Lautan ada kalanya berombak dasyat dan ada kalanya tenang
Bulan ada kalanya kecil dan ada kalanya besar
Zaman ada kalanya penghijau ada kalanya kemarau
Adapun Hak (tubuhkan) tidak berubah, tidak sima

(Ulama)

Kepada Ibui, Bapak Mas-ku, Mba'-ku, Adik-ku,
Kawan-kawan kecil-ku, dan Sahabat-sahabat terbaik-ku

Karya Kecil Ini Adalah
Ungkapan Segenep Kecil yang Kita Rasakan dan
Siraman Doa Selama Perjalanan

(Asit)
PENYUSUNAN MODEL PERTUMBUHAN TEGAKAN *Pinus merkusii* Jungh et de Vriese PADA BERBAGAI KETINGGIAN TEMPAT TUMBUH DI PULAU JAWA

Oleh :
Asih Damayanti
E01495097

JURUSAN MANAJEMEN HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2000
RINGKASAN

Dalam rangka lebih mengoptimalkan penggunaan tabel tegakan maka dipandang penting untuk melakukan penyempurnaan penyusunannya, antara lain dengan melakukan pengolahan data secara teknik analisis statistik dan melakukan pemilahan tabel tegakan ke dalam kunci pembacaan selain bonita, salah satunya ketinggian tempat yang termasuk salah satu komponen topografi yang mempengaruhi proses pertumbuhan tegakan. Melalui penyempurnaan tersebut diharapkan akan diperoleh suatu acuan yang lebih teliti dan luwes untuk beragam penggunaan.

Tujuan dari penelitian ini adalah 1). Menentukan model matematika terbaik bagi pendugaan peubah-peubah pertumbuhan seperti peninggi, diameter, tinggi, luas bidang dasar (Ibds) dan volume pada tegakan *P. merkusii* untuk berbagai kelas ketinggian tempat tumbuh, 2). Mengetahui kurva pertumbuhan tegakan *P. merkusii* di berbagai kelas ketinggian tempat tumbuh, dan 3). Mengetahui pengaruh ketinggian tempat tumbuh terhadap pertumbuhan *P. merkusii*.

Penyusunan model pertumbuhan dilakukan dengan menggunakan data hasil pengukuran tegakan *P. merkusii* yang dilakukan dari tahun 1968-1992 pada Petak Coba Permanen (PCP) yang diusahakan oleh Perum Perhutani di wilayah Jawa Barat, Jawa Tengah dan Jawa Timur, yaitu yang diwakili oleh 133 petak dari 33 seri petak coba dengan kisaran umur 4 tahun sampai 30 tahun. Data peubah pertumbuhan yang dipergunakan berbasis tegakan dan merupakan data total tegakan keseluruhan, yaitu meliputi peninggi (m), diameter pohon rata-rata (cm), tinggi pohon rata-rata (m), Ibds tegakan (m²/Ha) dan volume tegakan (m³/Ha). Data peubah pertumbuhan tersebut dikelompokkan ke dalam tiga kelas ketinggian tempat tumbuh yaitu kelas 1. ketinggian tempat tumbuh 0-500 m dpl, kelas 2. ketinggian tempat tumbuh 500-1000 m dpl dan kelas 3. Ketinggian tempat tumbuh >1000 m dpl.

Nilai-nilai koefisien determinasi yang telah terkoreksi (*R²*) pada model-model yang diuji cobaan sangat besar untuk seluruh peubah pertumbuhan disetiap kelas ketinggiannya. Pada kelas ketinggian 1 (0-500 m dpl) nilai *R²* berkisar 96,21% - 99,7%, untuk kelas ketinggian 2 (500-1000 m
dpl) nilai R^2 96,9% - 99,47% dan untuk kelas ketinggian 3 (>1000 m dpl) nilai R^2 adalah 92,23% - 99,31%. Nilai-nilai R^2 tersebut menunjukkan bahwa model-model yang diperoleh memiliki tingkat keakuratan yang tinggi yakni lebih dari 90% keragaman total dari data dapat diterangkan oleh model.

Pemilihan model terbaik didasarkan pada kriteria dari uji keterandalan model yaitu model memiliki nilai R^2 dan R^2 terbesar, nilai s dan PRESS terkecil serta Professional judgement. Hasil dari uji keterandalan menunjukkan bahwa model penduga terbaik yang terpilih untuk setiap klasifikasi ketinggian tempat tumbuh adalah : Model ke-1 ($Y = \tau(\beta_0 + \beta_1 t)$) adalah model penduga pertumbuhan terbaik bagi peninggi dan tinggi pada kelas ketinggian 3 dan bagi diameter pada kelas ketinggian 1, model ke-2 ($Y = \alpha(1+\beta t^6)$) adalah model penduga pertumbuhan terbaik bagi peninggi dan tinggi pada kelas ketinggian 1 dan 2, bagi diameter dan lbds pada kelas ketinggian 2 dan 3 serta bagi volume pada seluruh kelas ketinggian, sedangkan model ke-3 ($Y = \alpha t^5$) adalah model penduga pertumbuhan terbaik bagi lbds pada kelas ketinggian 1. Model persamaan yang dihasilkan adalah : untuk kelas ketinggian 1 (0-500 m dpl) yaitu $P = 37.7062/(1+86.1656 t^{-1.7674})$, $D = t^{0.3647+0.9119 t}$, $T = 39.5012/(1+91.5590 t^{-1.4033})$, $Lbds=12.7345t^{0.3684}$, dan $V=13.4784/(1+18.2.e^{0.65 t^{-1.0376}})$, untuk kelas ketinggian 2 (500-1000 m dpl) yaitu $P = 50.2438/(1+58.6202 t^{-1.3607})$, $D = 45.8099/(1+37.1669 t^{-1.4542})$, $T = 52.1739/(1+70.5399 t^{-1.3901})$, $Lbds=38.8420/(1+69.1934 t^{-2.1325})$, dan $V=697.7135/(1+400.9982 t^{-1.7238})$; serta untuk kelas ketinggian 3 (>1000 m dpl) yaitu $P = t^{0.5627+0.0117 t}$, $D = 43.58931/(1+34.8317 t^{-1.6437})$, $T = t^{0.6943+0.0078 t}$, $Lbds=38.9142/(1+49.0441 t^{-1.5339})$, dan $V=1554.276/(1+594.2225 t^{-1.6331})$.

Hasil analisis sisaan menunjukkan bahwa model-model terpilih tersebut pola sisaannya membentuk garis yang cukup linear dan tebaran antara sisa dan nilai dugaannya berpola acak, sehingga dapat dikatakan bahwa kenormalan sisaan model cukup baik dan memiliki ragam sisaan yang homogen.

Berdasarkan hasil analisis peragaman bahwa untuk peubah pertumbuhan peninggi, diameter, tinggi dan volume nilai F-hitung lebih besar dari F-table artinya bahwa faktor kelas ketinggian sangat berpengaruh nyata dalam pembentukan model. Hal ini berarti bahwa pertumbuhan untuk ke-4 peubah tersebut sangat dipengaruhi oleh perbedaan ketinggian tempat tumbuhnya. Sedangkan untuk peubah pertumbuhan lbds hasil analisis peragamen dengan peubah penyerta umur tegakan menunjukkan bahwa F-hitung lebih kecil dari F-table yang berarti faktor ketinggian temapat berpengaruh tidak nyata dalam pembentukan model. Selanjutnya dengan peubah penyerta kerapatan tegakan (N/Ha) hasil analisis peragamen menunjukkan hasil yang sangat nyata, sehingga dapat disimpulkan bahwa pertumbuhan bagi peubah lbds sangat dipengaruhi oleh perbedaan ketinggian tempat tumbuhnya dan bahwa kerapatan tegakan memiliki hubungan yang erat dengan nilai dari peubah lbds dan volume tegakan.

Sesuai dari hasil analisis peragamen, pengaruh yang nyata dari perbedaan ketinggian tempat tumbuh terhadap pertumbuhan tegakan secara visual terlihat dari perbedaan kedudukan kurva-kurva. Secara umum kurva yang tersusun membentuk dua trend respon yakni untuk peubah diameter dan lbds menunjukkan korelasi yang negatif dimana pertumbuhan maksimal terjadi pada pcp...
yang terletak dengan ketinggian yang semakin rendah, sedangkan untuk peubah peninggi, tinggi dan volume memberikan respon yang berkorelasi positif antara pertumbuhan dengan perbedaan ketinggian tempat yaitu pertumbuhan semakin baik pada daerah dengan ketinggian yang semakin meningkat.

Uji validasi yang dilakukan dengan membandingkan nilai peubah pertumbuhan hasil penelitian terhadap nilai peubah pada tabel tegakan rata-rata pada bonita 2 sampai bonita 5, menunjukkan bahwa hasil uji validasi khi-kuadrat model terpilih untuk peubah pertumbuhan peninggi, diameter, dan tinggi memberikan hasil yang tidak nyata, sedangkan untuk peubah pertumbuhan lbds dan volume memberikan hasil yang sangat nyata. Nilai RPS yang diperoleh berkisar antara 3,3% dan 66,7% serta nilai SA berkisar -59,9% sampai 20%. Hasil uji khi-kuadrat yang tidak nyata menyatakan bahwa untuk peubah pertumbuhan diameter, tinggi dan peninggi model penduga yang dihasilkan dalam penelitian ini cukup baik dipergunakan untuk menduga pertumbuhan peubah pada masing-masing kelas ketinggiannya. Sedangkan hasil uji yang sangat nyata untuk peubah lbds dan volume disebabkan adanya perbedaan nilai kerapatan tegakan (N/ha), dimana kerapatan tegakan pada tegakan aktual dalam penelitian nilainya lebih besar daripada kerapatan pada tabel tegakan. Nilai RPS dan SA menggambarkan persentase penyimpangan yang terjadi pada kondisi tegakan yang diupayakan terhadap tegakan normal pada tabel tegakan.
PENYUSUNAN MODEL PERTUMBUHAN
TEGAKAN Pinus merkusii JUNGH ET DE VRIESE
PADA BERBAGAI KETINGGIAN TEMPAT TUMBUH DI PULAU JAWA

Karya Ilmiah
Sebagai Salah Satu Syarat Untuk
Memperoleh Gelar Sarjana Kehutanan
Pada Fakultas Kehutanan
Institut Pertanian Bogor

Oleh :
Asih Damayanti
E01495097

JURUSAN MANAJEMEN HUTAN
FAKULTAS KEHUTANAN
INSTITUT PERTANIAN BOGOR
2000
Judul Penelitian : PENYUSUNAN MODEL PERTUMBUHAN TEGAKAN Pinus merkusii JUNGH ET DE VRIESE PADA BERBAGAI KETINGGIAN TEMPAT TUMBUH DI PULAU JAWA

Nama Mahasiswa : ASIH DAMAYANTI
Nomor Pokok : E01495097

Menyetujui:

Pembimbing I

\[\text{Ir. Budi Kuncahyo, MS} \]
\[\text{Tanggal: 15 Mei 2000} \]

Pembimbing II

\[\text{Ir. Sofwan Bustomi, MS} \]
\[\text{Tanggal: 12 Juni 2000} \]

Mengetahui:

\[\text{Ketua Jurusan Manajemen Hutan Institut Pertanian Bogor} \]
\[\text{Dr. Ir. Yadi Setiadi, MS} \]
\[\text{Tanggal: 15 Mei 2000} \]

Tanggal lulus : 29 April 2000
RIWAYAT HIDUP

Penulis dilahirkan di Bogor pada tanggal 20 Agustus 1976, sebagai anak keempat dari enam bersaudara keluarga Mukijo (Bapak) dan Kasinem (Ibu).

KATA PENGANTAR

Alhamdulillah puji dan syukur Penulis panjatkan kehadirat Allah SWT atas segala limpahan rahmat, hidayah dan inayatNya sehingga Penulis dapat menyelesaikan karya ilmiah dengan judul "Penyusunan Model Pertumbuhan Tegakan Pinus merkusii Jungh et de Vriese Pada Berbagai Ketinggian Tempat Tumbuh Di Pulau Jawa".

Pada kesempatan yang berbahagia ini Penulis menyampaikan rasa terima kasih yang sebesar-besarnya kepada:

1. Ir. Budi Kuncahiyo, MS dan Ir. Sofwan Bustomi, MS selaku dosen pembimbing I dan Pembimbing II atas bimbingan dan kesabarannya yang sangat berarti bagi Penulis.
2. Ir. H. Bambang Pranggo, MS selaku dosen penguji wakil jurusan Teknologi Hasil Hutan dan Ir. Burhanuddin Masy’ud, MS selaku dosen penguji wakil jurusan Konservasi Sumberdaya Hutan.
3. Yang terkassis Ibu, Bapak dan Keluargaku Mas Ivo, Mba’ Eri, Mba’ Sari, Juni, Gatot, Mas Benny, Mba’ Mia, Ayu, Akbar, Algi dan Aldi yang telah memberikan segenap dukungan, kasih sayang dan doa tulus yang tak terputus.
8. Teman, sahabat dan seluruh civitas academica Fakultas Kehutanan yang tidak dapat diausulkan satu persatu atas kerjasama, bantuan dan dukungan dalam penyusunan skripsi ini.

Semoga Allah SWT membalas segala kebaikan, perhatian dan ketulusan dengan sebesar-besarnya pahala. Penulis berharap karya ilmiah ini dapat bermanfaat untuk kemajuan di bidang ilmu kehutanan dan semua pihak yang membutuhkannya dan semoga karya ini dapat dinilai sebagai ibadah oleh Allah SWT. Amian

Bogor, April 2000

Penulis
DAFTAR ISI

DAFTAR ISI... i
DAFTAR TABEL.. iii
DAFTAR GAMBAR... iv
DAFTAR LAMPIRAN.. v
I. PENDAHULUAN
 A. Latar Belakang.. 1
 B. Tujuan Penelitian.. 2
 C. Manfaat Penelitian.. 2
 D. Hipotesis Penelitian... 2
II. TINJAUAN PUSTAKA
 A. Keterangan Pinus merkusii Jungh et de Vriese............. 3
 B. Pertumbuhan dan Faktor-Faktor yang Mempengaruhinya..... 3
 C. Model Pertumbuhan.. 5
 D. Hasil Penelitian Mengenai Model Pertumbuhan Pinus merkusii 7
III. METODOLOGI PENELITIAN
 A. Data yang Dipergunakan... 9
 B. Pengolahan Data
 1. Input data... 10
 2. Eksporasi data.. 11
 3. Klasifikasi data petak berdasarkan ketersediaan tempat tumbuh 11
 C. Analisis Data
 1. Pendugaan parameter model pertumbuhan.................. 11
 2. Uji statistik model... 11
 3. Pemilihan model pertumbuhan terbaik........................ 13
 4. Analisis peragam.. 13
 5. Penyusunan kurva pertumbuhan................................ 13
 6. Uji validasi model... 13
IV. HASIL DAN PEMBAHASAN
 A. Tebaran Data... 15
 B. Sebaran Data Petak Coba Permanen.............................. 15
 C. Pendugaan Parameter Model Pertumbuhan...................... 16
 D. Uji Statistik Model... 18
E. Pemilihan Model Pertumbuhan Terbaik... 19
F. Analisis Peragam (Analisis of Covariance)... 21
G. Penyusunan Kurva Pertumbuhan Tegakan Pinus merkusi............................... 23
H. Uji Validasi Model Pertumbuhan Terpilih... 28
V. KESIMPULAN DAN SARAN
 A. Kesimpulan.. 30
 B. Saran.. 30
DAFTAR PUSTAKA

LAMPIRAN
<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sebaran Petak Coba Berdasarkan Klasifikasi Ketinggian Tempat Tumbuh</td>
<td>16</td>
</tr>
<tr>
<td>2.</td>
<td>Rekapitulasi Hasil Pembentukan Model-Model Pertumbuhan Setiap Peubah</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Pertumbuhan pada 3 Kelas Ketinggian</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Rekapitulasi Hasil Pemilihan Model Pertumbuhan Untuk Peubah-Peubah</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Pertumbuhan Pada Kelas Ketinggian 1 (0-500 mdpi)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Rekapitulasi Hasil Pemilihan Model Pertumbuhan Untuk Peubah-Peubah</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Pertumbuhan Pada Kelas Ketinggian 2 (500-1000 mdpi)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Rekapitulasi Hasil Pemilihan Model Pertumbuhan Untuk Peubah-Peubah</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Pertumbuhan Pada Kelas Ketinggian 3 (>1000 mdpi)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Rekapitulasi Hasil Analisis Peragam Data Peubah Pertumbuhan Antar Kelas</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Ketinggian Tempat Tumbuh</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Rekapitulasi Hasil Analisis Peragam Data Peubah Pertumbuhan Lbds dan</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Volume Antar Kelas Ketinggian Tempat Tumbuh dengan Peubah Penyerta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Umur dan Kerapatan Tegakan (N/Ha)</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Rekapitulasi Hasil Uji Validasi Model-Model Pertumbuhan Terpilih</td>
<td>28</td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Faktor-Faktor Lingkungan yang Mempengaruhi Kemampuan Fisiologis Tanaman</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Kurva Pertumbuhan Peninggi Pada Kelas Ketinggian 1, 2 dan 3</td>
<td>24</td>
</tr>
<tr>
<td>3.</td>
<td>Kurva Pertumbuhan Diameter Pada Kelas Ketinggian 1, 2 dan 3</td>
<td>24</td>
</tr>
<tr>
<td>4.</td>
<td>Kurva Pertumbuhan Tinggi Pada Kelas Ketinggian 1, 2 dan 3</td>
<td>25</td>
</tr>
<tr>
<td>5.</td>
<td>Kurva Pertumbuhan Lbds Pada Kelas Ketinggian 1, 2 dan 3</td>
<td>25</td>
</tr>
<tr>
<td>6.</td>
<td>Kurva Pertumbuhan Volume Pada Kelas Ketinggian 1, 2 dan 3</td>
<td>26</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

Lampiran 1. Scatter Plot Hubungan Antara Peubah Pertumbuhan dan Umur
Lampiran 2. Rekapitulasi Kondisi Petak Coba Permanen
Lampiran 5. Rekapitulasi Hasil Uji Statistik Model
Lampiran 6. Scatter Plot Hasil Analisis Sisaan Model Terpilih
Lampiran 7. Hasil Analisis Peragam dengan Program Minitab Release
Lampiran 8. Hasil Analisis Peragam dengan Peubah Penyerta N/Ha
Lampiran 9. Data Hasil Perhitungan Peubah Pertumbuhan Tegakan *P. merkusii* Pada Kelas Ketinggian 1
Lampiran 10. Data Hasil Perhitungan Peubah Pertumbuhan Tegakan *P. merkusii* Pada Kelas Ketinggian 2
Lampiran 11. Data Hasil Perhitungan Peubah Pertumbuhan Tegakan *P. merkusii* Pada Kelas Ketinggian 3
Lampiran 12. Data Hasil Perhitungan Pada Uji Khi-kuadrat (X²)
I. PENDAHULUAN

A. Latar Belakang

Penyusunan tabel tegakan dan hasil bagi hutan tanaman sampai saat ini telah banyak dilakukan baik secara lokal maupun keseluruhan. Tabel tegakan memberi informasi sebaran jumlah pohon dalam setiap kelas umur dan informasi struktur tegakan sebagai alat dalam perhitungan volume hasil serta memegang peranan penting dalam pemodelan pertumbuhan dan hasil (Cao dan Clark, 1999). Tabel tegakan dan hasil yang ada selama ini dimanfaatkan sebagai alat acuan penilaian kondisi hutan serta digunakan pula untuk memprediksi hasil dari hutan dalam kegiatan pengusahaan hutan.

Selain itu dalam penyusunan kurva dari tabel-tabel tersebut menggunakan teknik Free Hand, dimana teknik ini sangat rentan terhadap subyektivitas karena dibuat secara manual dengan tangan bebas sehingga sangat tergantung pada kemampuan dari pembuat. Hal tersebut dapat mengakibatkan terjadinya penyimpangan/bias yang cukup besar pada pendugaan.

Oleh karena itu dalam rangka lebih mengoptimalkan penggunaan tabel tegakan maka perlu dilakukan penyempurnaan di dalam penyusunannya yaitu antara lain dengan melakukan pengolahan data secara analisis statistik di dalam pembentukan model penduga pola pertumbuhannya, dan melakukan pemilihan tabel tegakan -ke dalam kunci pembacaan selain bonita yang merupakan indikator dari faktor tempat tumbuh lainnya. Salah satu faktor tempat tumbuh atau lingkungan yang turut berperan dalam menentukan proses pertumbuhan adalah ketinggian tempat. Ketinggian tempat termasuk di dalam salah satu komponen topografi yang tidak mempengaruhi organisme secara
langsung namun melalui komponen lingkungan lainnya, diantaranya komponen iklim dan suhu (Strain dan Billings, 1974). Melalui penyempurnaan tersebut diharapkan akan diperoleh suatu acuan yang lebih teliti dan luwes di dalam melakukan pendugaan, maupun penilaian kondisi tegakan hutan tanaman untuk berbagai kondisi penggunaan.

B. Tujuan Penelitian

Tujuan yang ingin dicapai dari pelaksanaan penelitian ini adalah:

1. Menentukan model matematika terbaik bagi pendugaan peubah-peubah pertumbuhan seperti peninggi, tinggi, diameter, luas bidang dasar (lbds) dan volume pada tegakan *P. merkusii* untuk berbagai kelas ketinggian tempat tumbuh
2. Mengetahui kurva pertumbuhan tegakan *P. merkusii* di berbagai kelas ketinggian tempat tumbuh
3. Mengetahui pengaruh ketinggian tempat tumbuh terhadap pertumbuhan *P. merkusii*

C. Manfaat Penelitian

Penelitian ini diharapkan memberikan manfaat antara lain:

1. Memberikan informasi dasar dalam penyempurnaan penyusunan tabel tegakan untuk jenis *P. merkusii* pada khususnya
2. Memberikan informasi penunjang dalam pengusahaan hutan tanaman *P. merkusii* yang antara lain berupa gambaran prediksi kondisi pertumbuhan tegakan yang dapat menjadi pertimbangan di dalam menentukan kebijakan-tebijakan dalam penyusunan rencana pengelolaan hutan serta memberikan informasi penunjang dalam upaya pengembangan jenis *P. merkusii*

D. Hipotesis Penelitian

Ketinggian tempat diduga merupakan salah satu dari faktor lingkungan yang memberikan pengaruh terhadap pertumbuhan tegakan *P. merkusii*, sehingga dapat dilakukan pemilihan tabel tegakan berdasarkan ketinggian tempat tumbuh.
II. TINJAUAN PUSTAKA

A. Keterangan Jenis Pinus merkusii Jungh et de Vriese

Socara botanis jenis Pinus merkusii Jungh et de Vriese termasuk ke dalam kingdom Flora, divisi Spermatophyta, subdivisi Gymnospermae, ordo Coniferales, famili Pinaceae, dan genus Pinus (Samingan, 1982), dan dikenal dengan berbagai nama daerah antara lain sala, uyem, sulu, tusam, huyam, susugi, sigi dan pinus.

Persyaratan tempat tumbuh P. merkusii antara lain berada pada ketinggian tempat antara 200-1700 m dpl, tipe iklim A-B menurut klasifikasi Schmidt dan ferguson (1951), reaksi tanah PH 4,5-5,5 (asam), tingkat kesarangan sarang dan cukup sarang, serta tersedia mikoriza dalam tanah. Kayu yang dihasilkan termasuk kayu ringan, dengan BD antara 0,46-0,70, serta tergolong dalam kelas kuat II - III dan kelas awet V (Samingan, 1982). Jenis ini menyebar alami secara luas di kawasan Asia Tenggara, dari Pegunungan Kashi India Utara sampai Philipina. Sedangkan sebagai hasil reboisasi penyebaran P. merkusii di Pulau Jawa kini telah mencapai luas 536,547 ha dalam bentuk satu kelas perusahaan (Suhendang, 1990).

Pohon pinus termasuk kedalam kelompok pohon yang cepat tumbuh dengan daur berkisar antara 20-25 tahun. Untuk kayu pertukangan dihasilkan riap 16 m³/ha per tahun dengan daur 30 tahun, sedangkan apabila ditujukan untuk bahan pulp riapnya adalah18 m³/ha per tahun dengan daur 10-15 tahun (Suhendang, 1990). Hasil yang diperoleh dari hutan P. merkusii antara lain berupa kayu yang dimanfaatkan sebagai kayu bakar dan arang, kayu gergaji, kayu kertas untuk korek api, tripleks, venir, pulp untuk kertas, suta, tisu, bahan pelarutan fiberboard, hasil olahan dari getah berupa gondorokum sebagai bahan industri batik, sabun, perekat, cat, kosmetik dan terpenting untuk pelarut cat, lak dan untuk obat-obatan (Darsidi, 1983).

B. Pertumbuhan dan Faktor-faktor yang Mempengaruhinya

Seperti makhluk hidup pada umumnya, pohon mengalami pula proses pertumbuhan dan perkembangan. Pada pohon pengertian pertumbuhan dibedakan atas dua kelompok yaitu pertumbuhan pohon individu dan pertumbuhan tegakan. Untuk pertumbuhan pada individu obyeknya adalah perubahan yang terjadi pada individu berupa pertambahan panjang dan tebal akar, batang, dan cabang yang akan menyebabkan perubahan dalam ukuran volume, berat dan bentuk. Perubahan yang terjadi
dalam suatu populasi menyebabkan perubahan dimensi tegakan dan disebut sebagai pertumbuhan tegakan (Husch et al., 1963).

Pertumbuhan pada pohon meliputi beberapa fase yaitu fase logaritmik, fase linear, dan fase penuaan. Pada fase logaritmik terjadi pertambahan ukuran secara eksponensial sejalan dengan waktu yang artinya pada tahap awal laju pertumbuhan berjalan lambat yang kemudian terus meningkat. Selanjutnya pertumbuhan memasuki fase linear, pada fase ini pertambahan ukuran terjadi secara konstan yang biasanya terjadi laju maksimum pada beberapa waktu. Akhirnya pertumbuhan tiba pada fase penuaan yang dicirikan oleh laju pertumbuhan yang menurun, pada saat ini tumbuhan sudah mencapai kematangan dan mulai menua (Salisbury dan Cleon, 1992).

Pertumbuhan pada pohon akan membentuk pola dimana pola pertumbuhan akan sangat tergantung oleh jenis dan sangat bervariasi tergantung berbagai faktor. Secara umum organisme hidup akan membentuk pola sigmoid (Gertner, 1984).

Pertumbuhan adalah hasil interaksi berbagai faktor internal dan eksternal. Faktor-faktor internal seperti sifat genetis mempengaruhi pertumbuhan secara langsung sedangkan faktor-faktor eksternal dapat mempengaruhi secara langsung maupun tak langsung. Kramer and Kozlowski (1960) menyebutkan bahwa pertumbuhan berhubungan erat terhadap interaksi tiga faktor, yakni faktor keturunan, lingkungan dan teknik budidaya. Faktor-faktor lingkungan yang penting bagi pertumbuhan individu dan masyarakat tumbuhan antara lain berupa: faktor iklim (cahaya, suhu, curah hujan, kelembaban, angin), faktor geografis (letak geografis, topografi, geologi, vulkanisme), faktor edafis (jenis tanah, sifat fisik, kimia, biotis tanah, dan erosi), serta faktor biotik (manusia, hewan, dan tumbuhan lain).

Suhendang (1996) menyebutkan pula bahwa tempat tumbuh adalah salah satu faktor yang sangat mempengaruhi pertumbuhan pohon/tegakan. Faktor tempat tumbuh adalah totalitas dari peubah kondisi tempat tumbuh antara lain berupa bentuk lapangan, sifat-sifat tanah dan iklim yang memiliki kekeratan yang tinggi dalam hubungannya dengan dimensi tegakan.

Faktor-faktor lingkungan yang berpengaruh terhadap kemampuan fisiologis tanaman tersaji pada gambar berikut ini:
Gambar 1. Faktor-faktor lingkungan yang mempengaruhi kemampuan fisiologis tanaman (Daniel et al., 1995)

Pertumbuhan karakteristik pohon antara lain berupa peninggi, tinggi, diameter, dan volume umum dinyatakan sebagai fungsi dari umur tumbuhnya, dimana ukuran pohon akan selalu bertambah sesuai dengan pertambahan umurnya (Hermawan, 1997). Hubungan fungsional antara sifat tegakan dengan umur biasa digunakan untuk menggambarkan pola pertumbuhan dalam bentuk kurva pertumbuhan.

C. Model Pertumbuhan

Pendugaan pola pertumbuhan pohon atau tegakan sebagai fungsi umur dan pengaruh berbagai faktor dapat dilakukan melalui penyusunan model pertumbuhannya. Model pertumbuhan tegakan adalah dinamika alami yang bersifat abstraksi pada tegakan hutan dan mencakup mengenai pertumbuhan, kematian, variabel lain dalam komposisi dan struktur tegakan (Latifah, 1997).

Model pertumbuhan merupakan salah satu cara untuk menguji dinamika yang kompleks dari hutan dan memiliki tiga fungsi di dalam kehutanan (Gertner et al., 1996), yaitu:

1. Menyediakan informasi penting dalam mendesain perencanaan manajemen,
2. Membantu para peneliti dalam mengintregasi dan mengorganisasi ilmu pengetahuan yang ada secara sistematik dan ringkas,

3. Mengevaluasi hipotesis alternatif yang membutuhkan waktu tahunan untuk ditampilkan secara fisik.

Model-model matematika pertumbuhan antara lain dibuat oleh Bruce dan Schumacher (1950) yang menggunakan satu dan lebih peubah bebas yaitu:

\[
\text{Log } Y = \log \beta_0 + \beta_1 \log i \\
\text{Ln } Y = \ln \beta_0 + \beta_t \\
\text{Log } Y = \log \beta_0 + \beta_1 \log X_i + \beta_2 \log X_2 + \ldots + \beta_p \log X_p
\]

Selanjutnya Prodan (1968) membuat pula model matematika bagi pertumbuhan suatu jenis, sebagai berikut:

\[
Y = \beta_0 + \beta_1 t + \beta_2 t^2 + \ldots + \beta_p t^p
\]

\[
Y = \beta_0 + \beta_1 i \\
Y = \beta_0 + \beta_1 t + \beta_2 t^2
\]

dimana, Y : peubah pertumbuhan (seperti diamater, tinggi atau volume), t : umur, \(\alpha\) : konstanta, \(\beta_0, \beta_1, \beta_2, \ldots, \beta_p\) : parameter fungsi tersebut

Model-model alternatif pendugaan pertumbuhan diberikan oleh Spain (1982) yang meliputi beberapa model yaitu:

\[
Y = \alpha e^t................................. \text{model eksponensial}
\]

\[
Y = \alpha t................................. \text{model tenaga}
\]

\[
Y = \alpha/(\beta+t)................................. \text{model hiperbola}
\]
Y = $a_0 + a_1/A + a_2/A^2$
1. H = $a_0 + a_1/A + a_2/A^2$
2. $H = a_0 + a_1/A + a_2/A^2$
3. $H = a_0 + a_1/A$
4. $H = a_0 + a_1/A$
5. $H = a_0 + a_1/A$
6. $H = a_0 + a_1/A$

Di mana: H: nilai pendugaan rata-rata tinggi pohon (m), A: umur tagakan (tahun)

Hasil dari analisis yang dilakukan menunjukkan bahwa persamaan regresi yang paling tepat adalah:

Log H = 0,18331 + 0,61537 log A, dengan nilai koefisien korelasi (r) = 0,8285 dan nilai uji Fisher (F) = 1218,90.

D. Hasil Penelitian Mengenai Model Pertumbuhan Pinus merkusii

Sebagai salah satu jenis tanaman yang menjadi primadona dalam pengusahaan hutan tanaman khususnya di Pulau Jawa, terhadap jenis P. merkusii dengan berbagai karakteristik, fungsi dan manfaat yang diberikan, hingga saat ini telah banyak penelitian dilakukan untuk menduga model pertumbuhannya.

Menurut Wiroadmodjo (1984), penelitian untuk mendapatkan cara menghitung pertumbuhan tinggi pohon untuk P. merkusii telah dilaksanakan oleh Munez tahun 1981 di Mindoro, Philippina. Dalam analisis dicobakan beberapa persamaan regresi sebagai berikut:

1. H = $a_0 + a_1/A + a_2/A^2$
2. $H = a_0 + a_1/A + a_2/A^2$
3. $H = a_0 + a_1/A$
4. $H = a_0 + a_1/A$
5. $H = a_0 + a_1/A$
6. $H = a_0 + a_1/A$

Di mana: H: nilai pendugaan rata-rata tinggi pohon (m), A: umur tagakan (tahun)
Wiroadmodjo (1984) membuat pula model pertumbuhan tegakan pinus di Jawa untuk tegakan yang tidak mengalami penjarangan dan tegakan yang mengalami penjarangan. Untuk tegakan yang tidak mengalami penjarangan dicobakan dua model pertumbuhan tegakan, yaitu:

1. \[Y = \frac{1}{a_0 + a_1e^{B_1 + a_3e^{N}}} \]
2. \[Y = a_0 + a_1A^{1/2} + a_2N^{1/2} \]
3. \[Y = a_0 + A^{1/2}N^{1/2} \]

di mana: \(Y \): dimensi tegakan, \(A \): umur, \(N \): jumlah pohon per hektar

Sedangkan untuk tegakan yang mengalami penjarangan di cobakan model hasil tegakan:

\[
\frac{1}{Y_j} = a_0 + a_1e^{N_j} + a_2e^{B_j} + a_3(pN_j)e^{B_j} + a_4(pB_j)e^{N_j} + b_1(pN_j)e^{N_j} + b_2(pB_j)e^{B_j} + \ldots + b_{j+1}(pN_j)e^{N_j} + b_{j+2}(pB_j)e^{B_j} + \text{sisa}
\]

Dari hasil analisis yang dilakukan dengan menggunakan analisis statistik dan kebaikan model diuji dengan uji R², uji Khi –kuadrat dan analisis sisaan diperoleh bahwa model-model itu cukup baik untuk menduga dimensi tegakan. Untuk model yang mengalami penjarangan dibuat model yang khusus untuk tegakan dengan penjarangan satu kali, dua kali dan tiga kali.

Penelitian terhadap pertumbuhan *P. merkusii* dilakukan pula oleh Kuncuhyo (1995). Pendugaan model pertumbuhan dilakukan menggunakan data hasil penarikan contoh parial berulang (SPR) dengan metode tanpa pendugaan dan dengan pendugaan yang diambil dari plot-plot di beberapa sebanyak 593 plot yang menyebab di Jawa Tengah. Dalam penelitian ini dicobakan beberapa model yaitu:

1. \[Y = \alpha/(1 + \beta t) \]
2. \[Y = \alpha/(\beta_0 + \beta_1t + \beta_2t_2) \]
3. \[Y = \alpha/(1 + \beta t) \]
4. \[Y = \alpha \theta \]

Berdasarkan hasil analisis terhadap empat model, menunjukkan bahwa model satu adalah model terbaik untuk peubah pertumbuhan rata-rata diameter, sedangkan model tiga adalah model terbaik untuk peubah pertumbuhan rata-rata tinggi, peninggi dan volume tegakan. Dari hasil penelitian ini disimpulkan bahwa faktor lokasi (tempat tumbuh) berpengaruh nyata terhadap pertumbuhan.

Rosida (1997) melakukan penelitian serupa dengan yang dilakukan oleh Kuncuhyo (1995) dengan melakukan pemisahan terhadap strata kerapatan tegakan yaitu strata kerapatan tinggi, rendah dan tanpa pemisahan strata kerapatan dengan model yang dicobakan:

1. \[Y = u(\beta_0 + \beta_1t) \]
2. \[Y = \alpha \theta \]
3. \[Y = \alpha/(1 + \beta t) \]

Hasil analisis regresi menunjukkan bahwa model satu adalah model terbaik untuk menduga pertumbuhan peninggi pada semua strata kerapatan, model dua adalah model terbaik untuk menduga pertumbuhan diameter pada semua strata kerapatan, dan model tiga adalah model terbaik untuk menduga pertumbuhan tinggi dan volume pada semua strata kerapatan tegakan, dengan nilai koefisien determinasi berkisar antara 96,56% - 99,89%.
III. METODE PENELITIAN

A. Data yang Dipergunakan

Data dalam penelitian ini terdiri atas data peubah pertumbuhan yaitu data-data dari dimensi tegakan dan data penunjang lainnya. Data peubah pertumbuhan yang dipergunakan berbasiskan tegakan dan berupa data tegakan total keseluruhan, yaitu meliputi: tinggi pohon rata-rata (m), diameter pohon rata-rata (cm), peninggi (m), lbsd tegakan (m²/ha) dan volume tegakan (m³/ha), termasuk pula beberapa data dimensi lain seperti kerapatan tegakan (jumlah pohon/ha) dan umur tegakan (tahun). Tinggi, diameter, peninggi, lbsd dan volume merupakan respon yang akan dicari fungsi pertumbuhannya sedangkan umur dan kerapatan adalah peubah bebas didalam fungsi pertumbuhan tegakan. Selain data dimensi tegakan, data penunjang lain yang digunakan adalah data kondisi tempat tumbuh yaitu data ketegangan temperatur (alitute) masing-masing PCP dan data keadaan hutan lainnya (seperti tanah, iklim, kondisi lereng, curah hujan) serta data petak coba (letak, nomor, luas, tahun tanam, ulangan pengukuran jumlah pemeriksaan dan perilaku silvikultur yang diterapkan) yang diperoleh dari kartu risalah umum petak coba.

Pengukuran dan perhitungan terhadap dimensi pohon dan tegakan dalam PCP dilaksanakan dengan tata cara sebagai berikut:

1. Diameter

Pengukuran diameter pohon dilakukan pada batas diameter setinggi dada (dbh) atau pada batas batang setinggi 1,30 m dari permukaan tanah. Diameter yang diperoleh merupakan rata-rata diameter hasil pengukuran diameter minimum pohon dengan diameter pada arah tegak lurusnya.
2. Tinggi
Pengukuran tinggi pohon dilakukan sampai batas bebas cabang yang diukur berupa hasil jarak proyeksi dengan bidang horisontal.

3. Peninggi
Peninggi tegakan diperoleh dengan mencari rata-rata tinggi dari 100 pohon tertinggi yang terscbar merata dalam areal seluas satu hektar. Untuk pengukuran peninggi tegakan yang dipergunakan adalah tinggi pohon yang diukur sampai ke puncak tajuk (tinggi total).

4. Bidang dasar
Bidang dasar pohon dihitung berdasarkan diameter pohon pada batas tinggi 1,30 m dengan menganggap penampang melintangnya berbentuk lingkaran sehingga \(BDS_p = \frac{1}{4} \pi D^2 \), dimana BDSp adalah bidang dasar pohon dan D adalah diameter. Bidang dasar tegakan merupakan hasil dari penjumlahan bidang dasar pohon dalam tegakan, yaitu:

\[BDS_{tegakan} = \sum_{i=1}^{n} BDS_{pi} / l \]

dimana, BDS tegakan : bidang dasar tegakan (m²/ha), BDS pi : bidang dasar pohon ke-i dalam petak coba (m²), n : banyaknya pohon dalam petak coba , dan l : luas petak coba (ha).

5. Volume
Volume dari setiap pohon dalam PCP ditentukan dengan cara menduga melalui diameter dan tingginya, dimana yang diukur adalah volume pohon dengan kulit yang dihitung sampai bagian batang berdiameter 7 cm tanpa volume tunggak, volume pohon ini disebut dengan volume kayu tebal (Isi kayu tebal/IkB). Volume tegakan diperoleh dengan cara menjumlahkan volume pohon yang berada dalam PCP, yaitu:

\[V_{tegakan} = \sum_{i=1}^{n} V_{pi} / l \]

dimana, V tegakan : volume tegakan (m³/ha), dan Vpi : volume pohon ke-I dalam petak coba (m³).

B. Pengolahan Data
Kegiatan pengolahan data yang dilakukan terhadap seluruh data tegakan dengan menggunakan MS Excel, meliputi tahapan:

1. Input data
Data yang dimasukkan ke dalam komputer adalah seluruh data dimensi tegakan (peubah pertumbuhan), data petak coba, data kondisi tempat tumbuh dan data keadaan hutan.
2. Eksplorasi data
Pada tahap ini dilakukan pemeriksaan terhadap kondisi data-data peubah pertumbuhan melalui pemeriksaan pola tebaran data peubah pertumbuhan dengan umur dan kemudian dilakukan penetapan terhadap model yang akan diujicobakan dalam pendugaan pertumbuhan tegakan P: *mekusti*.

3. Klasifikasi data petak berdasarkan ketinggian tempat tumbuh
Kegiatan dalam tahapan ini berupa pembagian PCP-PCP ke dalam tiga kelas ketinggian, yakni:
- Kelas ketinggian 1. 0-500 mdpl,
- Kelas ketinggian 2. 500-1000 mdpl
- Kelas ketinggian 3. >1000 mdpl.

C. Analisis Data
Setelah diperoleh tiga kelompok data berdasarkan 'kelas ketinggian tempat langkah selanjutnya dilakukan analisis terhadap model pertumbuhan yang diujicobakan pada setiap kelas ketinggian untuk semua peubah tegakanannya. Analisis data yang dilakukan meliputi:

1. Pendugaan parameter model pertumbuhan
Dalam penyusunan model pertumbuhan dilakukan pendugaan parameter model dengan menggunakan pendekatan metode jumlah kuadrat terkecil (Least Square Methods) melalui analisis regresi non linear. Parameter-parameter yang akan diduga adalah:
- Untuk model 1. $Y = \alpha_0 + \beta_1 t$ nilai yang diduga β_0 dan β_1
- Untuk model 2. $Y = \alpha / (1 + \beta t^\alpha)$ nilai yang diduga α, β dan n
- Untuk model 3. $Y = \alpha t^\beta$ nilai yang diduga α dan β

2. Uji statistik model
Uji statistik terhadap model merupakan rangkaian uji untuk mengetahui tingkat keterandalan antara suatu model dengan model yang lainnya. Uji-ujian statistik yang dilakukan untuk setiap model meliputi:

2.1. Perhitungan koefisien determinasi (R^2)
Koefisien determinasi (R^2) adalah perbandingan antara jumlah kuadrat regresi (JKR) dengan jumlah kuadrat total yang terkoreksi oleh nilai tengahnya (JKT) dan biasanya R^2 dinyatakan dalam persen (%). Nilai R^2 ini mengukur besarnya bagian dari keragaman total terhadap nilai tengah peubah tak bebasnya yang dapat diterangkan oleh regresi,
oleh karena itu makin besar R^2 akan makin besar total kencaman yang dapat diterangkan oleh regresinya, berarti bahwa regresi yang diperoleh makin baik.

Perhitungan besarnya nilai R^2 dengan rumus:

$$R^2 = \left(\frac{JKR}{JKTt} \right) \times 100\%$$

Dimana, $JKR = \text{Jumlah Kuadrat Regresi}$, $JKTt = \text{Jumlah Kuadrat Total tidak terkoreksi}$.

Perhitungan nilai R^2 adalah untuk melihat tingkat ketelitian dan kecepatan hubungan antara peubah bebas dan tidak bebas dengan kriteria:

- $R^2 \geq 100\%$, model makin terandalan
- $R^2 \geq 0\%$, model makin tidak terandalan

2.2. Perhitungan koefisien determinasi terkoreksi (R^2_s)

Koefisien Determinasi Terkoreksi (R^2_s) adalah koefisien determinasi yang telah dikoreksi oleh db dari JKS dan JKT-nya. Dan perhitungan koefisien determinasi terkoreksi (R^2_s) dengan rumus:

$$R^2_s = 1 - \left(\frac{(JKS) / (n-p)}{(JKT) / (n-1)} \right) \times 100\% = 1 - (1-R^2_s) \left(\frac{n-1}{n-p} \right) \times 100\%$$

dimana, $JKS = \text{Jumlah Kuadrat Sisa}$, $JKTt = \text{Jumlah Kuadrat Total tidak terkoreksi}$, $(n-p) = \text{db = derajat bebas sisaan}$, $(n-1) = \text{dbt = derajat bebas total terkoreksi}$.

Ketentuan keterandalan model R^2_s sama dengan R^2. Kelebihan besaran R^2_s adalah dapat dipergunakan untuk membandingkan keterandalan model-model yang memiliki banyaknya peubah bebas yang berbeda. Pengujian yang dilakukan menurut kedua besaran ini akan lebih dapat menambah keyakinan penerimaan model.

2.3. Perhitungan nilai sisaan (s)

Nilai s ditentukan dengan rumus:

$$s = \sqrt{S^2} = \sqrt{\Sigma e_i^2 / (n - p)}$$

dimana, $S^2 = \text{kuadrat tengah sisaan}$, $e_i = \text{sisaan ke-i}$.

Nilai s menunjukkan besarnya penyimpangan antara data aktual dengan dugaan model, yang akan makin terandalan dengan nilai s yang semakin kecil.

2.4. Perhitungan nilai PRESS (Predicted Residual Sum of Square)

PRESS ditentukan dengan rumus:

$$PRESS = \Sigma (e_i(1-Hii))^2$$

dimana, $Hii = \text{nilai leverage}$.

Seperti halnya nilai sisaan (s) penentuan nilai PRESS adalah untuk menggambarkan tingkat ketepatan model dengan melihat selisih antara model dengan kenyataannya. Kriteria keterandalan PRESS sama dengan pada nilai s.
3. Pemilihan model pertumbuhan terbaik
Berdasarkan nilai-nilai dari hasil uji statistik model kemudian ditentukan model pertumbuhan terbaik untuk masing-masing peubah pertumbuhan tegakan dalam setiap kelas ketinggian tempat, dengan kriteria bagi model terbaik yaitu: Nilai R^2 dan R^2_a terbesar dan Nilai s dan PRESS terkecil.

Kemudian terhadap model terpilih dilakukan analisis sisaan (Kuncahyo, 1991) berupa:

- Uji visual kenormalan sisaan
 Menampilkan plot hubungan sisaan dengan probability normalnya. Nilai sisaan dinyatakan normal bila antara nilai sisaan dengan probabiliti normalnya membentuk pola garis lurus.
- Uji keaditifan model
 Menampilkan plot tebaran nilai sisaan dengan nilai dugaan. Asumsi kehomogenan ragam sisaan terpenuhi bila tebaran yang dihasilakan tidak membentuk pola (null plot) atau acak disekitar nilai sisaan nol (berupa pita horison).

4. Analisis peragam (Analysis of Covariance)
Analisis peragam merupakan uji untuk mengetahui pengaruh perbedaan lokasi yaitu ketinggian tempat di dalam pembentukan model. Hasil dari analisis peragam diketahui dari nilai F hitung yang diperoleh dibandingkan dengan nilai F tabel dengan kriteria:

- $F_{hit} < F_{0.05}$, bersifat tidak nyata
- $F_{hit} > F_{0.01}$, bersifat sangat nyata pada tingkat kepercayaan 99%

5. Penyusunan kurva pertumbuhan
Tahap selanjutnya dalam analisis data adalah penyusunan kurva pertumbuhan untuk setiap peubah pertumbuhan tegakan dari berbagai kelas ketinggian untuk melihat pola pertumbuhan dari model-model yang terpilih secara visual (melihat bentuk pola pertumbuhan model hubungan antara peubah tegakan dalam berbagai umur).

6. Uji validasi model
Uji validasi dilakukan dengan membandingkan antara nilai peubah pertumbuhan hasil penelitian (Ya) dengan dengan nilai peubah pertumbuhan pada tabel tegakan (Ye). Uji Validasi yang dilakukan terdiri atas:

- Uji $Khi-knedrat (X^2)$

$$X^2 = \frac{\sum{(Y_a-Y_e)^2}}{Ye}$$
• Rata-Rata absolut Persentase Simpangan (RPS):

\[RPS = \frac{\left[\sum \left\{ \left| \frac{Y_a - Y_e}{Y_e} \right| \right\} \times 100 \% \right]}{N} \]

gabungan

• Simpangan Agregatif (SA)

\[SA = \frac{\sum Y_e - \sum Y_a}{\sum Y_e} \times 100 \% \]

dimana, \(Y_a = \) nilai peubah hasil penelitian, \(Y_e = \) nilai peubah pada tabel tegakan dan \(N = \) jumlah data
IV. HASIL DAN PEMBAHASAN

A. Tebaran Data

Saat ini pertumbuhan *P. merkusii* di Pulau Jawa telah mencapai umur daur dengan umur tegakannya telah lebih dari 30 tahun. Dari kondisi tersebut maka data hasil pengukuran dipandang telah cukup lengkap untuk mewakili di dalam menduga model pertumbuhannya sehingga diharapkan dapat memberi gambaran model pertumbuhan yang tepat dan teliti serta membentuk pola pertumbuhan yang lebih sempurna.

Hasil eksplorasi data berupa tebaran (scatter plot) dari data-data peubah pertumbuhan terhadap umur pada 133 pcp hutan tanaman *P. merkusii* di daerah Jawa Barat, Jawa Tengah dan Jawa Timur, dengan umur berkisar antara 4 tahun sampai 30 tahun disajikan pada Lampiran 1.

Tebaran titik-titik hubungan antara 2 peubah yang dianalisisia pada kertas grafik sebagai gambaran dari perilaku peubah bebas (umur) dan peubah tak bebas (peubah pertumbuhan) tersebut selanjutnya sebagai dasar dalam pertimbangan penetapan bentuk-bentuk model yang akan diujicobakan/dipergunakan. Disamping itu pertimbangan lain yang melandasi penetapan model adalah pengalaman dari penelitian-penelitian sebelumnya dan profesional judgment.

Berdasarkan hasil plot tebaran data (Lampiran 1) dan profesional judgment yang menyatakan bahwa pertumbuhan dari organisme memiliki pola sigmoid serta pengalaman dari penelitian-penelitian sebelumnya maka model regresi yang baik dipergunakan dalam pendugaan pertumbuhan tegakan *P. merkusii* adalah model-model regresi non linear. Sehingga ditetapkan model-model pertumbuhan yang dicobakan pada penelitian ini terdiri dari tiga buah model non linear yaitu:

1. \[Y = \alpha / (1 + e^{\beta t}) \]
2. \[Y = (\beta 0 + \beta 1 t) \]
3. \[Y = \alpha t^\beta \]

dimana, \(Y \) : peubah pertumbuhan (diameter, tinggi, peninggi, volume, lbds), \(t \) : umur; \(\alpha \) : intersep, \(\beta \) : koef. regresi/koef. eksponensial, \(\beta 0 \) : koef. elevasi, \(\beta 1 \) : koef. regresi, \(n \) : koef. eksponensial.

Untuk analisis data dipakai program *MS Excel*, *Minitab Release*, dan *SAS* versi 6.04.

B. Sebaran Data Petak Coba Permanen

Selanjutnya untuk melihat pola pertumbuhan tegakan pada berbagai ketinggian tempat tumbuhnya maka pcp-pcp yang terletak pada ketinggian yang bervariasi antara 250 m dpl sampai dengan 1350 m dpl tersebut kemudian diklasifikasikan ke dalam tiga kelas ketinggian tempat tumbuh yaitu kelas ketinggian 1 (0-500 m dpl), kelas ketinggian 2 (500-1000 m dpl) dan kelas ketinggian 3 (>1000 m dpl). Pengklasifikasian ini dilakukan berdasarkan atas asumsi adanya kehomogenan sifat tempat tumbuh pada tiap kelas ketinggian.
Kondisi setiap seri pcp disajikan pada Lampiran 2 dan sebaran petak coba hasil klasifikasi berdasarkan ketinggian tempat tumbuh terlihat pada Tabel 1 berikut ini:

<table>
<thead>
<tr>
<th>Kelas</th>
<th>No Bar</th>
<th>Propinsi</th>
<th>Ketinggian</th>
<th>Umur</th>
<th>Jumlah Petak</th>
<th>Jumlah Penganaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>168</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>1953</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>1959</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>172</td>
<td>Jawa Tengah</td>
<td>Banyumas Barat</td>
<td>1961</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>173</td>
<td>Jawa Tengah</td>
<td>Banyumas Barat</td>
<td>1962</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>Jawa Timur</td>
<td>Jember</td>
<td>1961</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>1957</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>194</td>
<td>Jawa Timur</td>
<td>Jember</td>
<td>1955</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>167</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1957</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>171</td>
<td>Jawa Tengah</td>
<td>Pekalongan Barat</td>
<td>1958</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>175</td>
<td>Jawa Tengah</td>
<td>Kedu Selatan</td>
<td>1964</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>177</td>
<td>Jawa Tengah</td>
<td>Pekalongan Timur</td>
<td>1963</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>178</td>
<td>Jawa Tengah</td>
<td>Pekalongan Timur</td>
<td>1975</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>186</td>
<td>Jawa Tengah</td>
<td>Magelang</td>
<td>1975</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>187</td>
<td>Jawa Tengah</td>
<td>Magelang</td>
<td>1975</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>188</td>
<td>Jawa Tengah</td>
<td>Magelang</td>
<td>1975</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>191</td>
<td>Jawa Tengah</td>
<td>Pekalongan Timur</td>
<td>1958</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td>Jawa Tengah</td>
<td>Pekalongan Barat</td>
<td>1959</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>193</td>
<td>Jawa Timur</td>
<td>Lawu Ds</td>
<td>1957</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>179</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1969</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1969</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>181</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1969</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>182</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1969</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>183</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1969</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>184</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1969</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>189</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1966</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1969</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>195</td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>1957</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>203</td>
<td>Jawa Barat</td>
<td>Garut</td>
<td>1970</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>207</td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>1968</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>209</td>
<td>Jawa Barat</td>
<td>Bandung Selatan</td>
<td>1969</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>Jawa Barat</td>
<td>Bandung Selatan</td>
<td>1960</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>1963</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

C. Pendugaan Parameter Model Pertumbuhan

Hasil analisis regresi model non linear memberikan pendugaan terhadap nilai-nilai parameter model yang merupakan hasil dari interaksi variabel bebas yakni umur dengan variabel tak bebas yakni peubah-peubah pertumbuhannya (peninggi, diameter, tinggi, ldbs dan volume). Pendugaan nilai-nilai parameter model regresi non linear dapat dilakukan melalui 2 cara yaitu melalui transformasi dan melalui regresi non linear teriterasi. Dalam penelitian ini nilai parameter model diduga melalui regresi non linear teriterasi yaitu dengan terlebih dahulu mencari turunan parsial dari model yaitu berupa
turunan parsial dari parameter-parameteranya, kemudian dengan menggunakan perangkat program komputer SAS 604 diperoleh nilai-nilai dari parameter melalui metode kuadrat terkecil (Least Square Methods).

Terdapat beberapa teknik iterasi yang dapat digunakan dalam pembentukan model regresi non linear berdasarkan pada Least Square Methods yaitu salah satunya yang sering dipakai adalah metode Marquardt seperti yang dipergunaan dalam penelitian ini. Metode Marquardt umum dipergunaan karena memberikan hasil yang paling memuaskan dan bekerja paling efektif dimana metode ini merupakan hasil kompromi dari dua buah metode yaitu metode Gauss-Newton dan metode penurunan tercuram (Kuncayho dkk, 1997).

Pada model ke-1 dilakukan pendugaan terhadap 2 parameteranya yakni β_0 dan β_1, pada model ke-2 dilakukan pendugaan terhadap 2 parameternya yakni β, α dan n, serta pada model ke-3 tedapat 2 parameter yang akan diduga nilainya yaitu α dan β.

Contoh hasil analisis (input dan output) model regresi non linear dengan menggunakan program SAS versi 604 terlihat pada Lampiran 3 dan 4 dan rekapitulasi hasil penyusunan model yang diperoleh melalui pendugaan nilai parameter model untuk peubah pertumbuhan peninggi, diameter, tinggi, lbds dan volume pada tiga kelas ketinggian disajikan pada Tabel 2.

Tabel 2. Rekapitulasi Hasil Pendugaan Parameter Model Pertumbuhan Peubah Pertumbuhan (peninggi, diameter, tinggi, lbds dan volume) pada Kelas Ketinggian 1,2 dan 3.

<table>
<thead>
<tr>
<th>No</th>
<th>Kelas Ketinggian</th>
<th>Peninggi</th>
<th>Diameter</th>
<th>Tinggi</th>
<th>Lbds</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0-500 m dpl)</td>
<td>(Y = \frac{t}{(0.4686+0.0148t)})</td>
<td>(Y = \frac{t}{(0.4686+0.0148t)})</td>
<td>(Y = 50,1907)</td>
<td>(Y = 3,6950 t^{0.6524})</td>
<td>(Y = 4,7981 t^{0.6477})</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(Y = \frac{t}{(0.3647+0.0119t)})</td>
<td>(Y = \frac{t}{(1+64,1072 t^{-1.6177})})</td>
<td>(Y = 39,5012)</td>
<td>(Y = 2,7834 t^{0.7395})</td>
<td>(Y = 12,7345 t^{0.3084})</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>(Y = \frac{t}{(0.5591+0.0122t)})</td>
<td>(Y = \frac{t}{(1+91,9090 t^{-1.6935})})</td>
<td>(Y = 377,765)</td>
<td>(Y = 12,7345 t^{0.3084})</td>
<td>(Y = 11,8782 t^{1.0596})</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>(Y = \frac{t}{(0.1639+0.0229t)})</td>
<td>(Y = \frac{t}{(1+28,6242 t^{-0.3258})})</td>
<td>(Y = 1347,84)</td>
<td>(Y = 12,7345 t^{0.3084})</td>
<td>(Y = 11,8782 t^{1.0596})</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(Y = \frac{t}{(0.0750+(-0.0002)t)})</td>
<td>(Y = \frac{t}{(1+182,4965 t^{-1.2976})})</td>
<td>(Y = 12,7345 t^{0.3084})</td>
<td>(Y = 11,8782 t^{1.0596})</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Kelas Ketinggian 2 (500-1000 m dpl)</td>
<td>Kelas Ketinggian 3 (>1000 m dpl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Penampang</td>
<td>Penampang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = t$</td>
<td>$Y = t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = \frac{50,2438}{(1+58,6202 t^{1.4069})}$</td>
<td>$Y = \frac{61,4426}{(1+42,2612 t^{1.1237})}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = 45,8099$</td>
<td>$Y = 43,58931$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Diameter</td>
<td>Diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = t$</td>
<td>$Y = t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = \frac{52,1739}{(1+37,1069 t^{1.4748})}$</td>
<td>$Y = \frac{105,6403}{(1+77,441 t^{1.3996})}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tinggi</td>
<td>Tinggi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = t$</td>
<td>$Y = t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = \frac{2,0814}{(1+70,5399 t^{1.3967})}$</td>
<td>$Y = \frac{1,7540}{(1+77,441 t^{1.3996})}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lbds</td>
<td>Lbds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = t$</td>
<td>$Y = t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = \frac{7,4249}{(1+69,1894 t^{2.1239})}$</td>
<td>$Y = \frac{6,2915}{(1+49,0441 t^{1.8129})}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Volume</td>
<td>Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = t$</td>
<td>$Y = t$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$Y = \frac{6,9789}{(1+400,9982 t^{1.7255})}$</td>
<td>$Y = \frac{3,7068}{(1+594,2225 t^{1.8361})}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Uji Statistik Model

Di dalam menentukan model pertumbuhan terbaik yang paling terdakalan dari tiga model yang dicoba pada setiap kelas ketinggian yang ada maka dilakukan rangkaian uji statistik terhadap model-model tersebut. Rangkaian uji statistik yang dilakukan pada penelitian ini yakni terdiri atas perhitungan nilai koefisien determinasi (R^2), koefisien determinasi terkoreksi (R^2_c), nilai sisaan (s) dan nilai PRESS (Predicted Residual Sum of Square). Perhitungan nilai-nilai tersebut diperoleh dari hasil analisis regresi yang telah dilakukan. Rekapitulasi nilai uji statistik dari analisis tiga buah model untuk peubah-peubah pertumbuhan pada setiap kelas ketinggiannya disajikan pada Lampiran 5.
Nilai-nilai koefisien determinasi yang telah terkoreksi (R²a) pada model-model yang duijicobakan (Lampiran 5) sangat besar untuk seluruh peubah pertumbuhan disetiap kelas ketinggianya. Pada kelas ketinggian 1 (0-500 m dpl) nilai R²a berkisar 96,21% - 99,7%, untuk kelas ketinggian 2 (500-1000 m dpl) nilai R²a 96,9% - 99,47% dan untuk kelas ketinggian 3 (>1000 m dpl) nilai R²a adalah 92,23% - 99,31%. Nilai-nilai R²a tersebut menunjukkan bahwa model-model yang diperoleh memiliki tingkat keakuratan yang tinggi yakni lebih dari 90% keragaman total dari data dapat diterangkan oleh model.

E. Pemilihan Model Pertumbuhan Terbaik

Berdasarkan nilai dari uji statistik yang telah dilakukan kemudian dilaksanakan pemilihan terhadap model terbaik untuk menduga model pertumbuhan peubah pertumbuhan pada masing-masing kelas ketinggian yang memenuhi kriteria keterandalan model yaitu memiliki nilai bagi R² dan R²a yang paling besar dan memiliki nilai sisaan dan PRESS yang paling kecil. Rekapitulasi model-model penduga pertumbuhan terbaik bagi peubah pertumbuhan peninggi, diameter, tinggi, lbd5 dan volume untuk masing-masing kelas ketinggian tercantum pada Tabel 3, Tabel 4 dan Tabel 5.

Tabel 3. Rekapitulasi Hasil Pemilihan Model Pertumbuhan Terbaik bagi Peubah-Peubah Pertumbuhan pada Kelas Ketinggian 1 (0-500 m dpl)

<table>
<thead>
<tr>
<th>No</th>
<th>Peninggi</th>
<th>Model Pertumbuhan</th>
<th>R² (%)</th>
<th>R²a (%)</th>
<th>R² (%)</th>
<th>R²a (%)</th>
<th>PRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peninggi</td>
<td>$Y = \frac{37,7062}{1+86,1056 \ t^{-1.7674}}$</td>
<td>99,7</td>
<td>99,70</td>
<td>1,3297</td>
<td>224,6097</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Diameter</td>
<td>$Y = \frac{39,5012}{0,3647+0,0119 \ t}$</td>
<td>98,7</td>
<td>98,68</td>
<td>3,5666</td>
<td>1615,247</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tinggi</td>
<td>$Y = \frac{1347,84}{1+182,4965 \ t^{-1.3976}}$</td>
<td>96,3</td>
<td>96,21</td>
<td>50,6607</td>
<td>305897,7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lbd5</td>
<td>$Y = 12,7345t^{0,3084}$</td>
<td>97,5</td>
<td>97,49</td>
<td>4,9606</td>
<td>3001,774</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Volume</td>
<td>$Y = 1347,84$</td>
<td>96,3</td>
<td>96,21</td>
<td>50,6607</td>
<td>305897,7</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 4. Rekapitulasi Hasil Pemilihan Model Pertumbuhan Terbaik bagi Peubah- Peubah Pertumbuhan pada Kelas Ketinggian 2 (500-1000 mdpl)

<table>
<thead>
<tr>
<th>No</th>
<th>Peubah Pertumbuhan</th>
<th>Model Pertumbuhan</th>
<th>R^2 (2)</th>
<th>RMSE (20)</th>
<th>MAE (20)</th>
<th>PRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Peninggi</td>
<td>$Y = \frac{50,2438}{(1+58,6202 \cdot 1^{-1,4069})}$</td>
<td>99,5</td>
<td>99,47</td>
<td>1,7247</td>
<td>596,0364</td>
</tr>
<tr>
<td>2.</td>
<td>Diameter</td>
<td>$Y = \frac{45,8099}{(1+37,1069 \cdot 1^{-1,4748})}$</td>
<td>99,3</td>
<td>99,34</td>
<td>2,3011</td>
<td>1059,941</td>
</tr>
<tr>
<td>3.</td>
<td>Tinggi</td>
<td>$Y = \frac{52,1739}{(1+70,5399 \cdot 1^{-1,3961})}$</td>
<td>98,8</td>
<td>98,75</td>
<td>2,4711</td>
<td>1216,994</td>
</tr>
<tr>
<td>4.</td>
<td>Lbds</td>
<td>$Y = \frac{38,8420}{(1+69,1894 \cdot 1^{-2,1239})}$</td>
<td>97,8</td>
<td>97,81</td>
<td>4,7555</td>
<td>4186,842</td>
</tr>
<tr>
<td>5.</td>
<td>Volume</td>
<td>$Y = \frac{997,7135}{(1+400,9982 \cdot 1^{-1,7284})}$</td>
<td>97,1</td>
<td>97,07</td>
<td>47,0494</td>
<td>406402</td>
</tr>
</tbody>
</table>

Tabel 5. Rekapitulasi Hasil Pemilihan Model Pertumbuhan Terbaik bagi Peubah- Peubah Pertumbuhan pada Kelas Ketinggian 3 (0-1000 mdpl)

<table>
<thead>
<tr>
<th>No</th>
<th>Peubah Pertumbuhan</th>
<th>Model Pertumbuhan</th>
<th>R^2 (2)</th>
<th>RMSE (20)</th>
<th>MAE (20)</th>
<th>PRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Peninggi</td>
<td>$Y = \frac{t}{(0,5627+0,0117 \cdot t)}$</td>
<td>99,3</td>
<td>99,31</td>
<td>1,4994</td>
<td>672,2733</td>
</tr>
<tr>
<td>2.</td>
<td>Diameter</td>
<td>$Y = \frac{43,58931}{(1+34,8317 \cdot 1^{-1,4071})}$</td>
<td>98,2</td>
<td>98,22</td>
<td>2,9321</td>
<td>2565,272</td>
</tr>
<tr>
<td>3.</td>
<td>Tinggi</td>
<td>$Y = \frac{t}{(0,6943+0,0078 \cdot t)}$</td>
<td>99,2</td>
<td>99,15</td>
<td>1,5084</td>
<td>681,4152</td>
</tr>
<tr>
<td>4.</td>
<td>Lbds</td>
<td>$Y = \frac{38,9142}{(1+49,0441 \cdot 1^{-1,9139})}$</td>
<td>92,7</td>
<td>92,62</td>
<td>7,6412</td>
<td>14525,36</td>
</tr>
<tr>
<td>5.</td>
<td>Volume</td>
<td>$Y = \frac{1554,276}{(1+594,2225 \cdot 1^{-1,8361})}$</td>
<td>92,4</td>
<td>92,31</td>
<td>47,3392</td>
<td>558163,7</td>
</tr>
</tbody>
</table>

Berdasarkan tabel-tabel diatas dapat diketahui bahwa yang terpilih sebagai model penduga pertumbuhan terbaik bagi masing-masing peubah pertumbuhan di tiga kelas ketinggian sangat bervariasi dari ketiga model yang diujicobakan. Hasil diatas menunjukkan model ke-3 ($Y = \alpha \cdot t^p$) adalah model yang hanya sesuai bagi menduga pertumbuhan lbsd pada kelas ketinggian 1, sedangkan model ke-1 ($Y = \nu(\beta_0 + \beta_1 \cdot t)$) adalah model penduga pertumbuhan terbaik bagi peninggi dan tinggi pada kelas ketinggian 3 dan bagi diameter pada kelas ketinggian 1. Bagi sebagian besar peubah pertumbuhan model penduga terbaik adalah model ke-2 ($Y = \alpha/(1+\beta \cdot t^n)$) yaitu bagi peninggi dan tinggi pada kelas
ketinggian 1 dan 2, bagi diameter dan lbds pada kelas ketinggian 2 dan 3 serta bagi volume pada kelas ketinggian 2. Model penduga pertumbuhan untuk volume pada kelas ketinggian 1 dan 3 pemilihanya tidak berdasarkan hasil dari uji statistik namun pada pertimbangan kesesuaian dari kemampuan untuk menggambarkan kondisi pertumbuhan volume tegakan sehingga dipilih model 2 \(Y = \alpha / (1 + \beta \ t) \) sebagai model penduga pertumbuhannya.

Selanjutnya untuk melihat kemampuan dari model yang terpilih tersebut apakah dapat dipergunakan dengan baik maka dilakukan analisis sisaan yang terdiri atas uji visual kenormalan sisaan dan uji visual keadilan model. Hasil analisis sisaan yang disajikan pada Lampiran 6 menunjukkan bahwa model-model terpilih tersebut pola sisaannya membentuk garis yang cukup linear dan tebaran antara sisaan dan nilai dugaannya berpola acak, sehingga dapat dikatakan bahwa kenormalan sisaan model cukup baik dan memiliki ragam sisaan yang homogen.

F. Analisis Peragam (Analysys of Covariance)

Analisis peragam merupakan gabungan dari dua buah analisis statistik yakni analisis regresi yang menggambarkan keceratan hubungan antara peubah bebas dengan peubah tak bebas, serta analisis ragam yang menunjukkan pengaruh suatu faktor misalnya lokasi terhadap respon yang ingin diketahui dalam hal ini adalah pertumbuhan. Analisis peragam dilakukan berdasarkan asumsi bahwa ada peubah tertentu yang sulit dikendalikan namun memiliki hubungan dan berkorelasi erat dengan peubah respon yang diamati.

Untuk mengendalikan keragaman dalam penelitian dapat dipergunakan beberapa teknik, salah satunya dengan menggunakan peubah penyerta (concomitant variables/covariate). Pertumbuhan memiliki hubungan yang sangat erat dengan umur maka dalam analisis peragam ini umur sebagai peubah penyerta (concomitant).

Uji statistik berupa uji-F dalam analisis peragam ini yaitu dengan melihat nilai F-hitung yang bila lebih besar dari nilai F-tabel maka hipotesis yang menyatakan bahwa minimal satu kelas ketinggian tempat berpengaruh terhadap pertumbuhan dalam pembentukan model dapat diterima. Hasil analisis peragam yang dilakukan dengan menggunakan program Minitab Release 1.1 disajikan pada Lampiran 7 dan rekapitulasi hasil analisis tersebut tercantum pada Tabel 6 di bawah ini.

<table>
<thead>
<tr>
<th>No.</th>
<th>Ballai Ketersamaan</th>
<th>Penimpu</th>
<th>F Hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Peninggi</td>
<td>15.03**</td>
<td>6.64</td>
</tr>
<tr>
<td>2.</td>
<td>Diameter</td>
<td>42.37**</td>
<td>6.64</td>
</tr>
<tr>
<td>3.</td>
<td>Tinggi</td>
<td>20.93**</td>
<td>4.64</td>
</tr>
<tr>
<td>No.</td>
<td>Peubah Pertumbuhan</td>
<td>(F)-hitung</td>
<td>(F)-tabel 0.01</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>Lbds</td>
<td>1.37(^m)</td>
<td>4.65</td>
</tr>
<tr>
<td>5</td>
<td>Volume</td>
<td>5.84(^{**})</td>
<td>4.65</td>
</tr>
</tbody>
</table>

Keterangan: ** sangat nyata pada selang kepercayaan 99%
\(^m \) tidak nyata pada selang kepercayaan 95%

Berdasarkan hasil analisis peragam yang tercantum pada tabel diatas terlihat bahwa untuk peubah pertumbuhan peninggi, diameter, tinggi dan volume nilai \(F\)-hitung lebih besar dari \(F\)-tabel artinya bahwa faktor kelas ketinggian sangat berpengaruh nyata dalam pembentukan model. Hal ini berarti bahwa pertumbuhan untuk ke-4 peubah tersebut sangat dipengaruhi oleh perbedaan ketinggian tempat tumbuhnya. Sedangkan bagi peubah pertumbuhan lbds hasil analisis peragam di atas menunjukkan bahwa \(F\)-hitung lebih kecil dari \(F\)-tabel yang berarti faktor ketinggian tempat berpengaruh tidak nyata dalam pembentukan model. Hal tersebut menggambarkan bahwa keseragaman kondisi pertumbuhan lbds yang pada berbagai ketinggian bukan pengaruh dari perbedaan kelas ketinggian tempat tumbuh.

Pertumbuhan tinggi pohon secara umum sangat dipengaruhi oleh faktor lingkungan kondisi tempat tumbuhnya. Pandit (1995) menyatakan bahwa pertumbuhan panjang batang atau tinggi terjadi oleh pertumbuhan primer langsung pada titik-titik tumbuh pada bagian ujung tanaman (apical growing points) yang dibangun oleh fotosintesis langsung. Pohon-pohon yang mampu memanfaatkan unsur pertumbuhan secara maksimal akan membuatnya tumbuh lebih cepat dari pertumbuhan yang umum dan kumpulan 100 pohon dalam luasan satu hektar dengan kondisi pertumbuhan yang maksimum ini yang disebut sebagai peninggi.

Berbeda dengan tinggi, pertumbuhan diameter batang terjadi oleh kegiatan cambium vaskular yang mengadakan pertumbuhan sekunder yang akan menghasilkan jaringan sekunder seperti xylem dan floem (Pandit, 1995). Pertumbuhan diameter dibangun oleh hasil fotosintesis simpanan sehingga dimulai lebih lambat dan lebih lama daripada pertumbuhan tinggi pada pohon yang sama dan memiliki sifat yang lebih fluktuatif berdasarkan faktor lingkungan kelembaban udara, intensitas cahaya dan temperatur. Selain itu persaingan antar individu pohon dalam mengabsorpsi air sangat berpengaruh, sehingga kerapatan tegakan turut pula mempengaruhi pertumbuhan.

Sementara itu kerapatan tegakan dan diameter secara langsung merupakan aspek yang berhubungan erat dengan lbds tegakan dimana lbds merupakan fungsi kuadratik dari diameter batang serta pertambahan jumlah pohon per hektar akan menambah lbds setiap pohon. Riap lbds merupakan ukuran kemampuan pohon/tegakan untuk memproduksi elemen xylem yang sebagian dikontrol secara genetis tetapi juga dipengaruhi oleh faktor-faktor lingkungan biotis, fisik dan kimia (Baker et al, 1995). Gabungan antara faktor diameter, tinggi, angka bentuk pohon dan kerapatan tegakan merupakan fungsi dari volume tegakan.
Berdasarkan hal tersebut maka agar diperoleh hasil analisis yang tepat dan tidak memberikan bias maka perlu dilakukan analisis peragam dengan mempergunakan faktor tegakan yakni jumlah pohon perhektar atau kerapatan tegakan (Mehari dan Nuslund, 1999) sebagai concomitant untuk memeriksa pengaruh dari perbedaan ketinggian tempat tumbuh terhadap pertumbuhan lbsds.

Hasil analisis peragam dengan concomitant kerapatan tegakan (N/Ha) tercantum pada Lampiran 8, dan disajikan rekapitulasinya pada tabel di bawah ini:

Tabel 7. Rekapitulasi Hasil Analisis Peragam Data Peubah Pertumbuhan Lbds dan Volume Antar Kelas Ketinggian Tempat Tumbuh dengan Peubah Penyerta Umur dan Kerapatan Tegakan (N/Ha)

<table>
<thead>
<tr>
<th>No</th>
<th>Peubah-Pemantau</th>
<th>Peubah Penyerta Umur</th>
<th>Peubah Penyerta N/</th>
<th>Kerapatan N/</th>
<th>Kerapatan N/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Persen</td>
<td>Percente</td>
<td>Percecte</td>
<td>Persente</td>
<td>Persente</td>
</tr>
<tr>
<td>1</td>
<td>Lbds</td>
<td>1,37**</td>
<td>4,65</td>
<td>3,02</td>
<td>13,47**</td>
</tr>
<tr>
<td>2</td>
<td>Volume</td>
<td>5,84**</td>
<td>4,65</td>
<td>3,02</td>
<td>41,21**</td>
</tr>
</tbody>
</table>

Hasil analisis yang ditunjukkan pada Tabel 7, dengan concomitant kerapatan tegakan menyatakan bahwa ternyata pengaruh perbedaan ketinggian tempat tumbuh sangat nyata di dalam pembentukan model, sehingga dapat disimpulkan bahwa pertumbuhan bagi peubah lbsds sangat dipengaruhi oleh perbedaan ketinggian tempat tumbuhnya. Hasil analisis di atas juga membuktikan bahwa kerapatan tegakan memiliki hubungan yang erat dengan dengan nilai dari peubah lbsds dan volume tegakan.

G. Penyusunan Kurva Pertumbuhan Tegakan *P. merkusii*

Gambar 2 Kurva Pertumbuhan Peninggi Pada Kelas Ketinggian 1, 2 dan 3

Gambar 3 Kurva Pertumbuhan Diameter Pada Kelas Ketinggian 1, 2 dan 3
Gambar 4. Kurva Pertumbuhan Tinggi Pada Kelas Ketinggian 1, 2 dan 3

Gambar 5. Kurva Pertumbuhan Lbsd Pada Kelas Ketinggian 1, 2 dan 3
Sesuai dengan hasil analisis peragam, pengaruh yang nyata perbedaan ketinggian tempat tumbuh terhadap pertumbuhan dari peubah peninggi, tinggi, diameter, lbd's dan volume secara visual terlihat pada perbedaan kedudukan dari kurva-kurva di atas dan membentuk pola sigmoid. Kecenderungan tersebut sejalan dengan proses fisiologi tumbuhan dimana terdapat tahap perkembangan, pada tahap ini tumbuhan belum mampu secara aktif memanfaatkan faktor lingkungan. Setelah tahap perkembangan selesai dan menginjak pada tahap pemanfaatan, maka tumbuhan akan mampu secara aktif memanfaatkan faktor lingkungan sehingga fotosintesis berjalan cukup baik dan hasil fotosintesis tinggi. Pada tahap ini laju kehilangan hasil fotosintesis dari proses evapotranspirasi relatif rendah sehingga hasil bersih akan besar, dan semakin tua kemampuan memanfaatkan faktor lingkungan semakin menurun.

Kurva-kurva di atas secara umum menggambarkan dua trend respon sebagai hasil dari pengaruh perbedaan ketinggian tempat terhadap pertumbuhan *P. merkusi*. Untuk peubah diameter (Gb. 2) dan lbd's (Gb. 3) kurva pertumbuhannya menunjukkan terjadi korelasi negatif yaitu bahwa pertumbuhan maksimal dari kedua peubah tersebut terdapat pada pep yang terletak di daerah dengan ketinggian tempat yang semakin rendah yaitu paling baik pada ketinggian 0-500 m dpl. Sedangkan untuk tiga peubah lainnya yaitu peninggi (Gb. 4), tinggi (Gb. 5) dan volume (Gb. 6) memberikan respon yang
berkorelasi positif terhadap ketinggian tempat yang berarti bahwa pertumbuhan peubah-peubah tersebut semakin baik pada daerah dengan ketinggian yang semakin meningkat yaitu pertumbuhan maksimal terjadi pada ketinggian di atas 1000 m dpl.

Altitude atau ketinggian tempat dari permukaan laut merupakan salah satu dari komponen topografi disamping kelerengan dan aspek yang mempengaruhi pertumbuhan melalui komponen lingkungan lain seperti iklim (Strain and Billings, 1974). Suhu adalah salah satu unsur iklim yang berhubungan dengan altitude, pada umumnya pada ketinggian tempat yang tinggi ditemui suhu lingkungan yang rendah dan sebaliknya (Suharti dan Santoso, 1988; Mubiyanto, 1990). Setiap kenaikan 100 m dari permukaan laut di daerah tropik maka akan menyebabkan penurunan suhu sebesar ±6oC (Jumin, 1992).

Hubungan yang nyata antara suhu dengan tumbuhan adalah bahwa laju pertumbuhan sangat dipengaruhi oleh suhu. Pada suhu ±6oC proses pertumbuhan dimulai dan aktivitas meristem menjadi terukur, dengan meningkatnya suhu maka laju pertumbuhan akan ikut meningkat, pada suhu 35oC terjadi laju maksimal dan bila suhu telah melebihi 35oC maka laju akan menurun karena kecepatan dari disintegrasi protein sel (Tata, 1998). Suhu yang ekstrim yakni berkisar di bawah 0oC dan di atas 50oC dapat menyebabkan beberapa kerusakan namun tergantung pula pada jenis, untuk jenis pinus akan tumbuh dengan baik pada suhu optimal antara 18-30oC.

Suhu yang tinggi ataupun rendah akan mempengaruhi proses fotosintesis tanaman (Jumin, 1992). Suhu yang tinggi akan menyebabkan kelarutan karbondioksidanya menurun, meningkatnya rasio kelarutan oksigen dan karbondioksida serta meningkatnya aktivitas enzim karbooksilaseoksigenase ribulose bifosfat. Sedangkan suhu yang rendah bersifat membatasi proses metabolisme tanaman dimana suhu rendah akan meningkatkan viskositas air sehingga translokasi air dari akar dapat terhalang mencapai daun, hal ini menyebabkan terjadinya kerusakan enzim. Enzim karbooksilaseoksigenase ribulose bifosfat akan menurun aktivitasnya pada suhu di bawah 15oC dan akan berhenti pada suhu 0oC. Terhalangnya air dari akar dan berkurangnya atau terhentinya enzim akibat suhu yang rendah akan menurunkan laju fotosintesis.

Mehari dan Naslund (1999) menyebutkan pula bahwa suhu mempengaruhi tumbuhan di dalam menjalankan proses-proses fisiologinya diantaranya fotosintesis. Terjadinya penurunan suhu, reduksi dalam isi klorofil dan peningkatan respirasi terhadap altitude adalah faktor-faktor yang menyebabkan kapasitas fotosintesis tanaman menurun.

H. Uji Validasi Model Pertumbuhan Terpilih

Tegakan P. merkusii yang dalam penelitian ini adalah tegakan yang tumbuh pada bonita 2, 3, 4 dan 5 sehingga uji validasi yang dilakukan merupakan perbandingan antara nilai peubah pertumbuhan hasil penelitian terhadap nilai rata-rata bonita 2 - bonita 5 pada tabel tegakan. Berdasarkan hasil uji validasi model yang terdiri atas Uji Khi-kuadrat \((\chi^2) \) yang tercantum pada Lampiran 12, pendugaan nilai RPS (Rata-rata Persen Simpangan) dan SA (Simpangan Agregatif) diperoleh rekapitulasi yang disajikan pada Tabel 8 berikut:

Tabel 8. Rekapitulasi Hasil Uji Validasi Model Model Pertumbuhan Terpilih

<table>
<thead>
<tr>
<th>Peubah Pertumbuhan</th>
<th>Kelas Keteringian 1 (0-500 m dpl)</th>
<th>Kelas Keteringian 2 (500-1000 m dpl)</th>
<th>Kelas Keteringian 3 (>1000 m dpl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peninggi</td>
<td>Diameter</td>
<td>Tinggi</td>
</tr>
<tr>
<td></td>
<td>0,96</td>
<td>0,73</td>
<td>3,47</td>
</tr>
<tr>
<td></td>
<td>12,592</td>
<td>12,592</td>
<td>12,592</td>
</tr>
<tr>
<td></td>
<td>Tidak Nyata</td>
<td>Tidak Nyata</td>
<td>Tidak Nyata</td>
</tr>
<tr>
<td></td>
<td>6,3</td>
<td>13</td>
<td>5,4</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>4,7</td>
<td>4,2</td>
</tr>
</tbody>
</table>
Hasil uji validasi khi-kuadrat model terpilih di atas menunjukkan bahwa untuk peubah pertumbuhan peninggi, diameter, dan tinggi memberikan hasil yang tidak nyata, sedangkan untuk peubah pertumbuhan lbsd dan volume memberikan hasil yang sangat nyata. Hasil uji Khi kuadrat yang tidak nyata menyatakan bahwa untuk peubah pertumbuhan diameter, tinggi dan peninggi model penduga yang dihasilkan dalam penelitian ini baik dipergunakan untuk menduga pertumbuhan peubah tersebut pada masing-masing kelas ketinggiannya. Sedangkan untuk hasil uji Khi kuadrat bagi lbsd dan volume yang berbeda sangat nyata disebabkan adanya pengaruh dari nilai kerapatan tegakan (N/ha), dimana kerapatan tegakan pada penelitian nilainya lebih besar daripada nilai kerapatan pada tabel tegakan. Nilai RPS yang diperoleh berkisar antara 3,3% sampai 66,7% serta nilai SA berkisar 59,9% sampai 20%. Nilai RPS dan SA menggambarkan persentase penyimpangan yang terjadi pada kondisi tegakan yang diupayakan terhadap tegakan normal pada tabel tegakan.
V. KESIMPULAN DAN SARAN

A. Kesimpulan

1. Hasil analisis terhadap 3 model yang diujicobakan pada peubah-peubah pertumbuhan menunjukkan bahwa model penduga terbaik yang terpilih untuk setiap klasifikasi ketinggian tempat tumbuh yaitu model ke-1 \((Y=\beta_0 + \beta_1 \mathbf{X})\) adalah model penduga pertumbuhan terbaik bagi peninggi dan tinggi pada kelas ketinggian 3 dan bagi diameter pada kelas ketinggian 1, model ke-2 \((Y=\alpha/(1+\beta_1 \mathbf{X}))\) adalah model penduga pertumbuhan terbaik bagi peninggi dan tinggi pada kelas ketinggian 1 dan 2, bagi diameter dan lbds pada kelas ketinggian 2 dan 3 serta bagi volume pada seluruh kelas ketinggian, sedangkan model ke-3 \((Y=\alpha \mathbf{X}^\beta)\) adalah model penduga pertumbuhan terbaik bagi lbds pada kelas ketinggian 1.

2. Berdasarkan analisis peragam untuk peubah pertumbuhan peninggi, tinggi, diameter dan volume perbedaan ketinggian tempat tumbuh memberikan pengaruh yang signifikan dalam pembentukan model. Sedangkan untuk peubah lbds perbedaan ketinggian tempat tidak menunjukkan pengaruh yang signifikan untuk analisis dengan peubah penyerta umur, namun dengan peubah penyerta kerapatan tegakan (N/ha) menunjukkan pengaruh yang signifikan dalam pembentukan model.

3. Ketinggian tempat tumbuh merupakan salah satu dari faktor lingkungan yang mempengaruhi pertumbuhan tegakan. Pertumbuhan tegakan dipengaruhi oleh interaksi berbagai faktor seperti potensi keturunan pohon (gen), faktor lingkungan tempat tumbuh dan faktor perlakuan silvikultur serta kerapatan tegakan (N/ha).

4. Hasil uji validasi model menunjukkan bahwa nilai uji khi-kuadrat untuk peubah pertumbuhan peninggi, diameter dan tinggi memberikan hasil yang tidak nyata. sedangkan untuk peubah pertumbuhan lbds dan volume memberikan hasil yang sangat nyata karena adanya pengaruh dari lebih besarannya kerapatan pada tegakan penelitian dibanding pada tabel tegakan. Nilai RPS berkisar 3,3%-66,7% dan SA yang diperoleh antara -59,9% sampai 20%.

B. Saran

1. Perlu dilakukan penelitian terhadap pengaruh faktor tempat tumbuh lainnya seperti kelerengan atau iklim pada jenis tegakan yang sama atau lainnya dengan model-model yang dicobakan lebih beragam.

2. Mengingat kerapatan tegakan (N/ha) merupakan faktor yang sangat mempengaruhi pertumbuhan tegakan maka perlu dilakukan pemilihan/klasifikasi berdasarkan kerapatan tegakan pada penelitian serupa agar hasil yang diperoleh lebih baik.
DAFTAR PUSTAKA

Lampiran 1. Scatter Plot Hubungan Antara Peninggi Pertumbuhan dan Umur

Diagram Pencar Hubungan Antara Peninggi dan Umur

Diagram Pencar Hubungan Antara Volume dan Umur
<table>
<thead>
<tr>
<th>No.FCP</th>
<th>PROPINSI</th>
<th>KPH</th>
<th>BKPH</th>
<th>TAHUN TANAM</th>
<th>JUMLAH PETA</th>
<th>ULANGAN PENGUKURAN (m cpl)</th>
<th>KETINGGIAN</th>
<th>JARAK TANAM</th>
<th>LERENG (%)</th>
<th>TIPE KULIM</th>
<th>CH</th>
<th>JENIS TANAH</th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>Kalisetai</td>
<td>1953</td>
<td>3</td>
<td>450</td>
<td>3X2</td>
<td>0-5</td>
<td>C</td>
<td>3173</td>
<td>regosol kelau, latosol</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>Kalibaru</td>
<td>1959</td>
<td>3</td>
<td>7</td>
<td>450</td>
<td>3X2</td>
<td>0-5</td>
<td>A</td>
<td>1650</td>
<td>Latosol coklat tua kemerahan</td>
</tr>
<tr>
<td>172</td>
<td>Jawa Tengah</td>
<td>Banyumas Barat</td>
<td>Majenang</td>
<td>1961</td>
<td>4</td>
<td>6</td>
<td>250</td>
<td>3X2</td>
<td>0-5</td>
<td>C</td>
<td>2825</td>
<td>Latosol coklat tua kemerahan</td>
</tr>
<tr>
<td>173</td>
<td>Jawa Tengah</td>
<td>Banyumas Barat</td>
<td>Majenang</td>
<td>1962</td>
<td>4</td>
<td>6</td>
<td>250</td>
<td>3X2</td>
<td>5-20</td>
<td>C</td>
<td>2825</td>
<td>Latosol coklat tua kemerahan</td>
</tr>
<tr>
<td>174</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>Jember</td>
<td>1961</td>
<td>4</td>
<td>6</td>
<td>493</td>
<td>3X2</td>
<td>0-25</td>
<td>C</td>
<td>3173</td>
<td>regosol kelau, latosol</td>
</tr>
<tr>
<td>185</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>Kalibaru</td>
<td>1957</td>
<td>4</td>
<td>7</td>
<td>450</td>
<td>3X2</td>
<td>25</td>
<td>A</td>
<td>2761</td>
<td>regosol coklat</td>
</tr>
<tr>
<td>194</td>
<td>Jawa Timur</td>
<td>Banyuwangi Barat</td>
<td>Lereng raung</td>
<td>1955</td>
<td>4</td>
<td>2</td>
<td>450</td>
<td>3X2</td>
<td>0-5</td>
<td>A</td>
<td>1650</td>
<td>Latosol coklat tua kemerahan</td>
</tr>
<tr>
<td>167</td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>Padalarang</td>
<td>1957</td>
<td>4</td>
<td>7</td>
<td>600</td>
<td>3X2</td>
<td>5-15</td>
<td>B</td>
<td>3415</td>
<td>Latosol coklat tua kemerahan</td>
</tr>
<tr>
<td>171</td>
<td>Jawa Barat</td>
<td>Pekalongan barat</td>
<td>Paguyangan</td>
<td>1958</td>
<td>3</td>
<td>2</td>
<td>575</td>
<td>3X2</td>
<td>10-20</td>
<td>B</td>
<td>3534</td>
<td>Kompleks grumosol, regosol mediteran</td>
</tr>
<tr>
<td>175</td>
<td>Jawa Barat</td>
<td>Pekalongan Selatan</td>
<td>Banjarnegara</td>
<td>1955</td>
<td>3</td>
<td>2</td>
<td>800</td>
<td>3X2</td>
<td>10</td>
<td>A</td>
<td>4208</td>
<td>Latosol coklat</td>
</tr>
<tr>
<td>176</td>
<td>Jawa Barat</td>
<td>Pekalongan Timur</td>
<td>Patinggaran</td>
<td>1954</td>
<td>3</td>
<td>6</td>
<td>600</td>
<td>3X2</td>
<td>10-20</td>
<td>B</td>
<td>4890</td>
<td>Latosol coklat</td>
</tr>
<tr>
<td>177</td>
<td>Jawa Barat</td>
<td>Pekalongan Timur</td>
<td>Patinggaran</td>
<td>1952</td>
<td>3</td>
<td>7</td>
<td>600</td>
<td>3X2</td>
<td>10</td>
<td>B</td>
<td>4890</td>
<td>kompleks litosol merah, kekuningan, litosol, latosol coklat kemerahan</td>
</tr>
<tr>
<td>178</td>
<td>Jawa Barat</td>
<td>Pekalongan Timur</td>
<td>Kasesi</td>
<td>1953</td>
<td>4</td>
<td>6</td>
<td>592</td>
<td>3X2</td>
<td>5-40</td>
<td>A</td>
<td>5430</td>
<td>Latosol coklat</td>
</tr>
<tr>
<td>186</td>
<td>Jawa Barat</td>
<td>Magelang</td>
<td>Candirot</td>
<td>1975</td>
<td>3</td>
<td>5</td>
<td>700</td>
<td>3X1,3X2,3X3</td>
<td>5</td>
<td>B</td>
<td>2730</td>
<td>Latosol coklat</td>
</tr>
<tr>
<td>187</td>
<td>Jawa Barat</td>
<td>Magelang</td>
<td>Candirot</td>
<td>1975</td>
<td>3</td>
<td>5</td>
<td>700</td>
<td>3X1,3X2,3X3</td>
<td>5</td>
<td>B</td>
<td>2730</td>
<td>Litosol coklat</td>
</tr>
<tr>
<td>188</td>
<td>Jawa Barat</td>
<td>Magelang</td>
<td>Candirot</td>
<td>1975</td>
<td>3</td>
<td>5</td>
<td>700</td>
<td>3X1,3X2,3X3</td>
<td>5</td>
<td>B</td>
<td>2730</td>
<td>Litosol coklat</td>
</tr>
<tr>
<td>191</td>
<td>Jawa Barat</td>
<td>Pekalongan Timur</td>
<td>kesesi</td>
<td>1958</td>
<td>4</td>
<td>3</td>
<td>600</td>
<td>3X2</td>
<td>20-40</td>
<td>A</td>
<td>5430</td>
<td>kompleks litosol merah, kekuningan, litosol, latosol coklat kemerahan</td>
</tr>
<tr>
<td>192</td>
<td>Jawa Barat</td>
<td>Pekalongan barat</td>
<td>Patinggaran</td>
<td>1959</td>
<td>4</td>
<td>3</td>
<td>800</td>
<td>3X2</td>
<td>10-20</td>
<td>B</td>
<td>3750</td>
<td>Litosol coklat</td>
</tr>
<tr>
<td>193</td>
<td>Jawa Barat</td>
<td>Lawu Ds</td>
<td>Wilis Barat</td>
<td>1957</td>
<td>4</td>
<td>3</td>
<td>750</td>
<td>3X2</td>
<td>25</td>
<td>A</td>
<td>2243</td>
<td>regosol coklat</td>
</tr>
<tr>
<td>No</td>
<td>NTP</td>
<td>PROFI</td>
<td>KPH</td>
<td>IKPH</td>
<td>TAHUN TANAM</td>
<td>JUMLAH PETAK</td>
<td>KETERANGAN PEMBUKAAN</td>
<td>KETINGGIAN (m dtl)</td>
<td>JARAK TANAM</td>
<td>LERENS (cm)</td>
<td>Tipe</td>
<td>CH</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>--------------------</td>
<td>-------------</td>
<td>------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>179</td>
<td></td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>Lembang</td>
<td>1969</td>
<td>6</td>
<td>5</td>
<td>1350</td>
<td>1X1,1X2,1X3,2X2,2X3,3X3</td>
<td>20-40</td>
<td>B</td>
<td>3020</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>Lembang</td>
<td>1969</td>
<td>6</td>
<td>5</td>
<td>1350</td>
<td>1X1,1X2,1X3,2X2,2X3,3X3</td>
<td>20-40</td>
<td>B</td>
<td>3020</td>
</tr>
<tr>
<td>181</td>
<td></td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>Lembang</td>
<td>1969</td>
<td>6</td>
<td>5</td>
<td>1350</td>
<td>1X1,1X2,1X3,2X2,2X3,3X3</td>
<td>20-40</td>
<td>B</td>
<td>3020</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>Lembang</td>
<td>1969</td>
<td>6</td>
<td>5</td>
<td>1350</td>
<td>1X1,1X2,1X3,2X2,2X3,3X3</td>
<td>20-40</td>
<td>B</td>
<td>3020</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>Lembang</td>
<td>1969</td>
<td>6</td>
<td>5</td>
<td>1350</td>
<td>1X1,1X2,1X3,2X2,2X3,3X3</td>
<td>20-40</td>
<td>B</td>
<td>3020</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td>Jawa Barat</td>
<td>Bandung Utara</td>
<td>Lembang</td>
<td>1969</td>
<td>6</td>
<td>5</td>
<td>1350</td>
<td>1X1,1X2,1X3,2X2,2X3,3X3</td>
<td>20-40</td>
<td>B</td>
<td>3020</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>Lembang</td>
<td>1966</td>
<td>4</td>
<td>6</td>
<td>1350</td>
<td>3X2</td>
<td>10-20</td>
<td>B</td>
<td>4020</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>Lembang</td>
<td>1969</td>
<td>4</td>
<td>6</td>
<td>1350</td>
<td>3X2</td>
<td>10-20</td>
<td>B</td>
<td>4020</td>
</tr>
<tr>
<td>187</td>
<td></td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>Mandalayang Timur</td>
<td>1957</td>
<td>4</td>
<td>2</td>
<td>1200</td>
<td>3X2</td>
<td>5-10</td>
<td>B</td>
<td>2526</td>
</tr>
<tr>
<td>188</td>
<td></td>
<td>Jawa Barat</td>
<td>Garut</td>
<td>Cikajang</td>
<td>1970</td>
<td>4</td>
<td>6</td>
<td>1300</td>
<td>3X2</td>
<td>10-15</td>
<td>B</td>
<td>1359</td>
</tr>
<tr>
<td>189</td>
<td></td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>Mandalayang Timur</td>
<td>1968</td>
<td>4</td>
<td>4</td>
<td>1200</td>
<td>3X2</td>
<td>5-15</td>
<td>B</td>
<td>2526</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>Mandalayang Timur</td>
<td>1968</td>
<td>4</td>
<td>4</td>
<td>1200</td>
<td>3X2</td>
<td>5</td>
<td>B</td>
<td>1092</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td>Jawa Barat</td>
<td>Sumedang</td>
<td>Mandalayang Timur</td>
<td>1960</td>
<td>4</td>
<td>7</td>
<td>1250</td>
<td>3X2</td>
<td>5</td>
<td>B</td>
<td>1096</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td>Jawa</td>
<td>Bandung Utara</td>
<td>Mandalayang Barat</td>
<td>1963</td>
<td>4</td>
<td>4</td>
<td>1250</td>
<td>3X2</td>
<td>15-40</td>
<td>B</td>
<td>a</td>
</tr>
</tbody>
</table>

data Asih;
 infile 'A:ps.txt';
 input t Y;
 Title 'Model 1 Pertumbuhan : Y=t/(b0+b1*t)';
 Proc NLIN best=10 method=Marquardt;
 Parms b0=0.01 b1=0.00001;
 Model Y=t/(b0+b1*t);
 Der.b0=-t/((b0+b1*t)**2);
 Der.b1=-t*(b0+b1*t)**2);
 Output out=sisa P=YDuga R=Sisasn H=Hii STDERR=stdr STUDENT=stdt;
 Proc Plot Data=sisa;
 Plot Y't='; Plot YDuga='*';
 Plot Sisasn='*'; Plot Sisasn*YDuga='*';
 run;

data Asih;
 infile 'A:ps.txt';
 input t Y;
 Title 'Model 2 Pertumbuhan : Y=a/(1+b*(t**n))';
 Proc NLIN best=10 method=Marquardt;
 Parms b0=0.01 b1=0.01;
 Model Y=a/(1+b*(t**n));
 Der.a=1/((1+b*(t**n))**2);
 Der.b=-t*(t**n)/(1+b*(t**n))**2);
 Der.n=-a*b*(t**n)*log(t) /((1+b*(t**n))**2);
 Output out=sisa P=YDuga R=Sisasn H=Hii STDERR=stdr STUDENT=stdt;
 Proc Plot Data=sisa;
 Plot Y't='; Plot YDuga='*';
 Plot Sisasn='*'; Plot Sisasn*YDuga='*';
 run;

data Asih;
 infile 'A:ps.txt';
 input t Y;
 Title 'Model 3 Pertumbuhan : Y=a*(t**b)';
 Proc NLIN best=10 method=Marquardt;
 Parms a=0.01 b=0.01;
 Model Y=a*(t**b);
 Der.a=a*(t**b)*log(t);
 Output out=sisa P=YDuga R=Sisasn H=Hii STDERR=stdr Student=stdt;
 Proc Plot Data=sisa;
 Plot Y't='; Plot YDuga='*';
 Plot Sisasn='*'; Plot Sisasn*YDuga='*';
 run;
 Proc Print Data=sisa;
 run;
Lanjutan (Lampiran 4)

model 2 Pertumbuhan : $Y=a/(1+b*(t^n))$

Plot of SISAN*YDUGA. Symbol used is **.

(NOTE: 65 obs hidden.)

<table>
<thead>
<tr>
<th>T</th>
<th>Y</th>
<th>YDUGA</th>
<th>SISAN</th>
<th>STDY</th>
<th>STDY</th>
<th>HII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>18.4</td>
<td>19.7146</td>
<td>-1.3146</td>
<td>3.36615</td>
<td>-0.39055</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20.2</td>
<td>19.7146</td>
<td>0.48547</td>
<td>3.36615</td>
<td>0.14110</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>21.0</td>
<td>15.7146</td>
<td>1.28537</td>
<td>3.36615</td>
<td>0.39185</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>19.2</td>
<td>21.5876</td>
<td>-2.28567</td>
<td>3.46147</td>
<td>-0.66088</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>19.1</td>
<td>21.5876</td>
<td>-2.48763</td>
<td>3.46147</td>
<td>-0.71866</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>19.7</td>
<td>21.5876</td>
<td>-1.48763</td>
<td>3.46147</td>
<td>-0.45533</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>26.4</td>
<td>23.3336</td>
<td>3.06635</td>
<td>3.51074</td>
<td>0.87342</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>24.8</td>
<td>23.3336</td>
<td>1.46635</td>
<td>3.51074</td>
<td>0.41768</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>26.9</td>
<td>23.3336</td>
<td>3.56635</td>
<td>3.51074</td>
<td>1.01564</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>25.7</td>
<td>23.3336</td>
<td>2.36635</td>
<td>3.51074</td>
<td>0.67403</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>24.5</td>
<td>23.3336</td>
<td>1.16635</td>
<td>3.51074</td>
<td>0.33222</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>27.1</td>
<td>23.3336</td>
<td>3.76635</td>
<td>3.51074</td>
<td>1.07281</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>22.8</td>
<td>23.3336</td>
<td>0.52335</td>
<td>3.51074</td>
<td>-0.15200</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>22.1</td>
<td>23.3336</td>
<td>0.76635</td>
<td>3.51074</td>
<td>0.21029</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>22.8</td>
<td>23.3336</td>
<td>-0.52335</td>
<td>3.51074</td>
<td>-0.15200</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>21.0</td>
<td>23.3336</td>
<td>-2.33365</td>
<td>3.51074</td>
<td>-0.66472</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>Y</th>
<th>YDUGA</th>
<th>SISAN</th>
<th>STDY</th>
<th>STDY</th>
<th>HII</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>12</td>
<td>24.6</td>
<td>23.3336</td>
<td>0.26635</td>
<td>3.51071</td>
<td>0.07587</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>23.1</td>
<td>23.3336</td>
<td>-0.23365</td>
<td>3.51074</td>
<td>-0.06655</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>21.7</td>
<td>23.3336</td>
<td>-1.63365</td>
<td>3.51074</td>
<td>-0.46553</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>22.1</td>
<td>24.9555</td>
<td>-2.88552</td>
<td>3.53324</td>
<td>-0.80865</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>20.9</td>
<td>24.9555</td>
<td>-4.05552</td>
<td>3.53324</td>
<td>-1.14847</td>
</tr>
<tr>
<td>22</td>
<td>13</td>
<td>23.0</td>
<td>24.9555</td>
<td>-1.95552</td>
<td>3.53324</td>
<td>-0.55378</td>
</tr>
<tr>
<td>23</td>
<td>13</td>
<td>20.1</td>
<td>24.9555</td>
<td>-4.88552</td>
<td>3.53324</td>
<td>-1.37502</td>
</tr>
<tr>
<td>24</td>
<td>14</td>
<td>31.1</td>
<td>26.4585</td>
<td>4.64152</td>
<td>3.53649</td>
<td>1.31247</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>28.6</td>
<td>26.4585</td>
<td>2.44152</td>
<td>3.53649</td>
<td>0.60555</td>
</tr>
<tr>
<td>26</td>
<td>14</td>
<td>23.9</td>
<td>26.4585</td>
<td>2.44152</td>
<td>3.53649</td>
<td>0.69038</td>
</tr>
<tr>
<td>27</td>
<td>14</td>
<td>28.9</td>
<td>26.4585</td>
<td>2.44152</td>
<td>3.53649</td>
<td>0.65038</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>29.6</td>
<td>26.4585</td>
<td>3.14152</td>
<td>3.53649</td>
<td>0.88682</td>
</tr>
<tr>
<td>29</td>
<td>14</td>
<td>30.5</td>
<td>26.4585</td>
<td>4.04152</td>
<td>3.53649</td>
<td>1.14281</td>
</tr>
<tr>
<td>30</td>
<td>14</td>
<td>26.6</td>
<td>26.4585</td>
<td>0.14152</td>
<td>1.53649</td>
<td>0.04002</td>
</tr>
<tr>
<td>31</td>
<td>14</td>
<td>26.4</td>
<td>26.4585</td>
<td>-0.05848</td>
<td>3.53649</td>
<td>-0.01654</td>
</tr>
<tr>
<td>32</td>
<td>14</td>
<td>27.8</td>
<td>26.4585</td>
<td>1.34152</td>
<td>3.53649</td>
<td>0.37934</td>
</tr>
</tbody>
</table>
Lampiran 5. Rekapitulasi Hasil Uji Statistik Model

Kelas Ketinggian 1 (0-500 mdp)

<table>
<thead>
<tr>
<th></th>
<th>(Y = \frac{t}{(0,4686+0,0148 , t)})</th>
<th>99,7</th>
<th>99,69</th>
<th>1,3599</th>
<th>234,471</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>(Y = \frac{37,7062}{(1+86,1056 , t^{-1,7024})})</td>
<td>99,7</td>
<td>99,70</td>
<td>1,3297</td>
<td>224,6097</td>
</tr>
<tr>
<td>3.</td>
<td>(Y = 3,6950 , t^{0,6624})</td>
<td>99,7</td>
<td>99,67</td>
<td>1,3983</td>
<td>247,9947</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(Y = \frac{t}{(0,3647+0,0119 , t)})</th>
<th>98,7</th>
<th>98,68</th>
<th>3,5666</th>
<th>1615,247</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>(Y = \frac{50,1907}{(1+64,1072 , t^{-1,6477})})</td>
<td>98,7</td>
<td>98,68</td>
<td>3,5670</td>
<td>1623,538</td>
</tr>
<tr>
<td>3.</td>
<td>(Y = 4,7981 , t^{0,6477})</td>
<td>98,7</td>
<td>98,67</td>
<td>3,5873</td>
<td>1633,821</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(Y = \frac{t}{(0,559+0,0122 , t)})</th>
<th>99,7</th>
<th>99,67</th>
<th>1,3249</th>
<th>222,7543</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>(Y = \frac{39,5012}{(1+49,9090 , t^{-1,6933})})</td>
<td>99,7</td>
<td>99,68</td>
<td>1,2978</td>
<td>214,0429</td>
</tr>
<tr>
<td>3.</td>
<td>(Y = 2,7834 , t^{0,7385})</td>
<td>99,7</td>
<td>99,66</td>
<td>1,3545</td>
<td>232,8773</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(Y = \frac{t}{(0,1639+0,0229 , t)})</th>
<th>97,5</th>
<th>97,46</th>
<th>4,9895</th>
<th>3035,631</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>(Y = \frac{377,765}{(1+28,6242 , t^{-0,3358})})</td>
<td>97,5</td>
<td>97,49</td>
<td>4,9832</td>
<td>3058,441</td>
</tr>
<tr>
<td>3.</td>
<td>(Y = 12,7345 , t^{0,2084})</td>
<td>97,5</td>
<td>97,49</td>
<td>4,9606</td>
<td>3001,774</td>
</tr>
</tbody>
</table>
Lanjutan (Lampiran S)

<table>
<thead>
<tr>
<th>No</th>
<th>Persamaan</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Y = \frac{t}{0.0750 + (-0.0002) t}$</td>
<td>96.2, 96.24, 50.5036, 302023.1</td>
</tr>
<tr>
<td>2</td>
<td>$Y = \frac{t}{1347.84 (1 + 182,4965 t^{-1.295})}$</td>
<td>96.3, 96.21, 50.6607, 305897.7</td>
</tr>
<tr>
<td>3</td>
<td>$Y = 11.8782 t^{0.0886}$</td>
<td>96.5, 96.24, 50.4865, 301117.7</td>
</tr>
</tbody>
</table>

Kelas Ketinggian 2 (500-1000 mdpl)

<table>
<thead>
<tr>
<th>No</th>
<th>Model Peninggi</th>
<th>Peninggi</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Y = \frac{t}{50.2438 (0,5364 + 0,0107 t)}$</td>
<td>99.4, 99.42, 1,8064, 653,3115</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$Y = \frac{t}{1+58.6202 t^{-1.0669}}$</td>
<td>99.5, 99.47, 1,7247, 596,0364</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$Y = 2.6350 t^{0.7793}$</td>
<td>99.3, 99.33, 1,9393, 754,0473</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Model Diameter</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Y = \frac{t}{45.8099 (0.3429 + 0.0147 t)}$</td>
<td>99.3, 99.28, 2,3989, 1149,336</td>
</tr>
<tr>
<td>2</td>
<td>$Y = \frac{t}{1+37.1069 t^{-1.4748}}$</td>
<td>99.3, 99.34, 2,3011, 1059,941</td>
</tr>
<tr>
<td>3</td>
<td>$Y = 4.8442 t^{0.6216}$</td>
<td>99.1, 99.13, 2,6371, 1392,499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Model Tinggi</th>
<th>Tinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Y = \frac{t}{52.1739 (0.6276 + 0.0089 t)}$</td>
<td>98.7, 98.70, 2,5180, 1263,883</td>
</tr>
<tr>
<td>2</td>
<td>$Y = \frac{t}{1+70.5399 t^{-1.3961}}$</td>
<td>98.8, 98.75, 2,4711, 1216,994</td>
</tr>
<tr>
<td>3</td>
<td>$Y = 2.0814 t^{0.8299}$</td>
<td>98.6, 98.64, 2,5816, 1329,205</td>
</tr>
</tbody>
</table>
Lanjutan (Lampiran 5)

Lbds

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y = \frac{t}{(0,2364+0,0171 \ t)})</td>
<td>97,6</td>
<td>97,62</td>
<td>4,9520</td>
</tr>
<tr>
<td>2</td>
<td>(Y = \frac{38,8420}{(1+69,1894 \ t^{-2,1239})})</td>
<td>97,8</td>
<td>97,81</td>
<td>4,7555</td>
</tr>
<tr>
<td>3</td>
<td>(Y=7,4249 \ t^{0,5113})</td>
<td>97,4</td>
<td>97,39</td>
<td>5,1910</td>
</tr>
</tbody>
</table>

Volume

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y = \frac{t}{(0,0834+(-0,0008) \ t)})</td>
<td>96,9</td>
<td>96,90</td>
<td>48,4394</td>
</tr>
<tr>
<td>2</td>
<td>(Y = \frac{997,7135}{(1+400,9982 t^{-1,7256})})</td>
<td>97,1</td>
<td>97,07</td>
<td>47,0494</td>
</tr>
<tr>
<td>3</td>
<td>(Y=6,9789 \ t^{1,2330})</td>
<td>97,0</td>
<td>97,01</td>
<td>47,5728</td>
</tr>
</tbody>
</table>

Kelas Ketinggian 3 (>1000 mdpl)

Peninggi

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y = \frac{t}{(0,5627+0,0117 \ t)})</td>
<td>99,3</td>
<td>99,31</td>
<td>1,4994</td>
</tr>
<tr>
<td>2</td>
<td>(Y = \frac{61,4426}{(1+42,2612 t^{-1,2337})})</td>
<td>99,3</td>
<td>99,31</td>
<td>1,4993</td>
</tr>
<tr>
<td>3</td>
<td>(Y=2,4127 \ t^{0,7844})</td>
<td>99,3</td>
<td>99,29</td>
<td>1,5180</td>
</tr>
</tbody>
</table>

Diameter

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y = \frac{t}{(0,4009+0,0142 \ t)})</td>
<td>98,2</td>
<td>98,20</td>
<td>2,9444</td>
</tr>
<tr>
<td>2</td>
<td>(Y = \frac{43,58931}{(1+34,8317 t^{-1,4407})})</td>
<td>98,2</td>
<td>98,22</td>
<td>2,9321</td>
</tr>
<tr>
<td>3</td>
<td>(Y=3,7792 \ t^{0,6860})</td>
<td>98,2</td>
<td>98,16</td>
<td>2,9833</td>
</tr>
</tbody>
</table>
Lanjutan (Lampiran 5)

Tinggi					
1.	Y= $\frac{1}{t}$	99,2	99,15	1,5084	681,4152
	(0,6943+0,0078 t)				
2.	Y= $\frac{105,6403}{(1+77,4414 t^{-1,3981})}$	99,2	99,15	1,5108	687,1272
3.	Y=1,7540 $t^{0,8679}$	99,2	99,14	1,5133	685,2477

Lbds					
1.	Y= $\frac{1}{t}$	92,6	92,605	7,6560	14531,83
	(0,2597+0,0158 t)				
2.	Y= $\frac{38,9142}{(1+49,0441 t^{-1,9139})}$	92,7	92,62	7,6412	14525,36
3.	Y=6,2915 $t^{0,5309}$	92,6	92,52	7,6919	14671,35

Volume					
1.	Y= $\frac{1}{t}$	92,3	92,23	47,5617	565533,4
	(0,1178+(-0,0025) t)				
2.	Y= $\frac{1554,276}{(1+594,2225 t^{-1,6361})}$	92,4	92,31	47,3392	558163,7
3.	Y=3,7068 $t^{1,4553}$	92,4	92,33	47,2684	556897,7
Lampiran 6. Scatter Plot Hasil Analisis Sisaan Model Terpilih

![Uji Kenormalan Sisaan (peninggi-kk 1)](image1)

![Uji Kenormalan Sisaan (diameter-kk 1)](image2)

![Uji Kenormalan Sisaan (peninggi-kk 2)](image3)

![Uji Kenormalan Sisaan (diameter-kk 2)](image4)

![Uji Kenormalan Sisaan (peninggi-kk 3)](image5)

![Uji Kenormalan Sisaan (diameter-kk 3)](image6)
Lanjutan (Lampiran 6)

Uji Kenormalan Sisaan (linggi-1k 1)

Uji Kenormalan Sisaan (ldds-1k 1)

Uji Kenormalan Sisaan (linggi-1k 2)

Uji Kenormalan Sisaan (ldds-1k 2)

Uji Kenormalan Sisaan (linggi k3)

Uji Kenormalan Sisaan (ldds-1k 3)
Lanjutan (Lampiran 6)

Uji Kenormalan Sisaan (volume-kk 1)

Uji Kenormalan Sisaan (volume-kk 3)

Uji Kenormalan Sisaan (volume-kk 2)
Lanjutan (Lampiran 6)

Uji Visual Keaditifan Model (tinggi-kk 1)

<table>
<thead>
<tr>
<th>2.5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SISAAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>-5.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Uji Visual Keaditifan Model (ibds-kk 1)

<table>
<thead>
<tr>
<th>2.5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SISAAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Uji Visual Keaditifan Model (tinggi-kk 2)

<table>
<thead>
<tr>
<th>12</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SISAAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-12</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Uji Visual Keaditifan Model (ibds-kk 2)

<table>
<thead>
<tr>
<th>12</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SISAAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Uji Visual Keaditifan Model (tinggi-kk 3)

<table>
<thead>
<tr>
<th>30</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SISAAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>-30</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Uji Visual Keaditifan Model (ibds-kk 3)

<table>
<thead>
<tr>
<th>30</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SISAAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>-30</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Analysis of Covariance (Orthogonal Designs)
for Peninggi

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>kk</td>
<td>3 1 2 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of Covariance for Peninggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Covariates</td>
</tr>
<tr>
<td>kk</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur</td>
<td>1.080</td>
<td>0.0150</td>
<td>71.85</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Analysis of Covariance (Orthogonal Designs)
for lb/ha

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>kk</td>
<td>3 1 2 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of Covariance for lb/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Covariates</td>
</tr>
<tr>
<td>kk</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>umur</td>
<td>1.630</td>
<td>0.0592</td>
<td>17.39</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Analysis of Covariance (Orthogonal Designs)
for Diameter

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>kk</td>
<td>3 1 2 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of Covariance for Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Covariates</td>
</tr>
<tr>
<td>kk</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur</td>
<td>1.137</td>
<td>0.0268</td>
<td>42.48</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Analysis of Covariance (Orthogonal Designs)
for Volume

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>kk</td>
<td>3 1 2 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of Covariance for Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Covariates</td>
</tr>
<tr>
<td>kk</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur</td>
<td>17.47</td>
<td>0.431</td>
<td>40.56</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Analysis of Covariance (Orthogonal Designs)
for Tinggi

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>kk</td>
<td>3 1 2 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis of Covariance for Tinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Covariates</td>
</tr>
<tr>
<td>kk</td>
</tr>
<tr>
<td>Error</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coef</th>
<th>StDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur</td>
<td>1.075</td>
<td>0.0166</td>
<td>64.83</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Lampiran 8. Hasil Analisis Perayan dengan Peubah Penyerta N/ha (kerapatan tegakan)

Analysis of Covariance (Orthogonal Designs) for lb/ha

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>kk</td>
<td>3</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Analysis of Covariance for lb/ha

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Adj SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates 1</td>
<td>1</td>
<td>168.92</td>
<td>168.92</td>
<td>2.49</td>
<td>0.115</td>
</tr>
<tr>
<td>kk</td>
<td>2</td>
<td>1828.81</td>
<td>914.41</td>
<td>13.47</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>540</td>
<td>36669.82</td>
<td>57.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>543</td>
<td>39279.27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coef</th>
<th>StdDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/ha</td>
<td>-0.001253</td>
<td>0.00795</td>
<td>-1.577</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Analysis of Covariance (Orthogonal Designs) for volume

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>kk</td>
<td>3</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Analysis of Covariance for vol/ha

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Adj SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariates 1</td>
<td>2</td>
<td>5767021</td>
<td>5767021</td>
<td>68.51</td>
<td>0.000</td>
</tr>
<tr>
<td>kk</td>
<td>2</td>
<td>682061</td>
<td>341031</td>
<td>41.21</td>
<td>0.000</td>
</tr>
<tr>
<td>Error</td>
<td>536</td>
<td>4430905</td>
<td>8276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>539</td>
<td>6269888</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Coef</th>
<th>StdDev</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/ha</td>
<td>-0.07210</td>
<td>0.00871</td>
<td>-8.277</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Lampiran 9. Data Hasil Perhitungan Peubah Pertumbuhan Tegakan *P. merkusii* Pada Kolas Ketinggian 1 (0-500 m dpl)

<table>
<thead>
<tr>
<th>Umur (th)</th>
<th>Peninggi (m)</th>
<th>Diameter (cm)</th>
<th>Tinggi (m)</th>
<th>Lbdg (m2/ha)</th>
<th>Volume (m3/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.43</td>
<td>5.15</td>
<td>1.34</td>
<td>15.768</td>
<td>24.741</td>
</tr>
<tr>
<td>2</td>
<td>2.82</td>
<td>7.49</td>
<td>2.58</td>
<td>17.888</td>
<td>38.004</td>
</tr>
<tr>
<td>3</td>
<td>4.47</td>
<td>9.70</td>
<td>4.04</td>
<td>19.525</td>
<td>51.534</td>
</tr>
<tr>
<td>4</td>
<td>6.28</td>
<td>11.79</td>
<td>5.62</td>
<td>20.916</td>
<td>65.266</td>
</tr>
<tr>
<td>5</td>
<td>8.15</td>
<td>13.76</td>
<td>7.28</td>
<td>22.125</td>
<td>79.160</td>
</tr>
<tr>
<td>6</td>
<td>10.02</td>
<td>15.63</td>
<td>8.66</td>
<td>23.202</td>
<td>93.191</td>
</tr>
<tr>
<td>7</td>
<td>11.85</td>
<td>17.40</td>
<td>10.63</td>
<td>24.177</td>
<td>107.341</td>
</tr>
<tr>
<td>8</td>
<td>13.60</td>
<td>19.08</td>
<td>12.24</td>
<td>25.071</td>
<td>121.595</td>
</tr>
<tr>
<td>9</td>
<td>15.26</td>
<td>20.66</td>
<td>13.50</td>
<td>25.999</td>
<td>135.942</td>
</tr>
<tr>
<td>10</td>
<td>16.81</td>
<td>22.21</td>
<td>15.28</td>
<td>26.671</td>
<td>150.374</td>
</tr>
<tr>
<td>11</td>
<td>18.25</td>
<td>23.66</td>
<td>16.60</td>
<td>27.396</td>
<td>164.883</td>
</tr>
<tr>
<td>12</td>
<td>19.59</td>
<td>24.94</td>
<td>18.00</td>
<td>26.061</td>
<td>179.463</td>
</tr>
<tr>
<td>14</td>
<td>21.94</td>
<td>27.63</td>
<td>20.35</td>
<td>29.347</td>
<td>208.616</td>
</tr>
<tr>
<td>15</td>
<td>22.98</td>
<td>28.84</td>
<td>21.46</td>
<td>29.937</td>
<td>223.581</td>
</tr>
<tr>
<td>16</td>
<td>23.93</td>
<td>30.00</td>
<td>22.47</td>
<td>30.502</td>
<td>238.401</td>
</tr>
<tr>
<td>17</td>
<td>24.80</td>
<td>31.11</td>
<td>23.40</td>
<td>31.044</td>
<td>253.271</td>
</tr>
<tr>
<td>18</td>
<td>25.60</td>
<td>32.18</td>
<td>24.26</td>
<td>31.566</td>
<td>268.150</td>
</tr>
<tr>
<td>19</td>
<td>26.33</td>
<td>33.21</td>
<td>25.07</td>
<td>32.059</td>
<td>283.155</td>
</tr>
<tr>
<td>20</td>
<td>27.00</td>
<td>34.19</td>
<td>25.81</td>
<td>32.555</td>
<td>298.164</td>
</tr>
<tr>
<td>21</td>
<td>27.62</td>
<td>35.14</td>
<td>26.51</td>
<td>33.026</td>
<td>313.215</td>
</tr>
<tr>
<td>22</td>
<td>28.19</td>
<td>36.05</td>
<td>27.16</td>
<td>33.481</td>
<td>328.306</td>
</tr>
<tr>
<td>23</td>
<td>28.72</td>
<td>36.53</td>
<td>27.76</td>
<td>33.924</td>
<td>343.436</td>
</tr>
<tr>
<td>24</td>
<td>29.20</td>
<td>37.78</td>
<td>28.32</td>
<td>34.353</td>
<td>358.603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umur (th)</th>
<th>Peninggi (m)</th>
<th>Diameter (cm)</th>
<th>Tinggi (m)</th>
<th>Lbdg (m2/ha)</th>
<th>Volume (m3/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>29.65</td>
<td>38.60</td>
<td>38.65</td>
<td>34.771</td>
<td>373.805</td>
</tr>
<tr>
<td>27</td>
<td>30.06</td>
<td>39.39</td>
<td>39.34</td>
<td>35.178</td>
<td>389.042</td>
</tr>
<tr>
<td>28</td>
<td>30.45</td>
<td>40.15</td>
<td>39.80</td>
<td>35.575</td>
<td>404.311</td>
</tr>
<tr>
<td>29</td>
<td>30.80</td>
<td>40.89</td>
<td>39.62</td>
<td>35.952</td>
<td>419.613</td>
</tr>
<tr>
<td>30</td>
<td>31.14</td>
<td>41.60</td>
<td>39.63</td>
<td>36.339</td>
<td>434.946</td>
</tr>
<tr>
<td>31</td>
<td>31.44</td>
<td>42.29</td>
<td>39.60</td>
<td>36.709</td>
<td>450.308</td>
</tr>
<tr>
<td>32</td>
<td>31.73</td>
<td>42.96</td>
<td>39.70</td>
<td>37.070</td>
<td>465.700</td>
</tr>
<tr>
<td>33</td>
<td>32.00</td>
<td>43.61</td>
<td>39.69</td>
<td>37.423</td>
<td>481.120</td>
</tr>
<tr>
<td>34</td>
<td>32.25</td>
<td>44.24</td>
<td>39.66</td>
<td>37.769</td>
<td>496.567</td>
</tr>
<tr>
<td>35</td>
<td>32.49</td>
<td>44.84</td>
<td>39.58</td>
<td>38.108</td>
<td>512.041</td>
</tr>
<tr>
<td>36</td>
<td>32.71</td>
<td>45.43</td>
<td>39.44</td>
<td>38.441</td>
<td>527.541</td>
</tr>
<tr>
<td>37</td>
<td>32.91</td>
<td>46.01</td>
<td>39.37</td>
<td>38.767</td>
<td>543.066</td>
</tr>
<tr>
<td>38</td>
<td>33.11</td>
<td>46.56</td>
<td>39.28</td>
<td>39.067</td>
<td>558.616</td>
</tr>
<tr>
<td>39</td>
<td>33.29</td>
<td>47.10</td>
<td>39.40</td>
<td>39.401</td>
<td>574.190</td>
</tr>
<tr>
<td>40</td>
<td>33.46</td>
<td>47.82</td>
<td>39.71</td>
<td>39.710</td>
<td>599.787</td>
</tr>
<tr>
<td>41</td>
<td>33.62</td>
<td>48.13</td>
<td>39.77</td>
<td>40.013</td>
<td>605.407</td>
</tr>
<tr>
<td>42</td>
<td>33.77</td>
<td>48.63</td>
<td>39.94</td>
<td>40.312</td>
<td>621.049</td>
</tr>
<tr>
<td>43</td>
<td>33.92</td>
<td>49.11</td>
<td>40.12</td>
<td>40.695</td>
<td>636.713</td>
</tr>
<tr>
<td>44</td>
<td>34.06</td>
<td>49.58</td>
<td>40.30</td>
<td>40.994</td>
<td>652.399</td>
</tr>
<tr>
<td>45</td>
<td>34.16</td>
<td>50.04</td>
<td>41.47</td>
<td>41.715</td>
<td>668.106</td>
</tr>
<tr>
<td>46</td>
<td>34.31</td>
<td>50.48</td>
<td>41.45</td>
<td>41.458</td>
<td>683.832</td>
</tr>
<tr>
<td>47</td>
<td>34.42</td>
<td>50.92</td>
<td>41.73</td>
<td>41.734</td>
<td>699.580</td>
</tr>
<tr>
<td>48</td>
<td>34.53</td>
<td>51.34</td>
<td>42.06</td>
<td>42.026</td>
<td>715.346</td>
</tr>
<tr>
<td>49</td>
<td>34.64</td>
<td>51.75</td>
<td>42.27</td>
<td>42.274</td>
<td>731.132</td>
</tr>
<tr>
<td>50</td>
<td>34.73</td>
<td>52.15</td>
<td>42.53</td>
<td>42.538</td>
<td>746.937</td>
</tr>
</tbody>
</table>
Lampiran 10. Data Hasil Perhitungan Peubah Pertumbuhan Tegakan *P. merkusii* Pada Kelas Ketinggian 2 (500-1000 m dpl)

<table>
<thead>
<tr>
<th>Umur</th>
<th>Peninggi (m)</th>
<th>Diameter (cm)</th>
<th>Tinggi (m)</th>
<th>Lbds (m2/ha)</th>
<th>Volume (m3/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.84</td>
<td>1.20</td>
<td>0.73</td>
<td>0.553</td>
<td>2.482</td>
</tr>
<tr>
<td>2</td>
<td>2.17</td>
<td>3.19</td>
<td>1.86</td>
<td>2.302</td>
<td>8.162</td>
</tr>
<tr>
<td>3</td>
<td>3.72</td>
<td>5.49</td>
<td>3.22</td>
<td>5.038</td>
<td>16.298</td>
</tr>
<tr>
<td>4</td>
<td>5.36</td>
<td>7.89</td>
<td>4.67</td>
<td>8.368</td>
<td>26.496</td>
</tr>
<tr>
<td>5</td>
<td>7.09</td>
<td>10.28</td>
<td>6.17</td>
<td>11.888</td>
<td>38.685</td>
</tr>
<tr>
<td>6</td>
<td>8.60</td>
<td>12.58</td>
<td>7.69</td>
<td>15.296</td>
<td>51.949</td>
</tr>
<tr>
<td>7</td>
<td>10.45</td>
<td>14.76</td>
<td>9.21</td>
<td>18.413</td>
<td>66.723</td>
</tr>
<tr>
<td>8</td>
<td>12.12</td>
<td>16.79</td>
<td>10.71</td>
<td>21.161</td>
<td>82.583</td>
</tr>
<tr>
<td>9</td>
<td>12.71</td>
<td>18.65</td>
<td>12.18</td>
<td>23.522</td>
<td>99.345</td>
</tr>
<tr>
<td>10</td>
<td>15.24</td>
<td>20.42</td>
<td>13.51</td>
<td>25.551</td>
<td>116.835</td>
</tr>
<tr>
<td>11</td>
<td>16.70</td>
<td>22.02</td>
<td>14.99</td>
<td>27.261</td>
<td>134.899</td>
</tr>
<tr>
<td>12</td>
<td>18.09</td>
<td>23.46</td>
<td>16.32</td>
<td>28.705</td>
<td>153.396</td>
</tr>
<tr>
<td>13</td>
<td>19.41</td>
<td>24.84</td>
<td>17.60</td>
<td>29.926</td>
<td>172.197</td>
</tr>
<tr>
<td>14</td>
<td>20.67</td>
<td>26.07</td>
<td>18.83</td>
<td>30.961</td>
<td>191.189</td>
</tr>
<tr>
<td>15</td>
<td>21.86</td>
<td>27.21</td>
<td>20.00</td>
<td>31.842</td>
<td>210.269</td>
</tr>
<tr>
<td>16</td>
<td>22.99</td>
<td>28.25</td>
<td>21.12</td>
<td>32.594</td>
<td>229.348</td>
</tr>
<tr>
<td>17</td>
<td>24.05</td>
<td>29.20</td>
<td>22.19</td>
<td>33.240</td>
<td>248.348</td>
</tr>
<tr>
<td>18</td>
<td>25.06</td>
<td>30.09</td>
<td>23.22</td>
<td>33.797</td>
<td>267.199</td>
</tr>
<tr>
<td>19</td>
<td>26.02</td>
<td>30.90</td>
<td>24.19</td>
<td>34.280</td>
<td>285.845</td>
</tr>
<tr>
<td>20</td>
<td>26.92</td>
<td>31.65</td>
<td>25.12</td>
<td>34.701</td>
<td>304.234</td>
</tr>
<tr>
<td>21</td>
<td>27.78</td>
<td>32.34</td>
<td>26.01</td>
<td>35.069</td>
<td>322.327</td>
</tr>
<tr>
<td>22</td>
<td>28.59</td>
<td>32.99</td>
<td>26.89</td>
<td>35.392</td>
<td>340.087</td>
</tr>
<tr>
<td>23</td>
<td>29.35</td>
<td>33.58</td>
<td>27.67</td>
<td>35.678</td>
<td>357.487</td>
</tr>
<tr>
<td>24</td>
<td>30.08</td>
<td>34.14</td>
<td>28.44</td>
<td>35.931</td>
<td>374.506</td>
</tr>
<tr>
<td>25</td>
<td>30.77</td>
<td>34.65</td>
<td>29.17</td>
<td>36.156</td>
<td>381.125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umur</th>
<th>Peninggi (m)</th>
<th>Diameter (cm)</th>
<th>Tinggi (m)</th>
<th>Lbds (m2/ha)</th>
<th>Volume (m3/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>31.42</td>
<td>35.13</td>
<td>29.87</td>
<td>36.357</td>
<td>407.334</td>
</tr>
<tr>
<td>27</td>
<td>32.05</td>
<td>35.58</td>
<td>30.54</td>
<td>36.537</td>
<td>423.121</td>
</tr>
<tr>
<td>28</td>
<td>32.64</td>
<td>36.00</td>
<td>31.18</td>
<td>38.699</td>
<td>436.484</td>
</tr>
<tr>
<td>29</td>
<td>33.20</td>
<td>36.40</td>
<td>31.80</td>
<td>38.845</td>
<td>453.418</td>
</tr>
<tr>
<td>30</td>
<td>33.73</td>
<td>36.76</td>
<td>32.38</td>
<td>38.977</td>
<td>467.925</td>
</tr>
<tr>
<td>31</td>
<td>34.24</td>
<td>37.11</td>
<td>32.94</td>
<td>37.097</td>
<td>482.006</td>
</tr>
<tr>
<td>32</td>
<td>34.72</td>
<td>37.44</td>
<td>33.48</td>
<td>37.206</td>
<td>495.667</td>
</tr>
<tr>
<td>33</td>
<td>35.18</td>
<td>37.74</td>
<td>33.99</td>
<td>37.305</td>
<td>506.911</td>
</tr>
<tr>
<td>34</td>
<td>35.62</td>
<td>38.03</td>
<td>34.48</td>
<td>37.396</td>
<td>521.747</td>
</tr>
<tr>
<td>35</td>
<td>36.04</td>
<td>38.30</td>
<td>34.95</td>
<td>37.479</td>
<td>534.182</td>
</tr>
<tr>
<td>36</td>
<td>36.44</td>
<td>38.56</td>
<td>35.40</td>
<td>37.556</td>
<td>545.225</td>
</tr>
<tr>
<td>37</td>
<td>36.82</td>
<td>38.80</td>
<td>35.83</td>
<td>37.626</td>
<td>557.884</td>
</tr>
<tr>
<td>38</td>
<td>37.19</td>
<td>39.03</td>
<td>36.25</td>
<td>37.691</td>
<td>569.171</td>
</tr>
<tr>
<td>39</td>
<td>37.54</td>
<td>39.25</td>
<td>36.64</td>
<td>37.751</td>
<td>580.094</td>
</tr>
<tr>
<td>40</td>
<td>37.87</td>
<td>39.46</td>
<td>37.03</td>
<td>37.807</td>
<td>590.664</td>
</tr>
<tr>
<td>41</td>
<td>38.19</td>
<td>39.65</td>
<td>37.40</td>
<td>37.859</td>
<td>600.691</td>
</tr>
<tr>
<td>42</td>
<td>38.50</td>
<td>39.84</td>
<td>37.75</td>
<td>37.906</td>
<td>610.787</td>
</tr>
<tr>
<td>43</td>
<td>38.80</td>
<td>40.02</td>
<td>38.09</td>
<td>37.951</td>
<td>620.361</td>
</tr>
<tr>
<td>44</td>
<td>39.08</td>
<td>40.19</td>
<td>38.42</td>
<td>37.993</td>
<td>628.824</td>
</tr>
<tr>
<td>45</td>
<td>39.35</td>
<td>40.35</td>
<td>38.73</td>
<td>38.031</td>
<td>638.587</td>
</tr>
<tr>
<td>46</td>
<td>39.61</td>
<td>40.50</td>
<td>38.94</td>
<td>38.068</td>
<td>647.258</td>
</tr>
<tr>
<td>47</td>
<td>39.86</td>
<td>40.65</td>
<td>39.33</td>
<td>38.101</td>
<td>656.649</td>
</tr>
<tr>
<td>48</td>
<td>40.11</td>
<td>40.79</td>
<td>39.61</td>
<td>38.133</td>
<td>663.770</td>
</tr>
<tr>
<td>49</td>
<td>40.34</td>
<td>40.93</td>
<td>39.88</td>
<td>38.163</td>
<td>671.628</td>
</tr>
<tr>
<td>50</td>
<td>40.56</td>
<td>41.05</td>
<td>40.15</td>
<td>38.191</td>
<td>679.235</td>
</tr>
</tbody>
</table>
Lampiran 11. Data Hasil Perhitungan Peubah Pertumbuhan Tegakan *P. merkusii* Pada Kelas Ketinggian 3 (>1000 m dpl)

<table>
<thead>
<tr>
<th>Umur</th>
<th>Peninggi (m)</th>
<th>Diameter (cm)</th>
<th>Tinggi (m)</th>
<th>Lbds. (m2/ha)</th>
<th>Volume (m3/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.74</td>
<td>1.22</td>
<td>1.42</td>
<td>0.778</td>
<td>3.707</td>
</tr>
<tr>
<td>2</td>
<td>3.41</td>
<td>3.08</td>
<td>2.82</td>
<td>2.777</td>
<td>10.185</td>
</tr>
<tr>
<td>3</td>
<td>5.02</td>
<td>5.16</td>
<td>4.18</td>
<td>5.567</td>
<td>18.338</td>
</tr>
<tr>
<td>4</td>
<td>6.56</td>
<td>7.32</td>
<td>5.51</td>
<td>8.737</td>
<td>27.873</td>
</tr>
<tr>
<td>5</td>
<td>8.05</td>
<td>9.44</td>
<td>6.82</td>
<td>11.961</td>
<td>38.566</td>
</tr>
<tr>
<td>6</td>
<td>9.48</td>
<td>11.47</td>
<td>8.10</td>
<td>15.027</td>
<td>50.265</td>
</tr>
<tr>
<td>7</td>
<td>10.86</td>
<td>13.4c</td>
<td>9.35</td>
<td>17.822</td>
<td>62.932</td>
</tr>
<tr>
<td>8</td>
<td>12.19</td>
<td>15.26</td>
<td>10.57</td>
<td>20.304</td>
<td>76.430</td>
</tr>
<tr>
<td>9</td>
<td>13.47</td>
<td>16.88</td>
<td>11.77</td>
<td>22.473</td>
<td>90.721</td>
</tr>
<tr>
<td>10</td>
<td>14.71</td>
<td>18.44</td>
<td>12.95</td>
<td>24.352</td>
<td>105.755</td>
</tr>
<tr>
<td>11</td>
<td>15.91</td>
<td>19.82</td>
<td>14.10</td>
<td>25.973</td>
<td>121.439</td>
</tr>
<tr>
<td>12</td>
<td>17.07</td>
<td>21.21</td>
<td>15.23</td>
<td>27.369</td>
<td>137.890</td>
</tr>
<tr>
<td>13</td>
<td>18.15</td>
<td>22.44</td>
<td>16.34</td>
<td>28.573</td>
<td>154.925</td>
</tr>
<tr>
<td>14</td>
<td>19.27</td>
<td>23.57</td>
<td>17.42</td>
<td>29.614</td>
<td>172.568</td>
</tr>
<tr>
<td>15</td>
<td>20.32</td>
<td>24.61</td>
<td>18.49</td>
<td>30.515</td>
<td>190.794</td>
</tr>
<tr>
<td>16</td>
<td>21.34</td>
<td>25.58</td>
<td>19.53</td>
<td>31.301</td>
<td>209.582</td>
</tr>
<tr>
<td>17</td>
<td>22.32</td>
<td>26.46</td>
<td>20.56</td>
<td>31.896</td>
<td>228.914</td>
</tr>
<tr>
<td>18</td>
<td>23.28</td>
<td>27.30</td>
<td>21.56</td>
<td>32.568</td>
<td>248.770</td>
</tr>
<tr>
<td>19</td>
<td>24.20</td>
<td>28.07</td>
<td>22.55</td>
<td>33.117</td>
<td>269.134</td>
</tr>
<tr>
<td>20</td>
<td>25.10</td>
<td>28.79</td>
<td>23.52</td>
<td>33.585</td>
<td>289.993</td>
</tr>
<tr>
<td>21</td>
<td>25.98</td>
<td>29.45</td>
<td>24.47</td>
<td>34.000</td>
<td>311.333</td>
</tr>
<tr>
<td>22</td>
<td>26.83</td>
<td>30.07</td>
<td>25.41</td>
<td>34.370</td>
<td>333.140</td>
</tr>
<tr>
<td>23</td>
<td>27.65</td>
<td>30.64</td>
<td>26.32</td>
<td>34.700</td>
<td>355.403</td>
</tr>
<tr>
<td>24</td>
<td>28.45</td>
<td>31.18</td>
<td>27.23</td>
<td>34.957</td>
<td>378.112</td>
</tr>
<tr>
<td>25</td>
<td>29.23</td>
<td>31.68</td>
<td>28.13</td>
<td>35.263</td>
<td>401.256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umur</th>
<th>Peninggi (m)</th>
<th>Diameter (cm)</th>
<th>Tinggi (m)</th>
<th>Lbds. (m2/ha)</th>
<th>Volume (m3/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>29.99</td>
<td>32.16</td>
<td>26.98</td>
<td>35.504</td>
<td>424.829</td>
</tr>
<tr>
<td>27</td>
<td>30.73</td>
<td>32.60</td>
<td>29.84</td>
<td>35.722</td>
<td>448.610</td>
</tr>
<tr>
<td>28</td>
<td>31.45</td>
<td>33.02</td>
<td>30.68</td>
<td>35.920</td>
<td>473.264</td>
</tr>
<tr>
<td>29</td>
<td>32.15</td>
<td>33.14</td>
<td>31.50</td>
<td>36.101</td>
<td>497.997</td>
</tr>
<tr>
<td>30</td>
<td>32.83</td>
<td>33.77</td>
<td>32.32</td>
<td>36.265</td>
<td>523.183</td>
</tr>
<tr>
<td>31</td>
<td>33.50</td>
<td>34.12</td>
<td>33.12</td>
<td>36.416</td>
<td>548.754</td>
</tr>
<tr>
<td>32</td>
<td>34.15</td>
<td>34.45</td>
<td>33.90</td>
<td>36.555</td>
<td>574.704</td>
</tr>
<tr>
<td>33</td>
<td>34.78</td>
<td>34.75</td>
<td>34.67</td>
<td>36.682</td>
<td>601.025</td>
</tr>
<tr>
<td>34</td>
<td>35.40</td>
<td>35.05</td>
<td>35.44</td>
<td>36.799</td>
<td>627.712</td>
</tr>
<tr>
<td>35</td>
<td>36.00</td>
<td>35.33</td>
<td>36.18</td>
<td>36.907</td>
<td>654.759</td>
</tr>
<tr>
<td>36</td>
<td>36.59</td>
<td>35.93</td>
<td>36.92</td>
<td>37.008</td>
<td>682.160</td>
</tr>
<tr>
<td>37</td>
<td>37.16</td>
<td>35.84</td>
<td>37.64</td>
<td>37.100</td>
<td>709.910</td>
</tr>
<tr>
<td>38</td>
<td>37.72</td>
<td>36.07</td>
<td>38.36</td>
<td>37.187</td>
<td>738.003</td>
</tr>
<tr>
<td>39</td>
<td>38.27</td>
<td>36.30</td>
<td>39.06</td>
<td>37.267</td>
<td>766.135</td>
</tr>
<tr>
<td>40</td>
<td>38.81</td>
<td>36.51</td>
<td>39.75</td>
<td>37.342</td>
<td>795.201</td>
</tr>
</tbody>
</table>

41	39.33	36.71	40.43	37.411	824.297
42	39.84	36.91	41.10	37.477	853.717
43	40.35	37.09	41.76	37.538	883.456
44	40.84	37.27	42.41	37.595	913.515
45	41.31	37.44	43.05	37.649	943.886
46	41.76	37.60	43.68	37.699	974.565
47	42.24	37.76	44.30	37.774	1005.55
48	42.69	37.90	44.91	37.792	1036.84
49	43.13	38.05	45.52	37.834	1066.42
50	43.57	38.18	46.11	37.874	1100.30
Lampiran 12. Data Hasil Perhitungan Pada Uji Khi-kuadrat

1. Hasil uji \(X^2 \) pada kelas ketinggian 1 (0-500 m dpl)

<table>
<thead>
<tr>
<th>Umur (Tahun)</th>
<th>Data Peninggan</th>
<th>Hasil Perhitungan</th>
<th>Nilai (X^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6.65</td>
<td>6.276</td>
<td>0.02</td>
</tr>
<tr>
<td>10</td>
<td>11.1</td>
<td>15.259</td>
<td>0.06</td>
</tr>
<tr>
<td>15</td>
<td>21.02</td>
<td>21.948</td>
<td>0.04</td>
</tr>
<tr>
<td>20</td>
<td>26.52</td>
<td>26.53</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>31.02</td>
<td>29.20</td>
<td>0.11</td>
</tr>
<tr>
<td>30</td>
<td>34.25</td>
<td>31.126</td>
<td>0.28</td>
</tr>
<tr>
<td>35</td>
<td>36.58</td>
<td>32.437</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Nilai X2 hitung = 0.96
Nilai X2 tabel (5%, df=6) = 12.592
Kerusakan (5) = Tidak Nyata

<table>
<thead>
<tr>
<th>Umur (Tahun)</th>
<th>Data Diameter</th>
<th>Hasil Perhitungan</th>
<th>Nilai (X^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.6</td>
<td>11.79</td>
<td>2.37</td>
</tr>
<tr>
<td>10</td>
<td>20.9</td>
<td>29.67</td>
<td>0.90</td>
</tr>
<tr>
<td>15</td>
<td>29.57</td>
<td>27.61</td>
<td>0.09</td>
</tr>
<tr>
<td>20</td>
<td>34.02</td>
<td>33.18</td>
<td>0.06</td>
</tr>
<tr>
<td>25</td>
<td>40.18</td>
<td>37.75</td>
<td>0.18</td>
</tr>
<tr>
<td>30</td>
<td>40.18</td>
<td>41.57</td>
<td>0.33</td>
</tr>
<tr>
<td>35</td>
<td>49.78</td>
<td>44.80</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Nilai X2 hitung = 3.47
Nilai X2 tabel (5%, df=6) = 12.592
Kerusakan (1) = Tidak Nyata

<table>
<thead>
<tr>
<th>Umur (Tahun)</th>
<th>Data Volume</th>
<th>Hasil Perhitungan</th>
<th>Nilai (X^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24.75</td>
<td>27.09</td>
<td>42.36</td>
</tr>
<tr>
<td>10</td>
<td>84.25</td>
<td>132.14</td>
<td>28.71</td>
</tr>
<tr>
<td>15</td>
<td>116.55</td>
<td>209.49</td>
<td>14.43</td>
</tr>
<tr>
<td>20</td>
<td>214.75</td>
<td>284.29</td>
<td>22.52</td>
</tr>
<tr>
<td>25</td>
<td>249</td>
<td>354.60</td>
<td>44.79</td>
</tr>
<tr>
<td>30</td>
<td>270.75</td>
<td>419.76</td>
<td>82.01</td>
</tr>
<tr>
<td>35</td>
<td>286.25</td>
<td>456.28</td>
<td>101.00</td>
</tr>
</tbody>
</table>

Nilai X2 hitung = 334.72
Nilai X2 tabel (5%, df=6) = 12.592
Kerusakan Uji = Sangat Nyata

<table>
<thead>
<tr>
<th>Umur (Tahun)</th>
<th>Data Tinggi</th>
<th>Hasil Perhitungan</th>
<th>Nilai (X^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.45</td>
<td>5.62</td>
<td>0.09</td>
</tr>
<tr>
<td>10</td>
<td>12.28</td>
<td>12.81</td>
<td>0.02</td>
</tr>
<tr>
<td>15</td>
<td>19.5</td>
<td>20.39</td>
<td>0.04</td>
</tr>
<tr>
<td>20</td>
<td>23.65</td>
<td>25.06</td>
<td>0.01</td>
</tr>
<tr>
<td>25</td>
<td>29.08</td>
<td>28.32</td>
<td>0.10</td>
</tr>
<tr>
<td>30</td>
<td>33.48</td>
<td>30.62</td>
<td>0.24</td>
</tr>
<tr>
<td>35</td>
<td>35.7</td>
<td>32.30</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Nilai X2 hitung = 0.73
Nilai X2 tabel (5%, df=6) = 12.592
Kerusakan Uji = Tidak Nyata
2. Hasil uji \(X^2 \) pada kelas ketinggian 2 (500-1000 m dpl)

<table>
<thead>
<tr>
<th>Umur (Thn)</th>
<th>Data Deningri</th>
<th>(X^2)</th>
<th>Data Lemb</th>
<th>(X^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6.65</td>
<td>7.0826</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>14.3</td>
<td>15.239</td>
<td>0.06</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>21.02</td>
<td>21.86</td>
<td>0.03</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>26.55</td>
<td>26.926</td>
<td>0.00</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>31.05</td>
<td>30.768</td>
<td>0.01</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>34.25</td>
<td>33.72</td>
<td>0.01</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>36.55</td>
<td>36.04</td>
<td>0.01</td>
<td>35</td>
</tr>
</tbody>
</table>

Nilai \(X^2 \) hitung = 0.14
Nilai \(X^2 \) tabel (5%, df=6) = 12.592
Kerususuan Uji = Tidak Nyata

<table>
<thead>
<tr>
<th>Umur (Thn)</th>
<th>Data Diamter</th>
<th>(X^2)</th>
<th>Data Volume</th>
<th>(X^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.6</td>
<td>10.28</td>
<td>0.95</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>20.5</td>
<td>20.41</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>29.22</td>
<td>27.22</td>
<td>0.11</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>34.67</td>
<td>31.66</td>
<td>0.25</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>40.48</td>
<td>37.72</td>
<td>0.82</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>45.45</td>
<td>36.77</td>
<td>1.56</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>49.78</td>
<td>38.30</td>
<td>2.65</td>
<td>35</td>
</tr>
</tbody>
</table>

Nilai \(X^2 \) hitung = 6.48
Nilai \(X^2 \) tabel (5%, df=6) = 12.592
Kerususuan Uji = Tidak Nyata

<table>
<thead>
<tr>
<th>Umur (Thn)</th>
<th>Data Tinggi</th>
<th>(X^2)</th>
<th>Data Penelit</th>
<th>(X^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.43</td>
<td>6.17</td>
<td>0.10</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>13.26</td>
<td>13.61</td>
<td>0.01</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>19.5</td>
<td>20.00</td>
<td>0.01</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>25.55</td>
<td>25.13</td>
<td>0.01</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>30.08</td>
<td>29.18</td>
<td>0.03</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>33.48</td>
<td>32.39</td>
<td>0.04</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>37.7</td>
<td>34.97</td>
<td>0.02</td>
<td>35</td>
</tr>
</tbody>
</table>

Nilai \(X^2 \) hitung = 0.22
Nilai \(X^2 \) tabel (5%, df=6) = 12.592
Kerususuan Uji = Tidak Nyata
3. Hasil uji X^2 pada kelas ketinggian 3 (>1000 m dpl)

<table>
<thead>
<tr>
<th>Umur (Tahun)</th>
<th>Data Diameter</th>
<th>Nilai X^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hasil Tabel</td>
<td>Hasil Penelitian</td>
</tr>
<tr>
<td>5</td>
<td>6.66</td>
<td>8.049</td>
</tr>
<tr>
<td>10</td>
<td>14.4</td>
<td>14.71</td>
</tr>
<tr>
<td>15</td>
<td>23.5</td>
<td>20.32</td>
</tr>
<tr>
<td>20</td>
<td>26.5</td>
<td>25.104</td>
</tr>
<tr>
<td>25</td>
<td>31.77</td>
<td>29.75</td>
</tr>
<tr>
<td>30</td>
<td>34.25</td>
<td>32.83</td>
</tr>
<tr>
<td>35</td>
<td>36.65</td>
<td>36.01</td>
</tr>
</tbody>
</table>

Nilai X^2 hitung = 0.31
Nilai X^2 tabel (5%, df=6) = 12.592
Keputusan Uji = Tidak NaN

<table>
<thead>
<tr>
<th>Umur (Tahun)</th>
<th>Data Volume</th>
<th>Nilai X^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hasil Tabel</td>
<td>Hasil Penelitian</td>
</tr>
<tr>
<td>5</td>
<td>24.75</td>
<td>35.56</td>
</tr>
<tr>
<td>10</td>
<td>83.25</td>
<td>105.45</td>
</tr>
<tr>
<td>15</td>
<td>161.25</td>
<td>192.48</td>
</tr>
<tr>
<td>20</td>
<td>214.75</td>
<td>286.82</td>
</tr>
<tr>
<td>25</td>
<td>249</td>
<td>282.07</td>
</tr>
<tr>
<td>30</td>
<td>270.75</td>
<td>474.44</td>
</tr>
<tr>
<td>35</td>
<td>286.22</td>
<td>561.31</td>
</tr>
</tbody>
</table>

Nilai X^2 hitung = 525.34
Nilai X^2 tabel (5%, df=6) = 12.592
Keputusan Uji = Sangat Nan

<table>
<thead>
<tr>
<th>Umur (Tahun)</th>
<th>Data Timpani</th>
<th>Nilai X^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hasil Tabel</td>
<td>Hasil Penelitian</td>
</tr>
<tr>
<td>5</td>
<td>5.45</td>
<td>6.28</td>
</tr>
<tr>
<td>10</td>
<td>13.4</td>
<td>12.95</td>
</tr>
<tr>
<td>15</td>
<td>19.2</td>
<td>18.89</td>
</tr>
<tr>
<td>20</td>
<td>25.5</td>
<td>23.12</td>
</tr>
<tr>
<td>25</td>
<td>30.08</td>
<td>28.11</td>
</tr>
<tr>
<td>30</td>
<td>33.48</td>
<td>32.32</td>
</tr>
<tr>
<td>35</td>
<td>35.7</td>
<td>36.18</td>
</tr>
</tbody>
</table>

Nilai X^2 hitung = 0.43
Nilai X^2 tabel (5%, df=6) = 12.592
Keputusan Uji = Tidak Nan