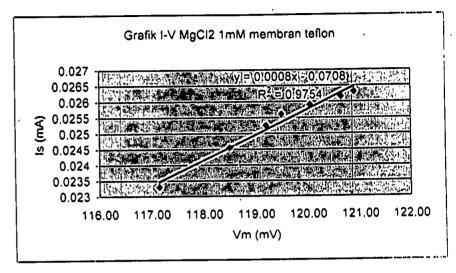

Lampiran 16. Grafik Hubungan Arus terhadap Tegangan pada Larutan K2SO4 1 mM

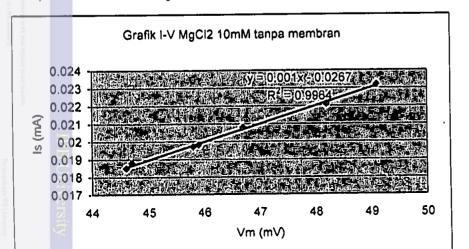


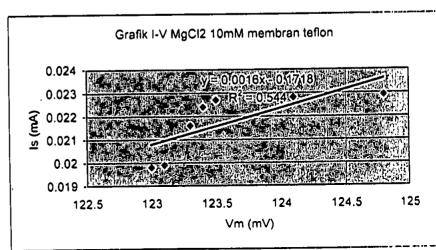


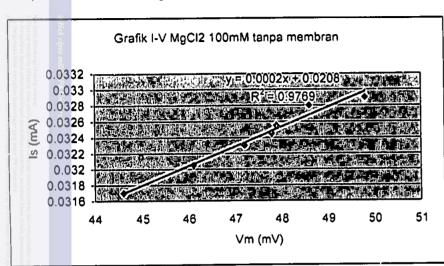

Lampiran 17. Grafik Hubungan Arus terhadap Tegangan pada Larutan K2SO4 10 mM

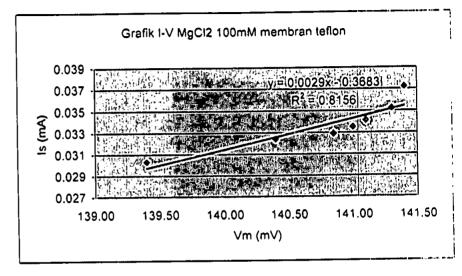

Lampiran 18. Grafik Hubungan Arus terhadap Tegangan pada Larutan K2SO4 100 mM

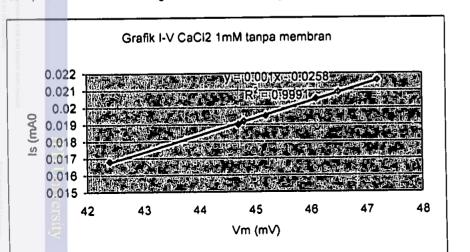


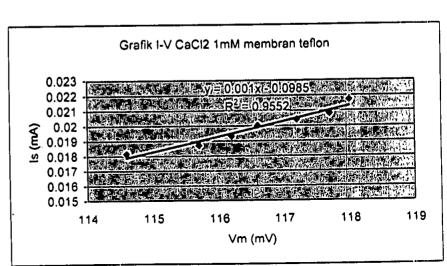


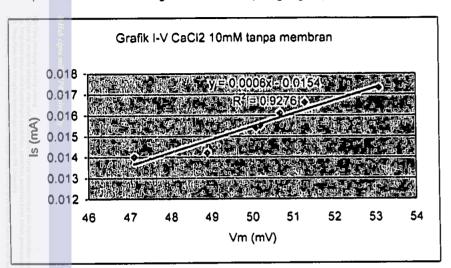

Lampiran 19. Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCl2 1 mM

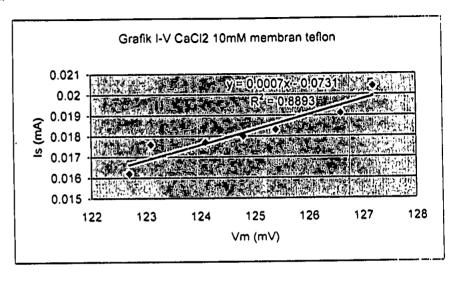

Lampiran 20. Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCl2 10 mM

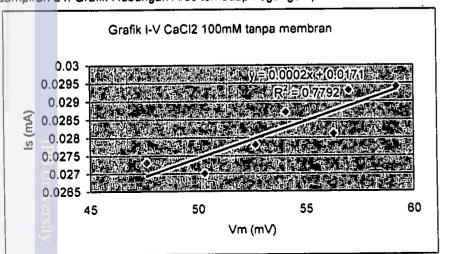


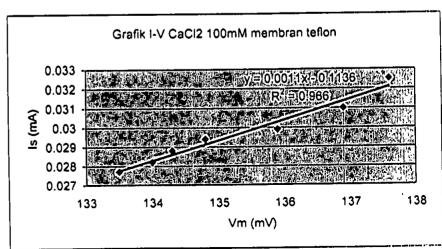


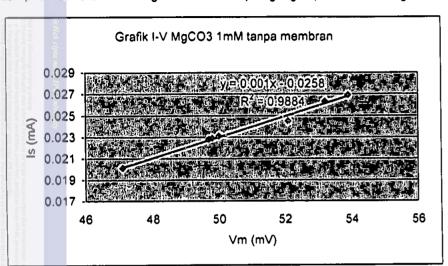

Lampiran 21, Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCl2 100 mM

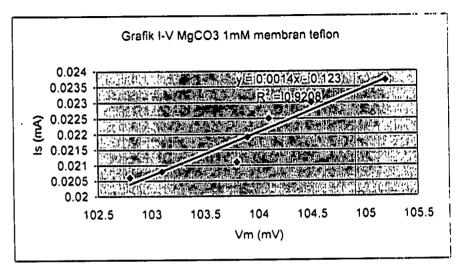

Lampiran 22. Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCl2.1 mM

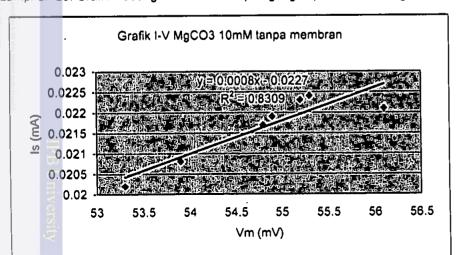


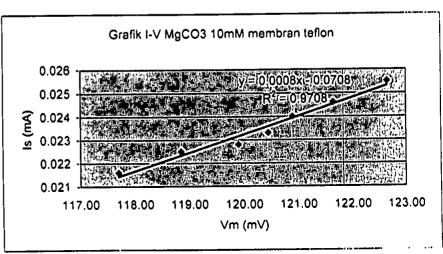


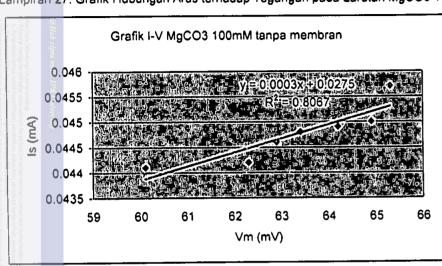

Lampiran 23. Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCl2 10 mM

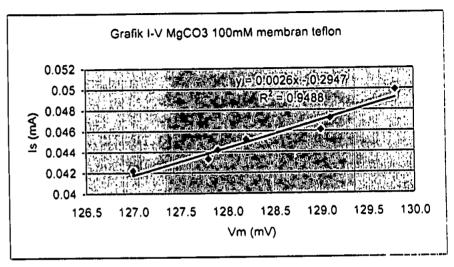

Lampiran 24. Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCl2 100 mM

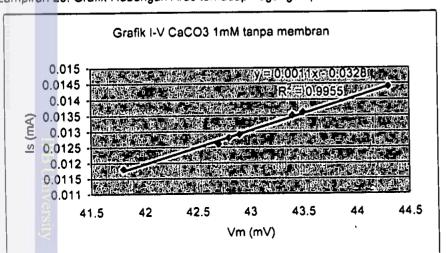


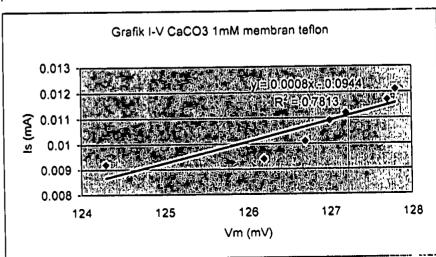

IPB University

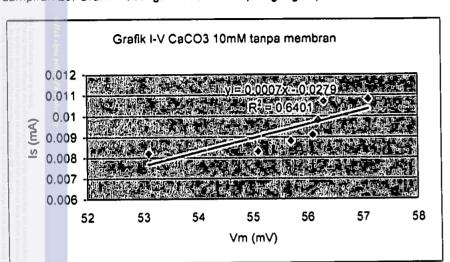

Lampiran 25. Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCO3 1 mM

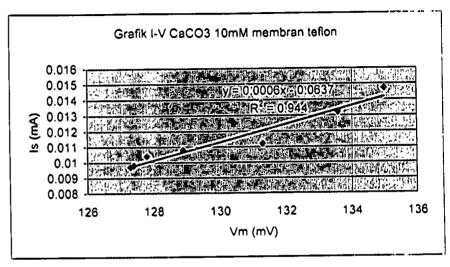

Lampiran 26. Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCO3 10 mM

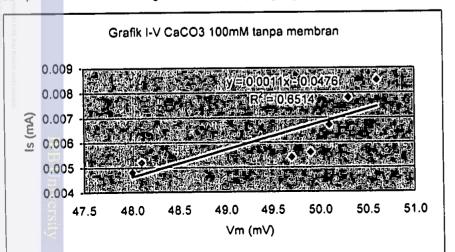


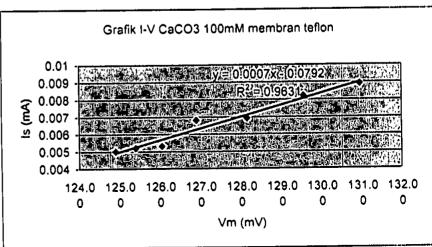

IPB University

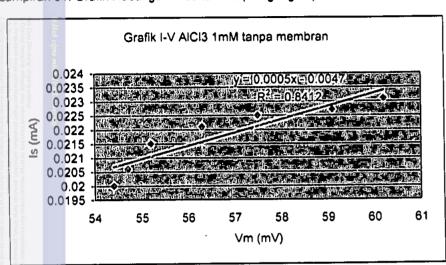

Lampiran 27. Grafik Hubungan Arus terhadap Tegangan pada Larutan MgCO3 100 mM

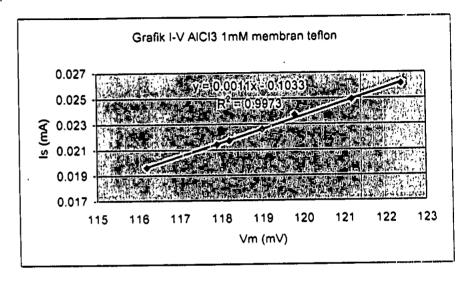

Lampiran 28. Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCO3 1 mM

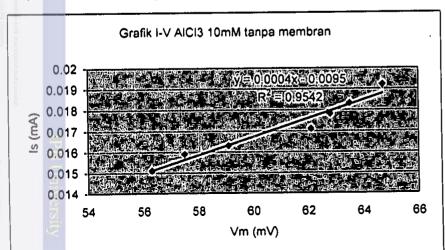


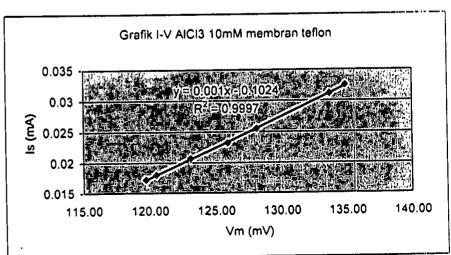


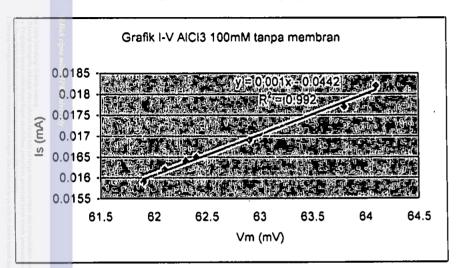

Lampiran 29. Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCO3 10 mM

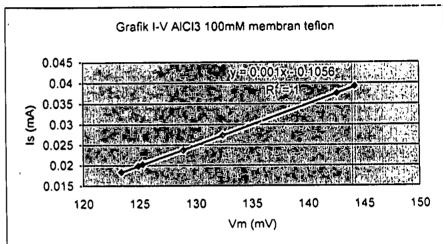

Lampiran 30. Grafik Hubungan Arus terhadap Tegangan pada Larutan CaCO3 100 mM

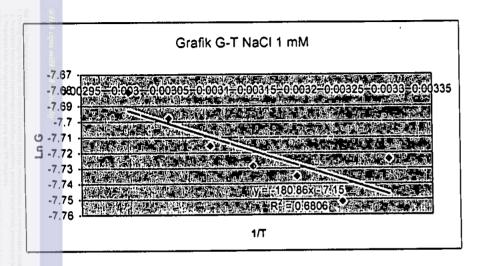


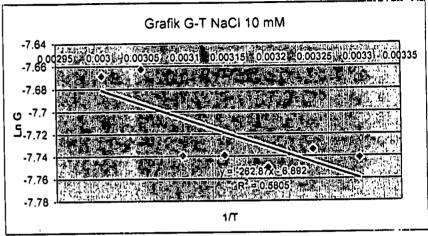


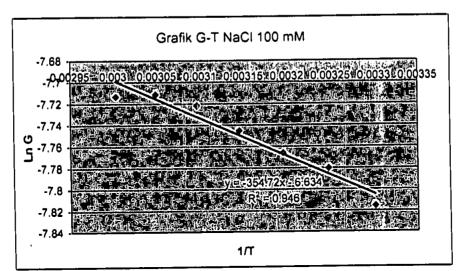

Lampiran 31. Grafik Hubungan Arus terhadap Tegangan pada Larutan AlCl3 1 mM

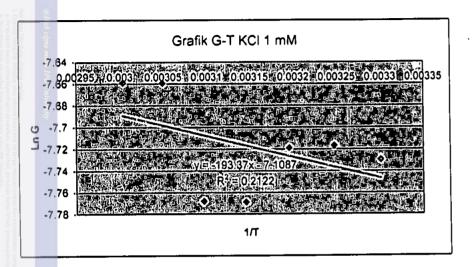

Lampiran 32. Grafik Hubungan Arus terhadap Tegangan pada Larutan AICI3 10 mM

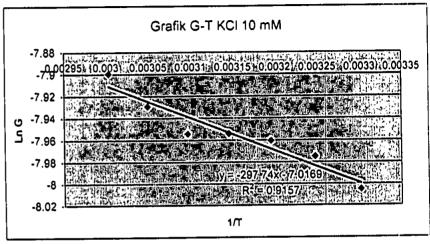


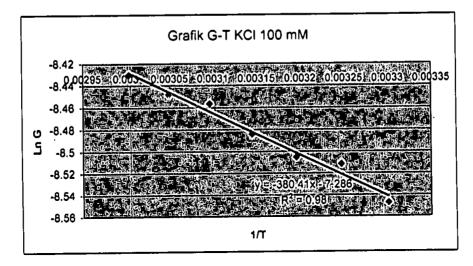



Lampiran 33. Grafik Hubungan Arus terhadap Tegangan pada Larutan AlCl3 100 mM

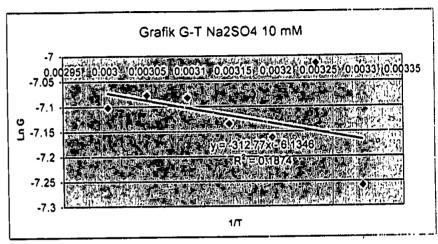


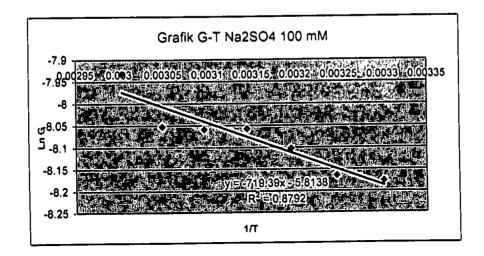

Lampiran 34. Grafik Hubungan Konduktansi terhadap Suhu Larutan NaCl 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM

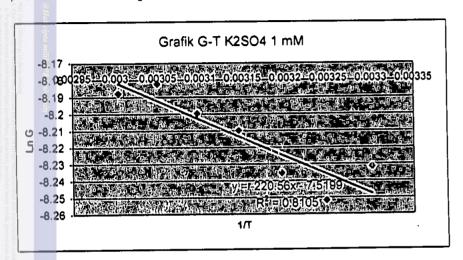


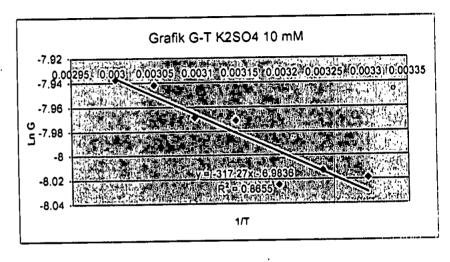


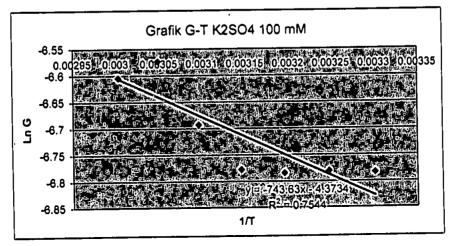
Lampiran 35. Grafik Hubungan Konduktansi terhadap Suhu Larutan KCI 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM



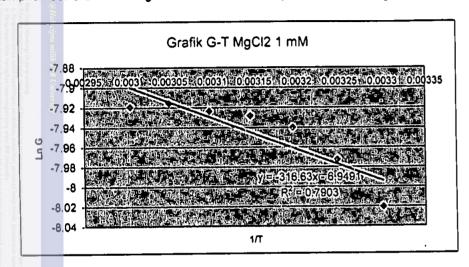


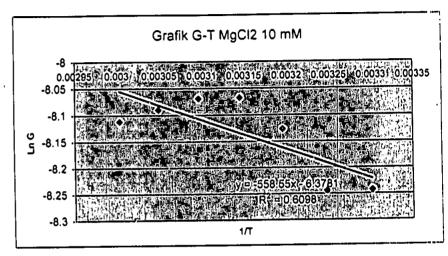

Lampiran 36. Grafik Hubungan Konduktansi terhadap Suhu Larutan Na2SO4 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM

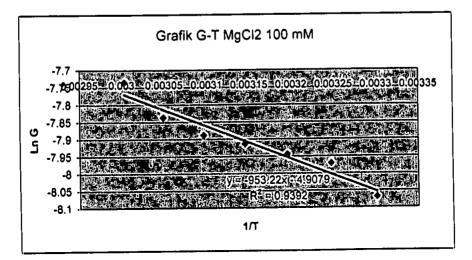




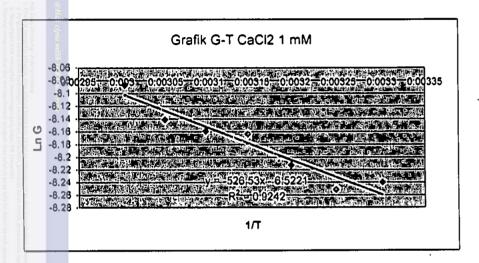
Lampiran 37, Grafik Hubungan Konduktansi terhadap Suhu Larutan K2SO4 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM

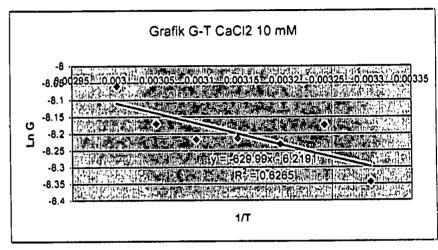


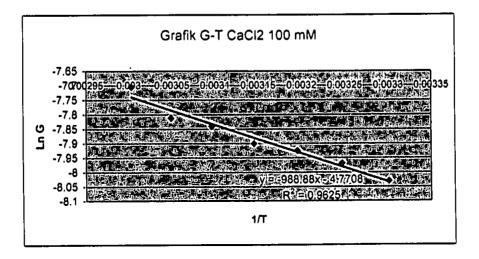


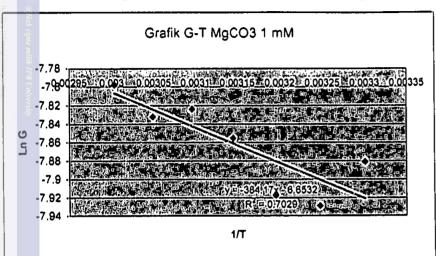


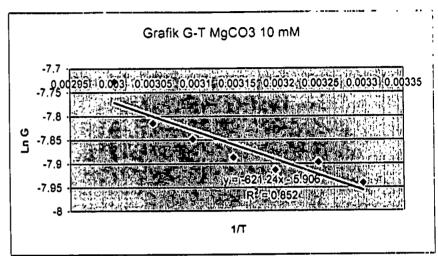
IPB University

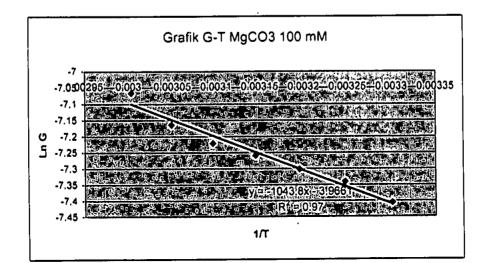

Lampiran 38. Grafik Hubungan Konduktansi terhadap Suhu Larutan MgCl2 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM

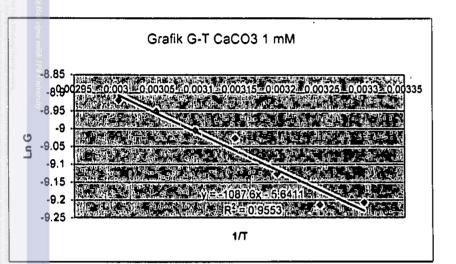


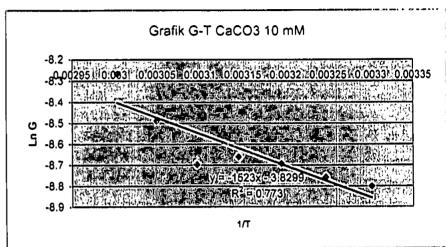


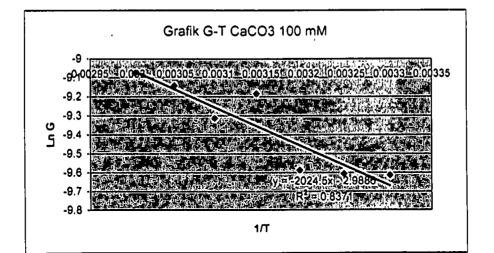

Lampiran 39. Grafik Hubungan Konduktansi terhadap Suhu Larutan CaCl2 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM

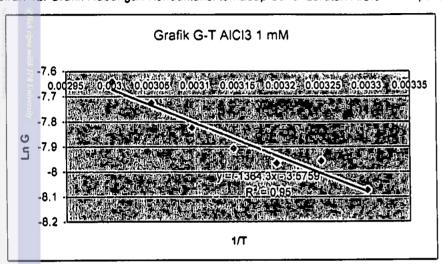


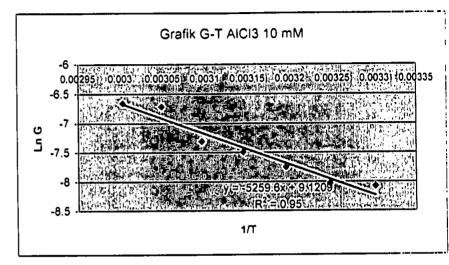


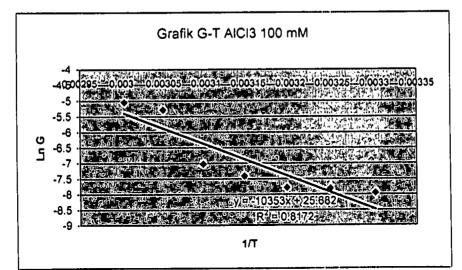

Lampiran 40. Grafik Hubungan Konduktansi terhadap Suhu Larutan MgCO3 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM



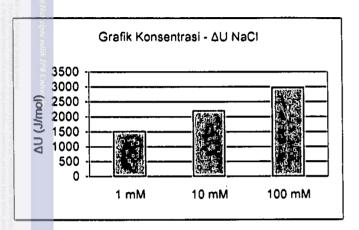


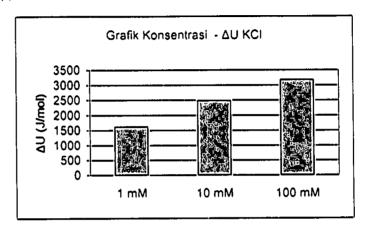

Lampiran 41. Grafik Hubungan Konduktansi terhadap Suhu Larutan CaCO3 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM

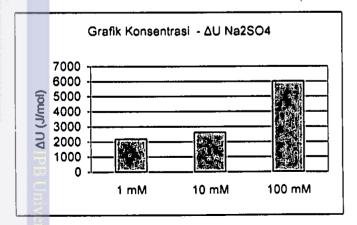


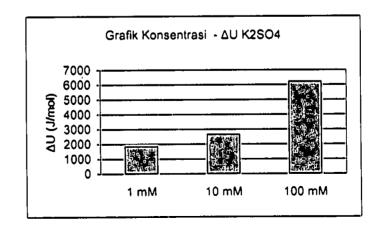


Lampiran 42. Grafik Hubungan Konduktansi terhadap Suhu Larutan AlCl3 1 mM pada konsentrasi 1 mM, 10 mM, dan 100 mM

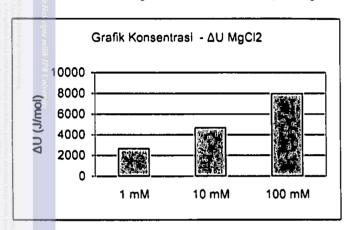


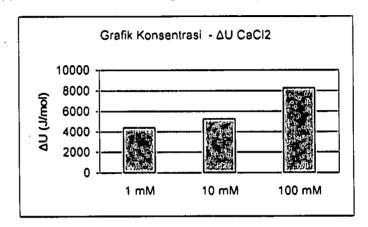




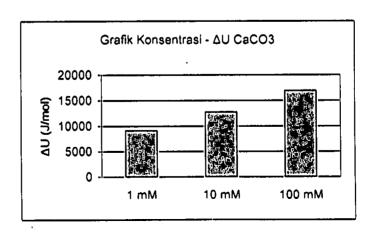


Lampiran 43. Grafik Hubungan Konsentrasi terhadap Energi Aktivasi (ΔU) pada Larutan bervalensi 1 (NaCl, KCl, Na2SO4, dan K2SO4)

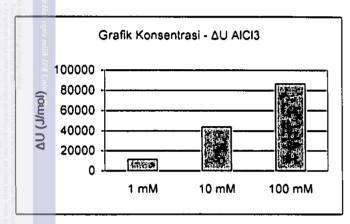


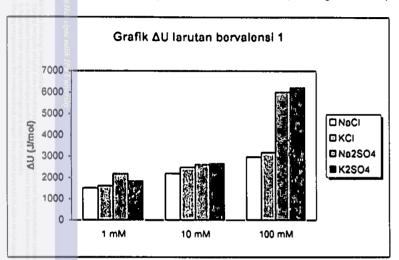


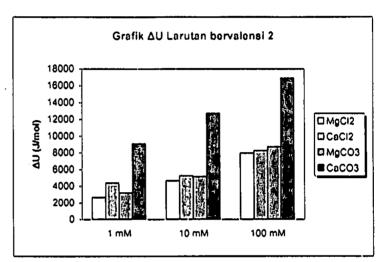




Lampiran 44. Grafik Hubungan Konsentrasi terhadap Energi Aktivasi (ΔU) pada Larutan bervalensi 2 (MgCl2, CaCl2, MgCO3, dan CaCO3)

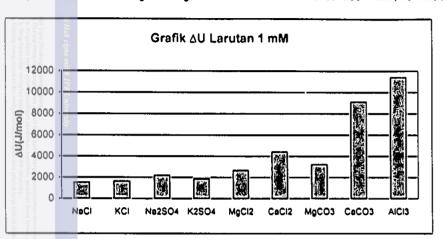


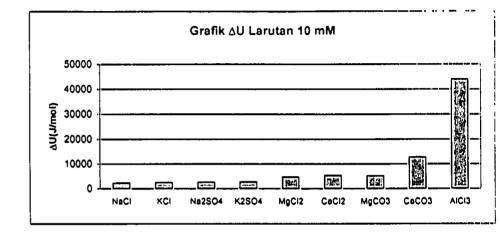


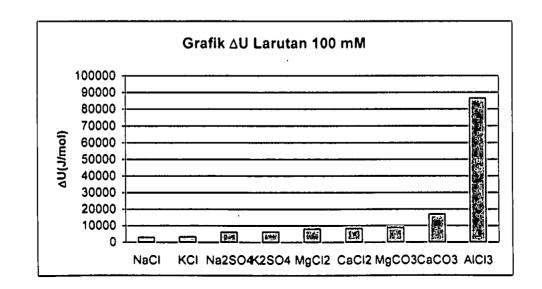



Lampiran 45. Grafik Hubungan Konsentrasi terhadap Energi Aktivasi (ΔU) pada Larutan bervalensi 3 (AlCl3)

Lampiran 46. Grafik Hubungan Konsentrasi terhadap Energi Aktivasi (ΔU) pada Larutan bervalensi 1, bervalensi 2, dan bervalensi 3







IPB University

Lampiran 47, Grafik Hubungan Energi Aktivasi Larutan untuk Konsentrasi 1 mM, 10 mM, dan 100 mM

Lampiran 48. Data jari-jari atom unsur utama dan data energi aktivasi larutan untuk konsentrasi 1 mM, 10 mM, dan 100 mM.

Tabel 1. Jari-jari atom unsur-unsur utama (nm)

Li	3	0.123	Be	4	0.089	В	5	0.088	С	6	0.077	N	7	0.07	0	8	0.066	F	9	0.064
Na	11	0.157	Mg	12	0.136	ΑI	13	0.125	Si	14	0.117	Ρ	15	0.11	S	16	0.104	C	17	0.099
K	19	0.203	Са	20	0.174	Ga	31	0.125	Ge	32	0.122	As	33	0.121	Se	34	0.117	Br	35	0.114
Rb	37	0.216	Şr	38	0.192	In	49	0.15	Sn	50	0.14	Sb	51	0.141	Te	52	0.137		53	0.133
Cs	55	0.235	Вε	56	0.198	Ti	81	0.155	Pb	82	0.154	Bi	83	0.152	Ро	84	0.153			

Tabel 2. Energi aktivasi larutan untuk konsentrasi 1 mM, 10 mM, dan 100 mM

Larutan	[1	Gradien	konstanta	ΔU (J/mol)
NøCl	1 mM	-180.86	8.35022564	1510,221809
	10 mM	-262.87	8.35022584	2195.023814
	100 mM	-354.72	8.35022564	2961.992039
KCI	1 mM	-193.37	8.35022564	1814,683132
	10 mM	-297.74	8.35022584	2488,196182
	100 mM	-380.41	8.35022564	3176,509336
Na2SQ4	1 mM	-260.98	8.35022584	2179.241888
	10 mM	-312.77	8.35022564	2611.700073
	100 mM	-719.39	8.35022564	6007.068823
K2SO4	1 mM	-220.56	8.35022584	1841,725767
	10 mM	-317.27	8,35022564	2649.276089
	100 mM	-743.63	8.35022584	6209.478293
MgCl2	1 mM	-316.63	8.35022584	2643,931944
	10 mM	-558.55	8.35022564	4884,018531
	100 mM	-953.22	8.35022584	7959.602085
CaCI2	1 mM	-526.53	8.35022584	4398.644306
-	10 mM	-629.99	8.35022564	5260.55865
	100 mM	-988.88	8.35022564	8257.371131
MgCO3	1 mM	-384.17	8.35022564	3207.906184
	10 mM	-621.24	8.35022584	5187.494177
	100 mM	-1043.8	8.35022564	8715.965523
CaCO3	1 mM	-1087.6	8,35022584	9081.705406
	10 mM	-1523	8.35022584	12717,3938
	100 mM	-2024.5	8.35022564	16905.0318
AICI3	1 mM	-1364,3	8.35022564	11392.21284
	10 mM	-5259.6	8,35022584	43918.8487
	100 mM	-10353	8,35022564	86449,8860