

Design and Simulation of Hybrid de novo DNA Sequence

Assembly for Large Eukaryotic Genomes

Wisnu Ananta Kusuma, Yutaka Akiyama

Department of Computer Science
Graduate School of Information Science and Engineering

Tokyo Institute of Technology, 2-12-1-W8-76, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Abstract - We propose an approach for de novo DNA
sequence assembly using very short reads of a large
eukaryotic genome. Our assembler combines two main
approaches in DNA sequence assembly, Overlap Layout
Consensus (OLC) and Eulerian Path, with two types of
reads to obtain significant contigs. This approach will be
applied in a parallel environment. In this paper, we present
the data and functional requirements for implementation in
our assembler. We also present our hybrid assembler
strategy and architecture. We simulate the core of the
hybrid assembly and find that the hybrid strategy tends to
produce long contigs. It is expected that this approach will
generate an accurate and efficient DNA sequence assembly
for large eukaryotic genomes.

Keywords: de novo DNA sequence assembly; very short
read; eukaryotic genome; high-performance computing

1 Introduction
 DNA determines the characteristics of an organism.
Therefore, sequencing DNA is very important. There is no
technique for determining an organism's entire DNA
sequence in a single process. Most of the technologies for
sequencing genomes depend on the shotgun method, in
which genomes are randomly cut into many fragments and
computer programs are required to reconstruct the DNA
sequence. Fragments of DNA sequences can be assembled
in two ways: by mapping the DNA sequences to a reference
sequence or by de novo DNA sequence assembly, which
requires no reference sequence and can be used for newly
sequenced organisms. De novo sequence assembly is
conducted by detecting overlaps between fragments (reads)
and merging them into longer fragments (contigs).

 Many researchers have been successful in developing
DNA sequence assemblers for long reads (500 bp) based
on the Overlap Layout Consensus approach [1], [2], [3], [4].

This work is supported in part by the Global Centre of Excellence
(GCOE) CompView, Tokyo Institute of Technology
(email: ananta@bi.cs.titech.ac.jp).

 This approach represents the sequence assembly
problem as an overlap graph. In this graph, each node
represents a read, and each edge represents overlap
between two reads.

 However, the OLC approach is not suitable for
assembling the very short reads (25 – 50 bp) generated by
recent sequencers. Applying the OLC approach to very
short reads makes the overlapping stage more difficult. The
abundant repeats in very short reads increase the
complexity of the graph. Pevzner [5] attempted to solve
this problem by introducing an Eulerian Path approach
using the de Bruijn Graph. In this approach, elements are
not organized around reads but around words of k
nucleotides, called k-mers. This approach has encouraged
researchers to develop genome assemblers for very short
reads [6], [7].

 Unlike sequence assemblers for long reads, which use
eukaryotic genome datasets, most of the assemblers for
very short reads are aimed at assembling prokaryotic
genomes. The size of dataset limits researchers from using
eukaryotic genomes as datasets because constructing the
graphs is expensive in terms of memory and time. However,
some researchers have succeeded in implementing
parallelization to reduce the execution time in constructing
and manipulating the graph during eukaryotic genome
assembly [8], [9], [10].

 In this paper, we contribute the design of a high-
performance de novo DNA sequence assembly method for
large eukaryotic genomes. We introduce a hybrid
assembler strategy and architecture designed by combining
two DNA sequence assembly approaches and two types of
reads to obtain an accurate and efficient DNA sequence
assembly for large eukaryotic genomes.

2 de novo DNA Sequence Assembly
2.1 A common problem in DNA sequence

assembly
 The problem of assembling DNA sequences can be
formulated into the problem of finding the shortest
common superstring. Suppose we have a DNA sequence
from an unknown source of A= a1, a2,..,aL. Shotgun

mailto:ananta@bi.cs.titech.ac.jp�

sequencing of A produces a set of reads (or fragments)
F = {f1, f2,.…,fR} that are sequences over the alphabet
∑ = {A, C, G, T}. To reconstruct the sequence A from the
set of its fragments F = {f1, f2, …,fR}, we should find the
shortest possible string S such that for every f ∈ F, S is a
superstring of f.

 Basically, this problem can be solved by finding the
region of overlap among the fragments. The classical
approach, Overlap Layout Consensus, applies an overlap
graph to represent elements of this problem. Each node
represents a read, while each edge represents the overlap
between two reads. A solution can be obtained by finding a
path that visits each node exactly once. This computation is
a Hamiltonian Path problem, which is classified as
an NP hard problem. Moreover, this problem will be more
complicated by the presence of repeats and the existence of
sequencing errors.

 Repeats are multiple copies of identical substrings at
different positions in the DNA. Repeats are much more
prevalent in very short reads because the overlap region is
shorter. It will increase the possibility of finding the same
substring, not just in the overlap region but also in other
parts of the read. Thus, it causes ambiguity and tends to
generate mis-assembled contigs. Furthermore, sequencing
errors produced by the sequencer increase the complexity
of the graph topology because these errors yield erroneous
edges in the graph.

2.2 DNA Sequence Assembly Approach
 There are two main approaches to dealing with DNA
sequence assembly: Overlap Layout Consensus (OLC) and
the Eulerian Path approach. The OLC approach consists of
three steps: overlap, layout, and consensus.

 In the overlap step, we first find potentially
overlapping reads by a greedy approach. This information
is used to construct an overlap graph by the following
procedure: construct a graph with n vertices, representing
the n strings (reads) s1, s2,…., sn, and insert edges of length
overlap (si, sj) between the vertices si and sj. For this
purpose, we define weight as the length of the prefix of sj
that matches a suffix of si and overlap (si, sj) as the length
of the longest prefix of sj that matches a suffix of si.

 During the layout stage, the overlap graph is analyzed
to find the single path in the overlap graph that has the
maximum total weight. This path is the ideal solution.
However, in fact, this overlap graph formulation is not
suitable for finding the single path that represents the
shortest superstring [11]. Therefore, current genome
assemblers still produce many contigs as their outputs. In
the layout stage, the set of contigs is merged to yield
supercontigs. For this purpose, we need information on the
mate pair lengths to estimate the distance between two
contigs that are to be merged.

 The final step in the OLC strategy is consensus. The
goal of this step is to determine the DNA sequence by
applying an alignment of all the reads covering the genome.
The consensus sequence is determined by vote using
quality values.

 Currently, the Eulerian Path approach introduced by
Pevzner [5] is very popular. It adopts de Bruijn Graphs to
assemble the sequence by organizing (k-1)-mers as vertices
and k-mers as edges. This approach can simplify the
complexity of the layout problem in the OLC approach into
an Eulerian Path problem that can be solved efficiently.
The most important issue in the Eulerian approach is
choosing the optimal value of k when constructing the de
Bruijn Graph. Actually, the effectiveness of the de Bruijn
Graph in producing significant contigs depends on the
value of k. Smaller k-mers increase the connectivity of the
graph, increasing sensitivity. However, smaller k-mers also
increase the number of ambiguous repeats in the graph [6].

3 Requirement Analysis
3.1 Data Requirements
 Based on the characteristics of the cell, there are two
types of DNA sequence data: prokaryotic genomes and
eukaryotic genomes. A distinction between prokaryotes and
eukaryotes is that eukaryotic cells have a nucleus
containing their DNA, whereas prokaryotic cells lack a
nucleus. In general, working with prokaryotic genomes
entails dealing with smaller data sets than working with
eukaryotic genomes.

 The length of read also affects DNA sequence
assembly. There are three types of reads: long reads
(500 bp) [1], short reads (100-200 bp), and very short reads
(25-50 bp) [6]. Currently, some sequencers, such as the
Illumina, 454, and SOLiD, produce very short reads.
Eukaryotic genomes are usually assembled from long reads.
On the other hand, prokaryotic genomes are usually
assembled from shorter reads. Assembling large eukaryotic
genomes from very short reads has yet to be exploited.

 Beside DNA-sequence reads, we also require mate-
pair reads as input for producing supercontigs. As
explained in the previous section, representing the DNA
sequence assembly problem as an overlap graph or a de
Bruijn Graph could not meet the ultimate goal of producing
a single contig that represents the original DNA sequence.
We require mate-pair reads to provide information on the
distance between two contigs that are to be merged. This
information is used to concatenate the set of contigs into
supercontigs.

3.2 Functional Requirements
 The functional features of DNA sequence assembly
actually depend on the approach used. However, there are

several functions that are implemented by both approaches,
such as simplification and sequence error removal. The
other functions are adjusted to the characteristics of each
approach. OLC consists of conducting the overlapping
phase, processing the layout, and obtaining a consensus. On
the other hand, the Eulerian Path approach usually contains
several main functions, such as constructing de Bruijn
Graphs and generating contigs by finding Eulerian paths. In
addition, some assemblers introduce new functional
features that distinguish them from other assemblers to
obtain significant results, such as reducing the read
redundancy [12], finding all paths in the de Bruijn Graph
and localization [7], and clustering reads to obtain accurate
contigs when running a distributed de Bruijn graph in a
parallel environment [10].

 To define a set of functional requirements for our
assembler, we consider two aspects. First, we did a
functional analysis of previous assemblers, taking into
account the success of each assembler in applying its
approach. Second, we focused on large eukaryotic genomes
as our target. This strategy will guide us in developing an
accurate and efficient DNA sequence assembler.

Table 1 DNA sequence assembler

Assembler Strategy/Approach Type of reads
Celera OLC long read
ARACHNE OLC long read
PCAP OLC long read
Allpath Eulerian Path very short read
Velvet Eulerian Path very short read
Edena OLC very short read

Table 2 Execution time of Edena and Velvet, in CPU
3.2 GHz and 2 Gb Memory using the Staphylococcus
Aureus strain MW2

Assembler Process Execution
time

Edena Eliminating Redundant
Reads and Detecting Overlap

11 m 30 s

Layout and Consensus 17 s
Velvet
(k=23)

Hashing Reads 59 s
Constructing and
Manipulating de Bruijn
Graph

1 m 40 s

 Table 1 lists DNA sequence assemblers and their
approaches. All assemblers for long reads applied the OLC
approach. On the other hand, most of the assemblers for
very short reads, except Edena, adopted the Eulerian Path
approach. From this fact, we gather that the OLC approach
is more suitable for assembling long reads, while the
Eulerian Path approach is appropriate for assembling very
short reads. Although the authors of Edena tried to prove

that the OLC approach could also give accurate results for
very short reads [12], our experiment found it to be less
efficient than Velvet (see Table 2). Edena requires a
preprocessing stage to reduce the number of redundant
reads, while redundant reads in Velvet are intrinsically
handled by the de Bruijn Graph.

 Another important issue in DNA assembly is related
to sequencing error removal. Some assemblers, such as
Velvet [6] and Edena [12], remove errors after constructing
the graph. In the case of Velvet, sequencing errors are
removed based on topological features, such as erroneous
edges and bubbles. The topological approach is effective
for small genomes, such as prokaryotic genomes. However,
for large eukaryotic genomes, removing errors after
constructing the graph is not efficient. Constructing a de
Bruijn Graph for a eukaryotic genome will itself consume
much memory and time. Therefore, removing sequencing
errors before constructing the graph, as a preprocessing
step, is more efficient. The Euler assembler [5] applies
preprocessing sequencing error correction based on
spectral alignment.

 For efficiency, some researchers introduced
parallelization to accelerate the eukaryotic genome
assembly process. Some of the parallelization strategies
that have been used are parallelizing hierarchical data [8],
distributing and manipulating a bi-directed string graph
using multiprocessor computers [9], and representing very
short reads in distributed de Bruijn graphs [10]. However,
to obtain accurate contigs, Simpson et al. [10] applied
clustering to their data before constructing the distributed
de Bruijn graph in a parallel environment. This clustering
method is based on the k-mer information.

 Table 3 Functional requirements

Functional
Requirement

Description

Clustering of very
short reads

Very short reads will be clustered
based on their k-mer frequency to
obtain groups of reads that share as
many of the same k-mer as possible

Sequencing error
correction

Sequencing errors will be corrected
using the spectral alignment approach
during a preprocessing step.

Construction,
simplification,
and processing of
the de Bruijn
Graph to produce
contigs

Each group of reads will be
distributed to each processor to
implement the Eulerian Path approach

Application of the
OLC approach for
long reads

Contigs produced by the Eulerian
approach in previous processes will
be assembled using the OLC
approach to generate supercontigs.

 Furthermore, based on the above functional analysis
of previous assemblers, we identified the main functional
requirements of our assembler, as presented in Table 3.

4 Design and Simulation
4.1 Hybrid DNA Sequence Assembly
 We propose a hybrid assembly process strategy to
assemble very short reads of large eukaryotic genomes
(Figure 1). The previous research by Reinhardt et al. [13]
had adopted a hybrid approach by combining two
assemblers, VCAKE and NEWBLER, and two types of
reads, Illumina very short reads and 454 long reads. In our
case, we would not apply the assembler directly; we want
to combine the OLC and Eulerian Path assembler
approaches in our framework to obtain significant contigs.

Assembling
Based on Eulerian Path

Assembling
Based on Eulerian Path

C

short reads

Clustering
based on k-mer

Group of
reads

A

Sequencing Errors
Correction

Sequencing Errors
Correction

Sequencing Errors
Correction

.

.

.

B

Assembling
Based on Eulerian Path

.

.

.

contigs contigs contigs.
D

Long reads

Assembling
Based on OLC

supercontigs
Mate pair

reads

Assembling
Based on OLC

Assembling
Based on OLC. . . .

Figure 1 Hybrid DNA sequence assembly

 In our proposed assembler, first, Illumina very short
reads will be clustered based on k-mers (A). If the same k-
mer is found in multiple sequences, those sequences are
likely to come from the same region of the genome. Each
group of reads will be distributed to each processor, which
will simultaneously execute a sequencing error correction
process based on spectral alignment (B). This process is
aimed at reducing the size of the de Bruijn graph that will
be constructed. Then, the Eulerian Path approach will be
applied in a parallel environment to assemble very short
reads, starting with constructing and simplifying the graph,
and then finding the Eulerian path to produce contigs (C).
These contigs will be treated as long reads and combined
with long reads and mate pair reads to generate
supercontigs using the OLC approach in parallel
environment (D). This hybrid assembly process is outlined
in Figure 1.

 At the implementation level, we would like to
consider a new programming model, MapReduce.
MapReduce has a map function that can be used to extract
all shifts of a predefined length k of k-mers in the input
sequences. Thus, we could develop clustering based on

k-mers more simply than by using another programming
model. Furthermore, we would like to apply MPI to
perform the error correction process and execute the core
assembly process for both the Eulerian and OLC
approaches. MPI is a distributed memory programming
model; therefore, it is suitable for representing the
distributed de Bruijn graph.

4.2 Simulation and Results
 In this simulation, we would like to focus on the
assembly process as the core of our approach. Our
objective is to show the effectiveness of our hybrid
assembler. Therefore, in this paper, we were not concerned
with clustering, sequencing error correction, or even
parallelization. We believe that if we can prove that our
hybrid assembler approach is effective, then we can
implement it in a parallel environment. We applied three
assemblers, Velvet (based on the Eulerian Path), Edena
(based on OLC), and Minimus (based on OLC) [15], as
proposed by Hernandez [12], to simulate our approach.

 Table 4 Results of Hybrid assembly using the
Staphylococcus Aureus strain MW2 dataset

Assembler Number of
contigs

N50
(kbp)

Maximum
(kbp)

Total
(Mbp)

Velvet 1152 5.3 2.3 2.78
Edena 1175 5.4 2.3 2.76
Hybrid 890 7.4 3.3 2.77

Table 5 Results of Hybrid assembly using the Helicobacter
pullorum NCTC 12824 dataset

Assembler Number of
contigs

N50
(kbp)

Maximum
(kbp)

Total
(Mbp)

Velvet 3981 0.58 4.4 1.77
Edena 4330 0.35 4.1 1.25
Hybrid 2570 0.86 9.1 1.66

Table 6 Results of Hybrid assembly using the
Saccharomyces cerevisiae chromosome 5 dataset

Assembler Number
of contigs

N50
(kbp)

Maximum
(kbp)

Total
(Mbp)

Velvet 105 22.6 48.9 0.56
Edena 131 17.9 41.8 0.56
Hybrid 78 27.2 48.9 0.56

 First, we assembled very short reads with Velvet and
Edena, separately. Next, we assembled contigs produced by
Velvet and Edena using the Minimus assembler. In this
case, the contigs produced by Edena represent long reads
that would be combined with contigs produced by Velvet
and then be assembled using Minimus. This simulation
combines the Eulerian Path and OLC approaches, which

are represented by the Velvet and Minimus assemblers,
respectively. Moreover, it also combines two types of
reads: very short reads and long reads, represented by the
contigs produced by Edena. Thus, we refer to our approach
as a Hybrid assembler. To show the performance of our
simulation, we use three datasets: Staphylococcus Aureus
strain MW2 [12], Helicobacter pullorum NCTC 12824
from the NCBI Short Read Archive, and Saccharomyces
cerevisiae chromosome 5 from simulated Solexa/Illumina-
style datasets [14]. All the results of the assembly process
showed that assembly using a hybrid strategy could
produce longer contigs, especially on N50 and maximum
contigs, than Velvet or Edena (Table 4-6).

5 Conclusions and Future Work
 In this paper, we have presented data and functional
requirements for an accurate and efficient hybrid DNA
assembler for large eukaryotic genomes. Our proposed
assembler uses a hybrid strategy that combines two main
DNA assembly approaches and two types of reads for
execution in a high-performance computing environment.
Our simulation of the core assembly process has shown that
the hybrid strategy can generate long contigs.
Implementation of this hybrid approach with a large dataset,
such as a eukaryotic genome, may produce similar results.
However, the accuracy and efficiency of our assembler for
large eukaryotic genomes will also depend on other
processes, such as clustering of very short reads and
correction of sequencing errors. Therefore, our future work
includes implementing those two processes in a parallel
environment.

6 References
[1] Myers, E. W., Sutton G. G., Delcher, A. L., Dew, I. M.,
Fasulo, D. P., Flanigan, M. J., Kravitz, S. A., Mobarry, C.
M., Reinert, K.H.J., Remington, K.A. “A Whole-genome
assembly of Drosophila”. Science 287: 2196-2204. 2000.

[2] Batzoglou, S., Jaffe, D. B., Stanley, K., Butler, J.,
Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P., and
Lander, E. S. “ARACHNE: A whole genome shotgun
assembler”. Genome Res. 12: 177 – 189. 2002.

[3] Huang, X., Wang, J., Aluru, S., Yang, S., and Hillier, D.
“PCAP: A Whole-Genome Assembly Program”. Genome
Res. 13:2164-2170. 2003.

[4] Mullikin, J. C. and Ning, Z. “The Phusion Assembler”.
Genome Res. 13:81-90. 2003.

[5] Pevzner, P.A., Tang, H., and Waterman, M.S. “An
Euler path approach to DNA fragment assembly”. Proc.
Natl. Acad. Sci. 98: 9478-9753. 2001.

[6] Zerbino, D.R. and Birney, E. “Velvet: Algorithms for de
novo short read assembly using de Bruijn graphs”. Genome
Res. 18: 821-829. 2008.
[7] Butler, J., MacCallum, L., Kleber, M., et. al.
“ALLPATHS: De novo assembly of whole-genome shotgun
microreads”. Genome Res. 18:810-820. 2008.

[8] Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P,
Batzoglou S. “Whole genome sequencing and assembly
with high-throughput, short read technology”. PloS One
2:e484. 2007.

[9] Jackson, B.G., Shnable, P.S., and Aluru, S. “Parallel
short sequence assembly of transcriptomes”. BMC
Bioinformatics 10 (Suppl I):S14. 2009.

[10] Simpson, J. T., Wong, K., Jackman, S. D., et. al.
“ABySS: A parallel assembler for short read sequence
data”. Genome Res. 19:1117-1123. 2009.

[11] Pop, M. “Genome assembly reborn: recent
computational challenges”. Oxford University Press. 2009.

[12] Hernandez, D., et. al. “De novo bacterial genome
sequencing: Millions of very short reads assembled on a
desktop computer”. Genome Research 18:802 – 809. 2008.

[13] Reinhardt, J. A. et. al. “De novo using low-coverage
short read sequence data from the rice pathogen
Pseudomonas syringae pv. Oryzae”. Genome Res. 19:294-
305. 2009.

[14] Shi, H. et. al. “Accelerating Error Correction in High-
Throughput Short-Read DNA Sequencing Data with
CUDA”. IEEE International Symposium on
Parallel&Distributed Processing. 2009.

[15] Sommer, D. D., et. al. “Minimus: a fast, lightweight
genome assembler”. BMC Bioinformatics: 8:64. 2007.

	Introduction
	de novo DNA Sequence Assembly
	A common problem in DNA sequence assembly
	DNA Sequence Assembly Approach

	Requirement Analysis
	Data Requirements
	Functional Requirements

	Design and Simulation
	Hybrid DNA Sequence Assembly
	Simulation and Results

	Conclusions and Future Work
	References

