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Abstract— We propose an approach for metagenome fragment 
binning using support vector machine (SVM) and 
characterization vectors. We developed this method to 
overcome the limitation of the composition-based approach 
using k-mer features to perform the binning process, 
particularly for short fragments. We take advantage of 
characterization vectors, which consider global information of 
DNA fragments without performing sequence alignments. The 
global information of sequences can be represented by 
twelve-dimensional information. Our experiments show that 
this method is highly accurate for binning metagenome 
fragments at the genus level with fragment lengths ≥ 500 bp for 
datasets representing known and new organisms. This 
approach is promising for extension to other taxonomy levels.   
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I.  INTRODUCTION 

A common approach in studying the genetic material of 
any organism is to cultivate the organism in the lab and then 
perform shotgun sequencing and de novo sequence assembly. 
These processes are required to produce DNA sequences, 
which contain genetic information of the organism. 
Unfortunately, only about 1% of the many microorganisms 
in the world can be cultured [1]. The rest must be collected 
by taking samples directly from the environment. 
Metagenomics is the study of genetic material taken directly 
from the environment, which contains sequences for a 
mixture of genomes.  

To get a complete genome from an environmental sample, 
the sequences obtained by shotgun sequencing must be 
assembled. This assembly process will yield scaffolds, 
contigs and unassembled reads. However, because the 
environmental sample contains a variety of organisms, a 
binning process is needed to classify them. An assembling 
process is required before classification to obtain contigs 
(long fragments with length ≥ 3 kbp) [1]. Until now, highly 
accurate results from the metagenomic fragment binning 
process were not possible using short fragments (fragment 
length < 3 kbp). 
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Composition-based binning is commonly used for the 
binning process. This approach uses k-mer frequencies as 
features. Some significant results have been obtained using 
this approach combined with unsupervised or supervised 
learning, such as PCA [1], SOM [2], k-means clustering [3], 
support vector machine (SVM) [4], and naïve Bayesian 
classifiers [5, 6, 7]. Although the use of k-mer frequencies is 
promising for solving classification problems of 
metagenomics fragments, composition-based approaches still 
have two limitations: (1) for fragment lengths < 6 kbp, the 
accuracy of the binning process decreases with decreasing 
DNA fragment length, and (2) the dimensionality of feature 
space increases drastically with large k values.   
PhyloPythia [4] could obtain  high sensitivity (> 70%) for 
the genus  by using fragment lengths ≥ 3 kbp; however, low 
accuracy resulted with fragment lengths ≤ 1 kbp. 

In this study, we propose using characterization vectors 
reported by Liu [8] for covering the weaknesses of 
composition-based binning with restrictions in terms of 
fragment lengths and k values. Characterization vectors 
consist of twelve-dimensional information. These vectors 
have been implemented to perform clustering of DNA 
sequences by calculating the distance between two 
characterization vectors. However, this feature has not been 
widely used by other researchers in the field of DNA 
fragment clustering or classification. 

 

II. MATERIALS AND METHODS 

We used two groups of datasets generated by   
MetaSim [9] to represent known and new organisms. For 
known organisms, we generated fragments with six different 
lengths from ten species in three genera (Table 1). The 
fragment lengths were 500 bp, 1 kbp, 5 kbp, and 10 kbp, and 
the total fragment numbers for training and testing were 
10,000 and 5,000, respectively.  

For new organisms, we used nine species in three genera 
(Table 2) to generate fragments with four different lengths 
(500 bp,   1 kbp, 5 kbp, and 10 kbp). We defined these 
fragments for testing new organisms and used a total of 
5,000 fragments. 
 
 



Table 1 Dataset for representing known organisms 

 
Species Genus 

Agrobacterium radiobacter K84 chromosome 2 Agrobacterium 
Agrobacterium tumefaciens str. C58 chromosome 
circular 
Agrobacterium vitis S4 chromosome 1 
Bacillus amyloliquefaciens FZB42 Bacillus 
Bacillus anthracis str. Ames Ancestor 
Bacillus cereus 03BB102 
Bacillus pseudofarmus OF4 chromosome 
Staphylococcus aureus subsp. Aureus JH1 Staphylococcus 
Staphylococcus epidermidis ATCC 12228 
Staphylococcus haemolyticus JCSC1435 
 

 
Table 2 Dataset for representing new organisms 

 
Species Genus 

Agrobacterium radiobacter K84 chromosome 1 Agrobacterium 
Agrobacterium tumefaciens str. C58 chromosome 
linear 
Agrobacterium vitis S4 chromosome 2 
Bacillus thuringiensis str Al Hakam Bacillus 
Bacillus subtilis subsp. Subtilis str 16B 
Bacillus pumilus SAFR-032 
Staphylococcus carnosus Staphylococcus 
Staphylococcus saprophyticus subsp. Saprophyticus 
ATCC 1530 S 
Staphylococcus lugdunensis HKU09-01   

    
We designed a multiclass classifier to classify 

metagenomic fragments with different lengths at the rank of 
genus. We employed multiclass SVM classifiers trained 
with fragments of a certain length. The characterization 
vectors served as the input items for the SVM. For this 
purpose, we generated a Gaussian radial basis function 
(RBF) based on the characterization vector. 
 

The characterization vector [8] contains twelve- 
dimensional information as follows: 

<nA, TA, DA, nG, TG, DG, nT, TT, DT, nC, TC, DC> 
 
The first four parameters, nA, nG, nT, and nC, refer to the 

number of A, G, T, and C nucleic bases, respectively, within 
the DNA sequence (Figure 1).  The total number of bases 
represents the length of the sequence. Calculation of these 
four parameters is not adequate to distinguish between two 
DNA sequences because two DNA sequences with the same 
length may have the same total number of nucleic bases.  
 
 

 
 

Figure 1 Number of nucleic bases of sequence 
ATGCTTACGTAGCATG 

 
The second four parameters, TA, TG, TT, and TC, 

represent the total distance of each nucleotide base to the 
first nucleotide. The total distance Ti is defined as: 
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where i = A, G, T, C and tj is the distance from the first 
nucleotide to the jth nucleotide specified in the DNA 
sequence. These distance parameters and the number of 
nucleic bases are used to make similarity measurements 
between two DNA sequences more accurate (Figure 2).  
 
 
 
 
 
 
 

Figure 2  the first sequence, ATTGCGAAGCAG has number of nucleic 
bases T (nT) = 2 and the total distance (TT) = 2+3 = 5. However, the second 

sequence ACGCGCATTAAGA has the same number of nucleic base T,  
(nT) = 2, but distance (TT) = 8+9 = 17 

 
However, these two groups of parameters are still not 

sufficient to compare two DNA sequences. Figure 3 shows 
that two sequences can have the same number of nucleic 
bases T (nT) and also the same values for the distances 
between the nucleic bases T, TT. Therefore Liu et al. [8] 
defined a third parameter, the variance of distance, for each 
nucleic base as follows: 
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where i = A, T, G, C and tj is the distance from the first 
nucleotide to the jth specified nucleotide i in the DNA 
sequence. They defined μi as follows: 
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These three groups of parameters make similarity 
measurements between two DNA sequences accurate. 
  
 
 
 
 
 
 
 
 

Figure 3  the first sequence ACTGCGTAAGCAG and the second 
sequence ACCTCTAAAGCAG has the same value of nT=2 and TT=10, but 

the first sequence has DT=4 and the second sequence has DT=4. Thus, 
parameter D makes similarity measurements more accurate. 

 
This characterization vector contains twelve-dimensional 

information. We hypothesized that it could be used to 
characterize similarities between DNA sequences, because it 
describes the nucleotide contents, the distance of each 

ATGCTTACGTAGCATG  nA=4, nG=4, nT=5, nC=3 

           3    7

Sequence 1: ACTGCGTAAGCAG  nT=2, TT=10, DT=4 

             4 6   
Sequence 2: ACCTCTAAAGCAG  nT=2, TT=10, DT=1 

           23 

Sequence 1: ATTGCGCAAGCAG  nT=2, TT=5 

                89 

Sequence 2: ACGCGCATTAAGA  nT=2, TT=17 



nucleic base from the first nucleotide, and the distribution of 
each nucleotide within the DNA sequence.  

We used LIBSVM [10] to perform multiclass SVM.    
A 5-fold cross validation was conducted to obtain the best 
parameters C and γ. These two parameters were used to 
train the whole training set using SVM. We applied a 
one-versus-one technique, where classification is done by a 
max-wins voting strategy, in which every classifier assigns 
the instance to one of the two classes; then, the vote for the 
assigned class is increased by one vote, and finally the class 
with the most votes determines the instance classification. 
This program was run on a Dual Core AMD Opteron CPU 
2.4 GHz system supplied with 32 GB of RAM. 

   

III. RESULTS AND DISCUSSION 

A. Reason for using Characterization Vector 

The objective of this paper was to perform metagenome 
fragment binning. The approaches used in this field include 
homology-based binning and composition-based binning. 
Homology-based binning is performed by comparing 
metagenome fragments against a reference database using 
BLAST [11] or MEGAN [12]. BLAST was developed 
based on nearest neighbors, whereas MEGAN applies both 
nearest neighbors and last common ancestors.  These 
approaches find similarities between sequences through 
sequence alignment processes, which are time consuming 
because they consider all of the information of a sequence. 

On the other hand, composition-based binning tries to 
perform the binning process using k-mers as features with 
the machine learning method. Because this approach 
bypasses the need for sequence alignments, it can reduce the 
execution time. However, this approach is restricted by the 
fragment lengths and k values. From PhyloPythia [4] and 
the naïve Bayesian classifier [5], we learned that high 
accuracy of the classifier can be obtained by using k=5 for 
long fragments (fragment length ≥ 3 kbp) or using k ≥ 9 for 
short fragments (fragment length = 500 bp). However, using 
k ≥ 9 for k-mers results in a high-dimension feature space 
(4k). Although high accuracy can be obtained, generating 
feature space based on k-mers frequencies will consume 
much more memory and computational time. On the other 
hand, if small k-mers (k<5) are used, the accuracy  
drastically decreases. Features generated from a small k 
value may not be capable of capturing the main 
characteristics that can distinguish one taxonomic lineage 
from another [13].  

In this paper, we used the characterization vector  
which considers the global information of DNA fragments 
without performing sequence alignments. The global 
information of sequences can be represented by 
twelve-dimensional information containing three main 
attributes: number of nucleic bases, the distance of each 
nucleic base, and the variance of distance for each nucleic 
base.  

B. Classification results 

We generated 10 kbp fragments from ten species using 
MetaSim for training data. These fragments were generated 
randomly from the whole genome sequence of each species 
downloaded from NCBI databases. To validate our model, 
we also generated 5 kbp fragments from the same genome  
using MetaSim to represent known organisms. We used 
fragment lengths of 500 bp, 1 kbp, 5 kbp, and 10 kbp.  

 Accuracy, sensitivity, and specificity were used to 
measure the performance of our classifier. The accuracy 
measure is defined as follows: 

 

dataofnumbertotal
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This method can obtain high accuracy using 500 bp 

fragments. Figure 4 demonstrates high accuracy for the 
genus level. The accuracy of this method was 81% for   
500 bp, 85% for 1 kbp, 90% for 5 kbp, and 92% for 10 kbp 
fragments, respectively, showing the potential power of the 
method.  

This method exhibits high sensitivity with 500 bp 
fragments.  The sensitivity of the classifier was 78% for 
500 bp, 83% for 1 kbp, 89% for 5 kbp, and 92% for 10 kbp, 
indicating that this method can recognize at least 78% of the 
actual positives. In addition, the specificity of this method 
was between 89%-98% for all of the tested fragment lengths 
for the genus (Figure 4).  

All of these results show that our approach using the 
SVM and characterization vector is promising for very 
sensitive and accurate classifications. Indeed, the current 
classifier employing SVM and k-mer features can obtain 
high sensitivity only with fragment lengths ≥ 3 kbp [4]. 
Moreover, the naïve Bayesian classifier and k-mer features 
can obtain 80% accuracy only using k=10 [5], which is also 
time-consuming, as this approach requires generating a 
high-dimension feature space (410). With our approach, we 
do not face a high-dimension feature space problem, 
because the characterization vector always contains 
twelve-dimensional information.  

To validate our approach for the binning process for new 
organisms, we generated 5-kbp fragments from nine species 
using MetaSim. These genomes are different from the 
genome representing known organisms, but still belong to 
the same genus. The fragments lengths were 500 bp, 1 kbp, 
5 kbp, and 10 kbp. Figure 5 shows that the accuracy for the 
genus was not as high as that for known organisms. 
However, the results indicate the power of our approach in 
classifying fragments with length < 1 kbp.  The accuracy 
of this method was 78% for 500 bp, 80% for 1 kbp, 86% for 
5 kbp, and 87% for 10 kbp.  

This trend was also supported by the sensitivity and  
specificity. For the genus level, the sensitivity of this 
method reached 75%-85% for a fragment length of 500 bp 
to 10 kbp. Moreover, the specificity of this method for 



genus increased from 86% for 500 bp fragments to 92% for 
10 kbp. In general, the performance of this method slightly 
decreased when used to classify new organisms. The 
misclassification of fragments probably occurred due to 
sequence overlap between different strains possibly within 
the species in the different genus. The assignment of 
fragments to different genera may have been caused 
misclassification of fragments. 

 

 
 

Figure 4  the performance of classifier for known organism 
 
 

 
 

Figure 5 Performance of the classifier for new organisms 

Figures 6 and 7 show the sensitivity and specificity of 
each genus with different fragment lengths for both known 
and new organisms. When using fragments belonging to 
species in the Agrobacterium genus, the sensitivity and 
specificity of our method was high, even using 500 bp 
fragments. The performance increased with increasing 
fragment length. For known organisms, we obtained 
sensitivity and specificity of 93% and 98%, respectively, 
with fragment lengths of 500 bp. Therefore, our method can 
recognize almost 93% of the fragments of species belonging 
to the Agrobacterium genus. This trend was also shown 
using the dataset representing new organisms.    

However, the sensitivity of our method was 52% for 
known organisms and 40% for new organisms when 
classifying fragments of species in the Staphylococcus 
genus with 500 bp fragments. These results occurred 
because many fragments had been assigned to Bacillus.  
Staphylococcus and Bacillus are in the same order 
Bacillales. Thus, misclassification of fragments probably 
occurred because of sequence overlap between different 
strains within species in the same order. Therefore, we need 
to consider extending this method to classify fragments in 
higher taxonomy levels.  

  

IV. CONCLUSION AND FUTURE WORK 

In this paper, we presented a metagenome fragment 
binning process by implementing SVM and Gaussian RBF 
kernels based on characterization vectors. Our results show 
that this approach can improve the binning process to obtain 
high accuracy at the genus level with short fragment lengths 
(500 bp). This method is promising because the 
characterization vector can provide enough information to 
perform similarity measures without doing sequence 
alignments or using composition measures such a k-mers.  

Future work will continue in two directions: (1) to 
generate a new kernel by combining the characterization 
vectors and k-mer features and (2) to test this new method 
on other taxonomy levels, such as family, order, class, 
phylum, and domain, with more species. 
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Figure 6 Sensitivity and specificity of classifiers for each genus with datasets representing known organisms. The legend specifies the color code for the 

respective fragment length in the graphs. 
 

 

 
Figure 7 Sensitivity and specificity of classifiers for each genus with datasets representing new organisms. The legend specifies the color code for the 

respective fragment length in the graphs. 

 


