
Divide and Conquer Algorithm for Gröbner
Basis over Binary Field∗

Teduh Wulandari, Sugi Guritman†,
Nur Aliatiningtyas, Siswandi‡

Division of Pure Mathematics
Department of Mathematics

Faculty of Mathematics and Natural Sciences
IPB University

September 27, 2021

Abstract

In this paper we present an algorithm for finding Gröbner basis in
binary multivariate polynomial ring F2 [x1, x2, ..., xn] and for which the
main goal is to solve binary multivariate nonlinear system; instead of the
existing methods mostly based on linearization. The main idea of our
method is well known divide and conquer recurrence; that in this case the
Buchberger algorithm is applied only at the end of the combining phase.
For data representation, every single polynomial in the ring can be consid-
ered to be a boolean object, so in symbolic computation perspective that
the polynomial can be represented as a member of power set of integers
and these integers represent variable symbol of the polynomial. Thus,
with this point of view, details of the algorithm can be stated in algebraic
computation codes. At the end of the paper, we give a general complex-
ity of the algorithm and also present some facts from the implementation
aspect.

Keywords: Gröbner basis, Binary multivariate polynomial ring, Divide and conquer
algorithm, Set representation of polynomial.

1 Introduction

The concept of Gröbner bases was introduced by Bruno Buchberger (1965) in
the context on performing algebraic computations in residue classes of multivari-
ate polynomial rings. Gröbner bases techniques also have various applications
∗Hasil pemikiran tidak dipublikasikan, terdokumentasi di Perpustakaan Departemen

Matematika IPB untuk pembimbingan tugas akhir mahasiswa.
†teduhma@apps.ipb.ac.id, sugigu@apps.ipb.ac.id.
‡nural@apps.ipb.ac.id, siswandi@apps.ipb.ac.id

1



such as: in algebraic geometry, optimization, coding theory, control theory,
cryptography, and many other fields.
In this paper, we study Gröbner bases only focus on binary case and for

which the main goal is to solve binary multivariate nonlinear system. The special
application of this study is state of the art algebraic attack on cryptosystems.
Problem of computing Gröbner bases associated with the solution of multi-

variate nonlinear system over general finite fields, with or without connected to
algebraic attacks on cryptosystem, has been discussed in many articles over last
decades. We refer to some of them in [1], [2], [3], [4], [6], [7], and for the basic
theory we refer to [5].
It is different from the above our citations, the main idea of our method is

well known divide and conquer recurrence. But still, they are all inspiring us
especially for the binary case that we are focusing more on [3], [4], and [1] In our
method, the Buchberger algorithm is applied only at the end of the combining
phase. For data representation, every polynomial in the ring we consider as
a boolean object, so in symbolic computation perspective that the polynomial
can be represented as a member of power set of integers and these integers
represent variable symbol of the polynomial. Based on this representation, we
optimize the performance of splitting and combining part of the divide and
conquer recurrence.
At the end of the paper, we give a general complexity of the algorithm and

also present some facts from the implementation aspect.

2 Set Representation

For the subsequent discussion in this paper, we follow [5] as a basic theory and
we customize for the binary case.
Let F2 be the binary field, then we will denote F2 [x1, x2, ..., xn] be the

binary ring of polynomials with coeffi cients in F2 and the indetermiates are
x1, x2, ..., xn. Since the main purpose of this paper is to solve binary multivariate
nonlinear system, we may consider that every polynomial f ∈ F2 [x1, x2, ..., xn]
as a function f : Fn2 → F2. So by this notion, the indetermiates x1, x2, ..., xn
can be considered as variables. Subsequently, it is clear that x2i = xi for every
i = 1, 2, ..., n, and so that we have the following definition.

Definition 1 Binary multivariate polynomial ring F2 [x1, x2, ..., xn] is the
set { ∑

(i1,i2,...,in)∈Fn2
a(i1,i2,...,in).

(
xi11 .x

i2
2 . · · · .xixn

)
| a(i1,i2,...,in) ∈ F2

}
with appropriate addition and multiplication of the binary polynomials follow
from the general case. Then, xi11 .x

i2
2 . · · · .xixn will be called monomials of the

polynomial.

Simple illustration from the definition, we have

F2 [x, y] = {a00 + a10x+ a01y + a11xy | a00, a10, a01, a11 ∈ F2}

2



So, it is also clear that #F2 [x, y] = 24 = 16, and for n variables we have

#F2 [x1, x2, ..., xn] = 22
n

For the shake of easier symbolic compution, variables x1, x2, ..., xn will be
represented as integers 1, 2, ..., n, repectively. Then, it is clear that the mono-
mials will be presented as the subsets of N = {1, 2, ..., n}. In other words, the
set of all monomials be the power set of N , call it as P (N). Then again, it is
clear for the notion of monomials ordering is the ordering in the P (N) , that is
the typical graded lexicographic order in increasing order. Thus, based on these
notions and the representation, it is reasonable to give alternative definitions
about F2 [x1, x2, ..., xn] as follows.

Definition 2 We denote Mn = P (N) be the set of all monomials of n vari-
ables. Then, for any two monomials A,B ∈ Mn, we have the following defini-
tions.

1. Multiplication of A and B, notation AB, is the set AB := A ∪B.

2. We mean A divide by B, notation A
B , is the set

A
B := ArB. In this case,

B is said to be devisible by A, notation A | B, if only if A ⊆ B.

3. We mean A ≤ B follows the ordering set inMn.

Definition 3 Binary multivariate polynomial ring of n variables, de-
noted as Rn, is the power set Rn = P (Mn) with the two operations on Rn are
defined as follows..

1. For any two polynomials P,Q ∈ Rn, addision of P and Q, notation
P ⊕Q, is the set

P ⊕Q := (P ∪Q)r (P ∩Q)

2. For any P,Q ∈ Rn, let P = {P1, P2, ..., Pk} and Q = {Q1, Q2, ..., Ql} ,
multiplication of P and Q, notation P �Q, is the set

P �Q :=
⊕k,l

i,j=1 {PiQj}

Moreover,

3. Empty set {} ∈ Rn be the addition identity and call it as the zero poly-
nomial in Rn.

4. The set {{}} ∈ Rn be the multiplication identity and call it as the unity
polynomial in Rn.

5. For any P ∈ Rn, the last monomial of P , notation lt (P ), is defined as
the set

lt (P ) = max
≤
(P ) , " ≤ " be the set ordering in P.

3



Definition 4 Let A ∈ Mn, P ∈ Rn, and that P = {P1, P2, ..., Pk} . Multipli-
cation of A and P , notation AP , is defined as the polynomial

AP :=
⊕k

i=1 {APi} .

Furthermore, if A | Pi for i = 1, 2, ..., k, we define division of P by A, notation
P
A , as the polynomial

P

A
:=

{
P1
A
,
P2
A
, ...,

Pk
A

}
which also can be said as "deleting variables of A in every monomial of P".

3 Buchberger’s Algorithm

In this section we continue to use set representation to define Gröbner bases,
and of course the most important thing is to describe Buchberger algorithm for
which can be used to find bases in Rn.

3.1 Gröbner Basis

Since the definition of Gröbner basis needs the notion of the division algorithm,
so we begin with the following proposition.

Proposition 1 Let P ∈ Rn and suppose that P1, P2, ..., Pk ∈ Rn be a sequence
of non-zero polynomials. Then, there exist Q1, Q2, ..., Qk, R ∈ Rn such that

P = (Q1 � P1)⊕ (Q2 � P2)⊕ ...⊕ (Qk � Pk)⊕R

and either R = {} or none of the monomials in R is divisible by

lt (P1) , lt (P2) , ..., lt (Pk) .

Furthermore, for every i = 1, 2, ..., k, lt (Qi � Pi) ≤ lt (P ) if (Qi � Pi) 6= {}.

We call the above proposition as division algorithm in Rn, its proof follows
from the general case (it can be found in [5]). For the symbolic computaion
purpose, this algorithm can be represented as follows.

Algorithm 1 (Division Algorithm)
INPUT: P ∈ Rn dan P1, ..., Pk ∈ (Rn r {{}})
OUTPUT: Q1, ..., Qk, R ∈ Rn

1. Q1 ← {} ; ...;Qk ← {} .

2. R← {} ; X ← P.

4



3. while X 6= {} do
Y ← X;

for i = 1 to k do

if lt (Pi) ⊆ lt (X) then

X ←
(
X ⊕ lt(X)

lt(Pi)
Pi

)
;

Qi ←
(
Qi ⊕

{
lt(X)
lt(Pi)

})
;

break;

end if;

end if;

end do;

if X = Y then

R← (R⊕ {lt (X)}) ;
X ← (X r {lt (X)}) ;

end if;

end do;

4. return(Q1, ..., Qk, R).

Definition 5 From the Algorithm 1, we define the output R as the result of
polynomial P modulo (P1, ..., Pk) , that is

R := P mod (P1, ..., Pk)

In other words, R is the reminder part af the division algorithm.

Now, we are ready to define Gröbner basis as follows.

Definition 6 A set of non-zero polynomials G = {P1, P2, ..., Pk} ⊆ Rn is called
to be a Gröbner basis for an ideal I in Rn if G ⊆ I and, for every polynomials
P in I r {{}} ,

lt (Pi) | lt (P )

for some i = 1, 2, ..., k. Moreover, the set G is called a Gröbner basis if it is a
Gröbner basis for the ideal I = 〈P1, P2, ..., Pk〉 .

3.2 Algorithm Description

The most primitive part of Buchberger’s algorithm is a function that we call it
as S-polynomial. Below is the definition of the function.

5



Definition 7 The S-polynomial of two non-zero polynomials P and Q in Rn,
notation S (P,Q) , is defined as the function

S (P,Q) := (lt (Q)rX)P ⊕ (lt (P )rX)Q

where X = lt (P ) ∩ lt (Q) .

Buchberger’s algorithm is the process of continuously adding non-zero re-
mainders of S-polynomials. The driven machine of the algorithm is the division
algorithm and usually we want to reduce the divisions as few as possible. The
algorithm can be quite horrible that is extremely time consuming to compute
and also very dependent on the term ordering. Therefore, we need to speed up
the algorithm by reducing input of polynomials. Below, we give an algorithm
that can be included to the Buchberger’s algorithm to speed up the performance.

Algorithm 2 (Reducing a sequence of polynomials)
INPUT: Polynomials (P1, ..., Pk) in (Rn r {{}}) .
OUTPUT: Reduced polynomials (Q1, ..., Qm) such that 〈Q1, ..., Qm〉 = 〈P1, ..., Pk〉 .

1. I ← (P1, ..., Pk) ;

2. for i = 1 to k do

Qi ← Pimod (P1, ..., Pi−1, Pi, ..., Pk) ;

J ← (P1, ..., Pi−1, Qi, Pi, ..., Pk) ;

end do;

3. if J = I then return(J); else

(P1, ..., Pm)← J ; go to Step 1;

end if;

We define Algorithm 2 as the function

Redu (P1, ..., Pk)

Involving Algorithm 2 to the Buchberger’s algorithm would not only speed up
the performance, but also it will produce a reduced Gröbner basis as the output.

Definition 8 A minimal Gröbner basis (P1, ..., Pk) is a Gröbner basis such
that lt (Pi) is not divisible by lt (Pj) for i 6= j. A reduced Gröbner basis
(P1, ..., Pk) is a minimal Gröbner basis such that no monomials (not just the
last monomial) in Pi is divisible by lt (Pj) for i 6= j .

In fact, a reduced Gröbner basis is unique. Finally, here we present Buch-
berger’s algorithm using set presentation for symbolic computation purpose.

Algorithm 3 (Buchberger’s algorithm)
INPUT: Polynomials (P1, ..., Pk) in (Rn r {{}}) .
OUTPUT: The reduced Gröbner basis (Q1, ..., Qm) for the ideal 〈P1, ..., Pk〉

6



1. (Q1, ..., Qm)← Redu (P1, ..., Pk) ; U ← {} ;

2. for i = 1 to m− 1 do
for j = i+ 1 to m do

S ← S (Qi, Qj) ;

R← Smod (Q1, ..., Qm) ;

if R = {{}} then return((R)) end if;
if R 6= {} then U ← U ∪ {R} end if;

end do;

end do;

3. while U 6= {} do
P ← {Q1, ..., Qm} ∪ U ;
(Q1, ..., Qm)← Redu (P1, ..., Pk) ; U ← {} ;
for i = 1 to m− 1 do
for j = i+ 1 to m do

S ← S (Qi, Qj) ;

R← Smod (Q1, ..., Qm) ;

if R 6= {} then U ← U ∪ {R} end if;
end do;

end do;

end do;

4. return(Q1, ..., Qm).

We define Algorithm 3 as the function

BbAlg (P1, ..., Pk)

4 Applying Divide and Conquer Recurrence

In this section, we consider that the Gröbner basis associated to the solution
of binary multivariate nonlinear system. In this case, for any non-empty subset
F = {f1, f2, ..., fm} ⊆ F2 [x1, x2, ..., xn], we interpretate as binary multivariate
nonlinear system with m equations and n variables, that is

f1 (x1, ..., xn) = 0, f2 (x1, ..., xn) = 0, ..., fm (x1, ..., xn) = 0

If G = {g1, g2, ..., gk} is the reduced Gröbner basis for the ideal 〈f1, f2, ..., fm〉 ,
then the solution of F if only if the solution of G. In fact, finding the solution
of G much simpler than F .

7



4.1 Basic Idea

From the previous section, we are already given the basic method for finding
Gröbner bases. Now, we enhance the performance of Buchberger’s algorithm by
applying divide and conquer recurrence. Basic idea of the divide and conquer
recurrence is to take large problem and divide it into smaller problems until
problem is trivial, then combine the parts to make the solution. In the following,
we present the basic rationalization of the relationship between Buchberger’s
algorithm and the idea of divide and conquer recurrence.
Given binary multivariate nonlinear system F = {f1, f2, ..., fm} , and the

members of F are written as

f1 (x1, ..., xn−1, xn) , f2 (x1, ..., xn−1, xn) , ..., fm (x1, ..., xn−1, xn) .

Then, for every j = 1, ...,m, there exist unique pair (fj0, fj1) of the polynomials
such that fj can be expressed on the form

fj (x1, ..., xn−1, xn) = fj,0 (x1, ..., xn−1) + fj,1 (x1, ..., xn−1) .xn

This means that F can be uniquely divided into two systems,

F0 = {f1,0, f2,0, ..., fm,0} and F1 = {f1,1, f2,1, ..., fm1} ,

in which each system having (n− 1) variables: x1, ..., xn−1. It is just typical
division phase of the divide and conquer recurrence which then the parts can
be done recursively until we get the smallest parts of the system. The smallest
parts should be trivial for the Buchberger’s algorithm.
Suppose that F0 and F1 be the smallest parts of the system, the combining

phase is just combining the solutions of F0 and F1 to compute the solution of F.
Detail process of this phase will be given directly in the algorithm description,
in the next subsection.

4.2 The Proposed Algorithm

From the basic idea in the previous subsection, in this subsection we will conc-
truct an algorithm that can be used to find a Gröbner bases from given binary
multivariate nonlinear system. For the shake symbolic computation and the al-
gorithm speed, we will take an advantage of using set representation described
in Section 2 of this paper. Below is the description and rationalization of the
algorithm.

• The input is any subset B = {P1, ..., Pm} ⊆ (Rn r {{}}) .

• If {{}} ∈ B, the algorithm will return {{{}}}. This means that the system
is inconsistent.

• The algorithm take the smallest sub-problem be the system of one variable.
This implies that the smallest system contains only one polynomial or two
polynomials. Let A be the smallest system, we have: if #A = 1 then
algorithm return A; else return {{{}}} . The performance of this step is
just like a bit operation.

8



• For the division phase, let P ∈ B such that P = P0 ⊕ P1. {n} . In this
case, strategy to compute P0 and P1, we describe in the following steps:

— in pre-computation we define K be the power set of {1, 2, ..., n− 1} ;
— compute P0 := P ∩K and then P1 := PrP0

{n} .

Then, we have B has been divided into two systems

B0 = {P1,0, P2,0, ..., Pm,0} and B1 = {P1,1, P2,1, ..., Pm,1} .

• For the combining phase. In the recursive process, suppose that the algo-
rithm has already calculated S0 as the solution of B0 and S1 as the solution
of (B0 ⊕B1) . Then, the algorithm will compute S as the solution of B by
the following descriptions.

— If S0 = {{{}}} and S1 = {{{}}} , the algorithm returns S = {{{}}} .
That means, for any cases the value of variabel xn, the system B
must be inconsistent.

— If S0 = {{{}}} and S1 6= {{{}}} , the algorithm return

S = S1 ∪ {{{} , {n}}} .

which means that the solution of B is the set S1 when xn = 1.

— If S0 6= {{{}}} and S1 = {{{}}} , the algorithm return

S = S0 ∪ {{n}} .

which means that the solution of B is the set S0 when xn = 0.

— If S0 6= {{{}}} and S1 6= {{{}}} , we compute the set:
1. U := S0 ∩ S1;
2. A0 := S0 r U ; and A1 := S1 r U ;
3. Q := {X0 ⊕ (X0 ⊕X1) {n} | X0 ∈ A0, X1 ∈ A1}; R := U ∪Q;
4. then S is the output of Buchberger’s algorithm of input R.

Eventually, here we present the proposed algorithm using set presentation
for the symbolic computation purpose. We begin with a routine function that
will be used to split polynomials; and a look-up table that will be used to
speed up the splitting process. The look-up table is a list of the power set of
{1, 2..., n− 1}:

K := [P ({1}) ,P ({1, 2}) , ...,P ({1, 2, .., n− 1})] .

Below is the algorithm of splitting set of polynomials.

Algorithm 4 (Splitting set of polynomials)
INPUT: Subsets {P1, ..., Pm} ⊆ (Rn r {{}}) , interjer j, and the set M be the
power set of {1, 2, ..., j − 1} refer to the look-up table K.
OUTPUT: The two parts of set of polynomials: {P1,0, ..., Pm,0} and {P1,1, ..., Pm,1} .

9



1. for i = 1 to m do

Pi,0 ← Pi ∩M ; Qi ←
(
PirPi,0
{j}

)
;

Pi,1 ← Pi,0 ⊕Qi;
end do;

2. return([{P1,0, ..., Pm,0} , {P1,1, ..., Pm,1}]);

We define the algorithm of splitting set of polynomials as the function

SplitP ({P1, ..., Pm} , j,M)

that will be called as a routine of the following proposed algorithm. This algo-
rithm will be called as the function

GroBaDnC (B,N,K)

where B stands for the set of polynomials that we will compute its Gröbner
basis; N = {1, 2, ..., n} be the set of variable symbols; K is a list that represent
the look-up table K.

Algorithm 5 (The proposed algorithm))
INPUT: Subsets B = {P1, ..., Pk} ⊆ (Rn r {{}}) , N = {1, 2, ..., n}, and the
look-up table K.
OUTPUT: The reduced Gröbner basis {Q1, ..., Qk} for the ideal 〈P1, ..., Pk〉

1. If {{}} ∈ B then return ({{{}}}) end if;

2. If n = 1 then

If #B = 1 then return {B} ; else return ({{{}}}); end if;
else

N ← N r {n}; H ← SplitP (B,n,K[n− 1]);
B0← H[1]r {{}} ; B1← H[2]r {{}};
S0← GroBaDnC (B0, N,K) ; S1← GroBaDnC (B1, N,K) ;

if S0 = {{{}}} then
if S1 = {{{}}} then return (S1); end if;
else S ← S1 ∪ {{{} , {n}}}; return (S); end if;

else

if S1 = {{{}}} then S ← S0 ∪ {{{n}}}; return (S); end if;
else

S ← S0 ∩ S1; P ← S0r S; Q← S1r S;
for Y in Q do

for X in P do

10



R← X ⊕ Y ; R← {n} .R; R← R ∪X;
S ← S ∪ {R};

end do;

end do;

S ← BbAlg (S); return (S);

end if;

end if;

end if;

5 The Algorithms Analysis

In this last section, we present a general analysis for the proposed algorithm and
implementation aspects. Description of the implementation aspects can also be
considered as a general conclusion.

5.1 Speed Analysis

It is diffi cult for us to give a scrutiny analysis for the proposed algorithm be-
cause of the set representation of the algorithm. Even though we believe that
the algorithm based on divide and conquer, however the usual analysis of di-
vide and conquer algorithm is hard to describe. Therefore, the analysis of the
algorithm will only be given on the form of speed description, instead of rigid
time complexity.
Let T (N) be the time compexity of the algorithm to solve the problem,

where N be the input size. Then, master theorem of divide and conquer tells
us that T (N) satisfies an equation of the form

T (N) = aT

(
N

b

)
+ f (N)

where a ≥ 1 is the number of recursively calls, (N/b) with b > 1 is the size of a
sub-problem, and f (N) is the cost of the combine part. Below we present some
items that could be used to assess the time complexity.

• Since the algorithm having input m polynomials in Rn and we assume
that the input at random and m ≈ n, then we may assume in general that
the input size is N = m.2n. In fact in avarage, each polynomial is a set
containimg 2n−1 monomials.

• Since the algorithm take the smallest sub-problems of n = 1, and every
polynomial is splitted into two parts, then we have a = 2n and b = 2,
implies that T (N/b) ∈ O (1) .

11



• In the splitting polynomials process, the algorithm is speeded up by the
look-up table. The whole number of operations are involved in this process
are mn times (∩ and r and delete 1 symbol and ⊕) set operations of
polynomials of size 2n−1 monomials in avarage, see Algorithm 4. This
process is hypotetically to be quite fast and it depends on the number of
monomials in the polynomials operand.

• Speed analysis in combining process can be used to assess the function
f (N). If the Gröbner basis solution of the problem connected to the so-
lution of binary multivariate nonlinear system, then we have the following
hypothesis. Assuming that the input taken at random, and for m > n,
then the sub-problems having output {{{}}} (inconsistent solution), on
every level in the recursive steps, should be having high probability. Espe-
cially for the smallest sub-problems, we have m polynomials of 1 variable,
then the probability that the solution is inconsistent should be very high,
tends to 1.

• In the case that two sub-problems will be combined, and both having a
consistent output, applying Buchberger’s algorithm to get the combined
solution should be very fast. Our hypothetic reason of this assertion is each
sub-problem having output reduced Gröbner basis, then combination of
the two solution (see in the last steps in Algorithm 5) should be still near
to the reduced Gröbner basis, so Algorithm 3 do not need too much effort
to change it.

5.2 Implementation Facts

We have already implemented the Algorithm 5 running in MAPLE codes. We
set all the inputs of the algorithm as a random data. All the experiments were
done in the same computation environment and computer spesification. Below
we describe some facts as a result of our obsevations from the implementation
aspect.

• When we set m = n, then we may expect that the algorithm would output
either inconsistent solution or having unique solution. This fact can be
explained easily using elementary probability notion.

• We set that the system has already been consitent. If m > n, then we may
expect that the algorithm would output unique solution. To get the unique
solution we need to increase the value of m. This fact can be explained
easily using elementary probability notion.

• When we convert all polynomials from set of set of integers representation
to set of integers representation, Algorithm 5 will be getting faster signif-
icantly. As an illustrion, for m = 20 and n = 16, the new version takes
only 7 seconds in avarage to solve the problem, compared to 16 seconds for
the old one. In this case, it is clear that the performance of set operations
will become much faster for the new one.

12



• Algorithm 5 is very much faster than Algorithm 3. As an illustrion, when
we set m = 10 and n = 8, Algorithm 3 takes about 12 seconds to solve
the problem in avarage; but Algorithm 5 in conversion version takes only
7 seconds even for very much larger input size m = 20 and n = 16. The
explaination of this fact needs rigid time complexity analysis.

6 Future Works

From the results of this paper, at least we have three questions that would
become our future works.

1. How to analyse a scrutiny time complexity for the algorithms?

2. Using set of integers representation, how to construct an effi cient algo-
rithm for solving binary multivariate nonlinear system without involving
Buchberger’s algorithm?

3. How to make an association the algorithms with algebraic attack to a
cryptosytem, focus on special cases?

References

[1] M. Brickenstein and A. Dreyer. “PolyBoRi: A framework for Gröbner-basis
computations with Boolean polynomials”. In Journal of Symbolic Computa-
tion, Elsevier, vol. 44, issue 9, pp. 1326-1345. September 2009.

[2] N. T. Courtois and J. Patarin. “About the XL Algorithm over GF (2)”.
In Springer-Verlag Berlin Heidelberg, M. Joye (Ed.): CT-RSA 2003, LNCS
2612, pp. 141—157, 2003.

[3] S. Gao. “Counting Zeros over Finite Fields Using Gröbner Bases”. Master
Thesis, www.cs.cmu.edu, January 2009.

[4] F. Hinkelmann and E. Arnold. “Fast Gröbner Basis Compu-
tation for Boolean Polynomials”. In Published in ArXiv 2010,
http://semanticscholar.org>paper>. October 2018.

[5] N. Lauritzen, “Concrete Abstract Algebra: from Numbers to Gröbner
Bases”. Cambridge University Press, 2003. ISBN 978-0-521-53410-9.

[6] T. H. Nguyen. “Combinations of Boolean Gröbner Bases and SAT Solvers”.
Doctoral Thesis, Technische Universität Kaiserslautern, https://nbn-
resolving.org/urn:nbn:de:hbz:386-kluedo-39582, December 2014.

[7] M. Sugita, M. Kawazoe, and H. Imai, “Relation between XL algorithm and
Gröbner Bases Algorithms”. In IEICE Transactions on Fundamentals of
Electronics Communications and Computer Sciences, E89A(1), pp. 11-18,
January 2006.

13



[8] Y. Sun, Z. Huang, D. Lin, and D. Wang, “On Implementing the Symbolic
Preprocessing Function over Boolean Polynomial Rings in Gröbner Basis
Algorithms Using Linear Algebra”. In Journal of Systems Science and Com-
plexity, Elsevier, vol. 29, issue 3, pp. 789—804. June 2016.

14


