TINJAUAN PUSTAKA

Ciri dan Peranan Serangga Predator

Serangga predator adalah spesies serangga yang mempunyai ciri-ciri (1) memangsa serangga spesies yang lain, (2) membuang langsung dan menyebabkan kematian mangsanya secara cepat, (3) dalam menyelesaikan perkembangan hidupnya memerlukan lebih dari satu individu mangsa, (4) larva dan imago predator mempunyai jenis mangsa yang sama, (5) hidupnya bebas, dan (6) mempunyai tubuh lebih besar daripada tubuh mangsanya (Clausen, 1940; Stehr, 1975).

Di alam secara umum predator berperan sebagai pengatur populasi organisme dalam lingkungannya. Peranan predator tersebut dapat dibagi atas empat kategori (Price, 1975): (1) penting dalam alir enersi di dalam komunitasnya, (2) sebagai pengatur kepadatan populasi mangsanya, (3) sebagai pemelihara kesehatan populasi mangsanya, dan (4) sebagai agensia penyeleksi dalam evolusi mangsanya. Peranan tersebut sangat penting artinya dalam memelihara keseimbangan ekosistem.

Tingkat keberhasilan predator dalam menekan populasi mangsanya ditentukan oleh banyak faktor. Menurut DeBach (1974) ciri-ciri predator yang berdayaguna adalah sebagai berikut:
Kemampuan yang tinggi dalam mencari mansa-nya. Sifat ini dapat ditunjukkan oleh adanya kemampuan yang rendah. Kemampuan menemukan mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat- sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan itu berkaitan erat dengan sifat-sifat yang lainnya yaitu kekuatan makanan, daya tanggap terhadap padat populasi mangan, dan kemampuan memecahkan sifat-sifat kekuatan makanannya. Kemampuan kekuatan terhadap spesies mangan yang rapat harus mampu menerima jenis makanan yang spesifik dan lebih din-

kee. Kemampuan kekuatan terhadap spesies mangan it
Beberapa Aspek Pemangsaan

Berdasarkan keragaman jenis mangsanya predator dibagi menjadi tiga golongan, (1) monogaf yaitu yang mangsanya terbatas pada satu spesies serangga, seperti Scymnus impexus (Hulsant) yang hanya memangsa Adelges picea (Rotzeburg), (2) oligogaf yaitu yang mangsanya terdiri atas beberapa spesies dari satu famili serangga, contohnya Laricobius vachsonii Rosenhauer yang memangsa spesies-spesies dari genus Adelges dan Pineus, (3) polifag yaitu yang mangsanya terdiri atas banyak spesies dari beberapa famili serangga, contohnya Deraeocoris flavolinea Costa yang memangsa spesies-spesies dari famili Pentatomidae, Aphididae, Syrphidae dan famili yang lainnya (Atkins, 1980; Clausen, 1940; Cobbel dan Mertins, 1977; Henderson dan Henderson, 1963).

Pemangsaan sebagai suatu proses dipengaruhi oleh banyak faktor. Faktor fisik seperti cahaya, warna dan bentuk dapat digunakan oleh predator sebagai tanda untuk menemukan habitat mangsanya. Faktor kimia seperti Bau dapat merangsang predator sehingga dapat menemukan habitat mangsanya. Contohnya predator hama tanaman kapas, Collops vittatus (Malachiidae) yang tertarik oleh Bau terpenoid caryophyllene onke yaitu zat kimia yang dihasilkan oleh daun kapas (Rinson, 1981).

Kairomon (kairomones) adalah suatu zat kimia yang dihasilkan oleh suatu spesies organisme dan apabila terjadi kontak secara alami dengan organisme spesies yang lain,
akan menimbulkan tanggap perilaku atau tanggap fisiologis dari spesies penerima dan menguntungkan organisme penerima tersebut (Nordlund, 1981). Kariomon itu nyata berperan dalam pencarian dan penerimaan mangsa oleh predator, dan pada umumnya berfungsi sebagai atraktan (attractants), arrestan (arrestants), atau fagostimulan (phagostimulants).

Serangga predator pada umumnya bersifat polifag atau oligofag. Derajat preferensinya terhadap mangsa yang ber- lain dapat berbeda. Oleh karena itu perlu adanya pendedakan untuk menilai preferensi tersebut.

Preferensi, dalam hal ini diartikan sebagai derajat kemauan predator terhadap mangsanya, ditunjukkan oleh jumlah individu mangsa yang dimakan dan terbunuh oleh seekor predator. Indeks preferensi dapat dipakai untuk menilai preferensi tersebut, dan rumus yang sudah dikembangkan
Indeks preferensi parasit/predator terhadap inang/mangsa adalah rumus preferensi parasit/predator terhadap inang/mangsa pada stadium ke-1: R_i (jumlah inang/mangsa pada akhir percobaan), A_i (jumlah inang/mangsa pada awal percobaan), k (jumlah spesies parasit atau predator), dan s (jumlah stadium). Indeks preferensi parasit/predator terhadap inang/mangsa pada akhir percobaan, R_i, jumlah spesies parasit atau predator, k, jumlah stadium, dan s.

1. Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa menentukan dan menyebutkan sumber:
 a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik atau tinjauan suatu masalah.
 b. Pengutipan tidak merugikan kepentingan yang wajar IPB.

2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apapun tanpa izin IPB.
populasi mangsa makin banyak populasi predator (Stehr, 1975; Varley, Gradwell dan Hassell, 1973). Berdasarkan jangka waktu timbulnya tanggap, tanggap tersebut terbagi atas (1) yang timbulnya segera disebut tanggap perilaku, dan (2) yang timbulnya lambat atau tertunda disebut tanggap intergenerasi (Dempster, 1975).

Huffaker, Messenger dan DeBach (1971) mengemukakan empat hipotesis tentang tanggap perilaku atau tanggap fungsi-signal predator (Gambar 2). Pertama, konsep Thompson, yaitu predator tidak mengalami hambatan untuk mendapatkan mangsa-nya, yang membatasi jumlah mangsa yang dimakannya adalah kapasitas makan dari predator itu sendiri. Jumlah mangsa yang dimakan konstan tidak dipengaruhi oleh populasi mangsanya (Gambar 2a). Kedua, konsep Nicholson mencerminkan bahwa jumlah mangsa yang dimakan meningkat secara proporsional mengikuti peningkatan populasi mangsanya (Gambar 2a), sedang bagian (persen) yang dimangsa adalah konstan (Gambar 2b). Perilaku yang sesuai dengan konsep Nicholson pada umumnya ditunjukkan oleh filter-feeding predator (Poole, 1974).
Gambar 2.
Empat hipotesis tentang fungsi predatör terhadap populasi mangsa

(a): mangsa yang dimakan dalam satu individu
(b): mangsa yang dimakan dalam person
Persamaan model ini adalah:

\[y = an + b; \]

\(y \), jumlah mangsa yang dimakan/terbunuh; \(a \), laju pemangsaan (attack rate); \(b \), intercept \(y \), populasi mangsa pada awal percobaan (McCaffrey dan Horsburgh, 1986). Ketiga, konsep Holling, mencerminkan bahwa jumlah mangsa yang dimakan banyak dengan makin tingginya populasi mangsa, kemudian pertambahan jumlah mangsa yang dimakan tersebut multi sedikit dan penurunannya itu makin cepat sejalan dengan makin meningkatnya populasi mangsa (Gambar 2a). Bagian (persen) mangsa yang dimakan makin menurun dengan makin tingginya populasi mangsa, tetapi penurunan tersebut lebih lambat apabila dibandingkan dengan penurunan pemangsaan dalam konsep Thompson (Gambar 2b). Perilaku yang sesuai dengan konsep ini pada umumnya ditunjukkan oleh predator dan parasit dari golongan serangga dan beberapa spesies ikan (Huffaker, Kennett, Matsumoto dan White, 1968; Poole, 1974). Menurut McCaffrey dan Horsburgh (1986) persamaan konsep Holling ini adalah:

\[y = \frac{a T n}{1 + a T n}; \]

\(y \), banyaknya mangsa yang dimakan/terbunuh; \(a \), laju pemangsaan; \(T \), lamanya mangsa tersedia untuk diserang; \(n \), populasi mangsa pada awal percobaan; \(Th \), waktu yang diperlukan predator untuk menangani mangsa (handling time).

\[
y = \frac{A}{1 + \exp\left(-\frac{B - Cn}{n}
ight)}
\]

dengan \(n\) = populasi mangsa pada awal percobaan; \(A, B\) dan \(C\) adalah parameter yang dapat diduga menaikkan atau turun, misalnya, pada kondisi tertentu penjajahan predator untuk mangsa atau mangsa yang merupakan mangsa yang sama dalam spesies yang berlainan. Penjajahan arah predator antara species yang sama dan adalah bentuk persamaan yang satu terhadap individu yang lainnya.

Individu yang satu terhadap individu yang lainnya.
Dalam spesies yang sama, dapat terjadi karena sifat perilaku memanfaatkan kanibalistik atau akibat tidak tersedianya makanan.

Planococcus citri (Risso)

Taksonomi dan Morfologi

P. citri yang menyerang tanaman kopi di Indonesia adalah tipe aerial form.
Telur *P. citri* berwarna kuning pucat, berbentuk hampir seperti kapsul obat dengan berat rata-rata 0.0037 mg per butir, diletakkan selalu mengelompok dan dilindungi oleh gumpalan gumpalan lilin putih yang halus. *P. citri* tergolong serangga paurometabola. Tubuh imago *P. citri* dewasa betina berbentuk cembung, berwarna kuning kecokelatan dan apabila gumpalan lilin yang menyelimuti tina dihilangkan akan tampak garis-garis melintang pada bagian dorsal. Di sekeliling bagian sisi tubuhnya terdapat 18 pasang jonjot lilin; satu pasang yang terletak di bawah abdomen lebih panjang daripada yang lainnya sehingga mirip ekor ganda. Antena filiform beruas enam, alat mulut tipe menusuk mengisap, dan mata majemuk. Imago *P. citri* dewasa jantan tubuhnya berbentuk ramping (*slender*), mempunyai sepasang sayap sempurna yang berpangkal pada mesotoraks, mempunyai tiga pasang mata, antena filiform beruas delapan, alat mulut tidak berfungsi karena tereduksi pada saat akhir nimfa instar pertama (Gray, 1954).

Biologi

Selama perkembangan hidupnya, *P. citri* betina mengalami tiga kali ganti kulit dan *P. citri* jantan mengalami empat kali ganti kulit (Gray, 1954). Lama perkembangan hidup

Perkembangan P. citri betina yang dipelihara pada suhu 22-23°C adalah stadium telur 6-12 hari, nimfa instar pertama 16.2 hari, instar kedua 11.5 hari, instar ketiga 11.7 hari, masa praoviposisi 14 hari, dan siklus hidup adalah 65-4 hari (Betzem, 1934).

Haerap, milippe (misahal, tanam yang mempunyai keperluan rata-rata 23.4 bulan terlambat, rata-rata 59.0% sedikit hujan rata-rata 3.1 hari dan la-

Hanya yang Kupi dan Penanaman P. citri di Indonesia

P. citri di Indonesia merupakan tanaman inang yang ditemui di daerah-daerah bermusim kemarau yang tegat, yang hujan selama rata-rata 5.2 hari dengan daya tahan rata-

Karena terdapat daerah-daerah bermusim kemarau yang tegat, yang hujan selama rata-rata 5.2 hari dengan daya tahan rata-

P. citri dapat menjadi resitant terhadap insektisida ter-

Dengan keadaan yang relatif sangat (Mekesne, 1967).
Gambar 3. Gejala serangan berat *P. citri* pada dompolan buah kopi: Gumpalan-gumpalan lilin putih yang cukup tebal

Gambar 4. Gejala serangan berat *P. citri* yang sudah lanjut pada dompolan buah kopi: Gumpalan-gumpalan lilin yang tebal dan cendawan jelaga berwarna hitam
Pengendalian secara kimia. Pada tahun 1933 dan 1934 di perkebunan kopi Sumberwadung (Jember) dan perkebunan Melambong (Salatiga) telah dilakukan percobaan pengendalian hama P. citri memakai insektisida. Solze (solar olie lijm zet emulsie) menjadi insektisida yang dianjurkan pada waktu itu (de Fluieter, 1936; 1937; 1939). Fumigan yang digunakan baik pada waktu itu adalah amian sianida (HCN) dan cyhodust A yang mampu membunuh hampir 100% populasi P. citri (Betrem, 1936a).

Sejak tahun 1960-an sampai akhir tahun 1970-an pemakai
an insektisida sangat intensif terutama pada pertanaman kopi di perkebunan besar. Tetapi akibat pemakaian insektisida yang kurang bijaksana telah menimbulkan masalah hama makin makin, antara lain biaya pengendalian makin besar. Salah satu cara menanggulangi masalah itu adalah dengan mengembangkan sistem peringatan dini (SPD, early warning system).

Sistem itu sejak tahun 1978 telah dilaksanakan pada pertanaman kopi dan kakao milik perkebunan-perkebunan besar di

Pengendalian secara budidaya. Menyehatkan tanaman selalu dianjurkan dalam rangka meningkatkan toleransi tanaman tersebut terhadap serangan hama *P. citri*, antara lain dengan pemupukan yang sesuai, penangkasan yang tepat, dan pemanfaatan irigasi curah (*sprinkler irrigation*) pada musim hujan yang panjang. Penanaman klon-klon yang tahan atau toleran juga dilaksanakan oleh para pekebun kopi; beberapa klon yang toleran adalah BP 479 (Sumberwadung 24) dan BP 38 (Malangsaari 8) (Willet, 1955), dan untuk daerah-daerah di-Kelud adalah Rob. Bgn. 371 (Centrale Proefstation Greening, 1954). Penangkasan tajuk pohon-pohon penau...
Bojong Agricultural University

Alang-alang predator tersebut dibuka untuk mengendalikan C. montrouzieri dari Hawai ke pulau Jawa.

Kemudian, untuk menghambat laju penurunan kelambaban udara.

Kedua satu dibandung dengan bunga-bunah yang masih membuka dan akhir musim kemarau buah-buahan dipanen. Ketika musim kemarau, sehingga sudah berfungsi

Kemudian, untuk menghambat laju penurunan kelambaban udara.

Pada tahun 1936 dari Hawaii didatangkan lagi ke pulau Jawa 29 ekor imago *Hyperaspis pumila* dan 43 ekor imago *D. mus sp*. Predator tersebut tidak sempat dilepaskan ke petanaman kopi, karena mati semuanya setelah dipelihara selama 18 bulan di laboratorium (de Fluiter, 1941).

Nephus roepkei (de Fluiter)

Taxonomi dan Morfologi

Berdasarkan kunci morfologi dari de Fluiter (1938) dan dibandingkan dengan contoh serangga pada koleksi kering di BPK Jember, serangga predator yang didapatkan dari kumpulan *P. citri* pada dompolan buah kopi pada tahun 1988 diidentifikasi oleh Priatno (1986) sebagai *Scymnus roepkei* (de Fluiter) (Coleoptera: Coccinellidae). Determinasi oleh CKB pada tahun 1988 terhadap contoh serangga yang sama memakai nama *Nephus roepkei* (de Fluiter) (Coleoptera: Coccinellidae). Rincian ciri-ciri morfologi menurut kunci de Fluiter (1938) adalah sebagai berikut: Tubuh serangga imago betina berbentuk cembung, panjangnya ± 1.8 mm dan lebaranny ± 1.1 mm. Kepala berwarna hitam mengkilat, antena
filiform beruas sembilan, alat mulut berwarna cokelat muda. Abdomen berwarna hitam dan beruas enam. Tarsus dan tibia berwarna cokelat muda, femur cokelat tua. Tarsii dilengkapi kuku yang berujung sangat runcing. Tubuh serangga jantan lebih kecil daripada serangga betina, palpus maksima tampak keluar, dan dua buah kuku pada tarsusnya sangat renggang antara yang satu dengan lainnya sehingga tampak lebih jelas terpisah dibandingkan dengan kuku serangga betina.

Sifat Hidup

N. roepkei yang dipelihara pada suhu 27°C mempunyai selama hidup 19-25 hari dan lama hidup 261 hari. Pada suhu antara 19.1-32.2°C, makin tinggi suhu makin singkat stadium telur, larva dan pupanya (Gambar 5).
<table>
<thead>
<tr>
<th>Perkembangan</th>
<th>Sarat krova sarangga</th>
<th>Stadium pupa</th>
<th>Sarat krova pupa</th>
<th>Stadium larva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarat krova telur</td>
<td>6.7</td>
<td>48.4</td>
<td>10.0</td>
<td>11.1</td>
</tr>
<tr>
<td>Sarat krova telur</td>
<td>6.2</td>
<td>50.0</td>
<td>11.8</td>
<td>11.3</td>
</tr>
<tr>
<td>Sarat krova telur</td>
<td>5.9</td>
<td>70.0</td>
<td>11.3</td>
<td>11.3</td>
</tr>
<tr>
<td>Sarat krova telur</td>
<td>7.3</td>
<td>48.7</td>
<td>11.1</td>
<td>11.1</td>
</tr>
</tbody>
</table>

| Kelaeban riabi udara (%) | 20 | 80 |

Gambar 5. Pengaruh suhu tetap terhadap perkembangan telur, pupa dan liwy daa N. rospesia (de Pluiter, 1841)
Pengaruh kelembaban nisbi udara pada suhu tetap, 270 C, terhadap perkembangan N. roepkei tertera pada Tabel 2. Pluiter, 1941). Pada kelembaban antara 83-100%, jumlah telur yang berhasil menjadi serangga dewasa 48.4-70.3%. Pada kelembaban 20% hanya 34.1%.