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Abstract - We propose an approach for de novo DNA 
sequence assembly using very short reads of a large 
eukaryotic genome. Our assembler combines two main 
approaches in DNA sequence assembly, Overlap Layout 
Consensus (OLC) and Eulerian Path, with two types of 
reads to obtain significant contigs. This approach will be 
applied in a parallel environment. In this paper, we present 
the data and functional requirements for implementation in 
our assembler. We also present our hybrid assembler 
strategy and architecture. We simulate the core of the 
hybrid assembly and find that the hybrid strategy tends to 
produce long contigs. It is expected that this approach will 
generate an accurate and efficient DNA sequence assembly 
for large eukaryotic genomes. 
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1 Introduction 
  DNA determines the characteristics of an organism. 
Therefore, sequencing DNA is very important. There is no 
technique for determining an organism's entire DNA 
sequence in a single process. Most of the technologies for 
sequencing genomes depend on the shotgun method, in 
which genomes are randomly cut into many fragments and 
computer programs are required to reconstruct the DNA 
sequence. Fragments of DNA sequences can be assembled 
in two ways: by mapping the DNA sequences to a reference 
sequence or by de novo DNA sequence assembly, which 
requires no reference sequence and can be used for newly 
sequenced organisms. De novo sequence assembly is 
conducted by detecting overlaps between fragments (reads) 
and merging them into longer fragments (contigs).  

 Many researchers have been successful in developing 
DNA sequence assemblers for long reads (500 bp) based 
on the Overlap Layout Consensus approach [1], [2], [3], [4].  
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 This approach represents the sequence assembly 
problem as an overlap graph. In this graph, each node 
represents a read, and each edge represents overlap 
between two reads. 

 However, the OLC approach is not suitable for 
assembling the very short reads (25 – 50 bp) generated by 
recent sequencers. Applying the OLC approach to very 
short reads makes the overlapping stage more difficult. The 
abundant repeats in very short reads increase the 
complexity of the graph. Pevzner [5] attempted to solve 
this problem by introducing an Eulerian Path approach 
using the de Bruijn Graph. In this approach, elements are 
not organized around reads but around words of k 
nucleotides, called k-mers. This approach has encouraged 
researchers to develop genome assemblers for very short 
reads [6], [7].  

 Unlike sequence assemblers for long reads, which use 
eukaryotic genome datasets, most of the assemblers for 
very short reads are aimed at assembling prokaryotic 
genomes. The size of dataset limits researchers from using 
eukaryotic genomes as datasets because constructing the 
graphs is expensive in terms of memory and time. However, 
some researchers have succeeded in implementing 
parallelization to reduce the execution time in constructing 
and manipulating the graph during eukaryotic genome 
assembly [8], [9], [10].  

 In this paper, we contribute the design of a high-
performance de novo DNA sequence assembly method for 
large eukaryotic genomes. We introduce a hybrid 
assembler strategy and architecture designed by combining 
two DNA sequence assembly approaches and two types of 
reads to obtain an accurate and efficient DNA sequence 
assembly for large eukaryotic genomes.  

2 de novo DNA Sequence Assembly 
2.1 A common problem in DNA sequence 

assembly 
 The problem of assembling DNA sequences can be 
formulated into the problem of finding the shortest 
common superstring. Suppose we have a DNA sequence 
from an unknown source of A= a1, a2,..,aL. Shotgun 
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sequencing of A produces a set of reads (or fragments)      
F = {f1, f2,.…,fR} that are sequences over the alphabet       
∑ = {A, C, G, T}. To reconstruct the sequence A from the 
set of its fragments F = {f1, f2, …,fR}, we should find the 
shortest possible string S such that for every f ∈ F, S is a 
superstring of f.  

 Basically, this problem can be solved by finding the 
region of overlap among the fragments. The classical 
approach, Overlap Layout Consensus, applies an overlap 
graph to represent elements of this problem. Each node 
represents a read, while each edge represents the overlap 
between two reads. A solution can be obtained by finding a 
path that visits each node exactly once. This computation is 
a Hamiltonian Path problem, which is classified as           
an NP hard problem. Moreover, this problem will be more 
complicated by the presence of repeats and the existence of 
sequencing errors.  

 Repeats are multiple copies of identical substrings at 
different positions in the DNA. Repeats are much more 
prevalent in very short reads because the overlap region is 
shorter. It will increase the possibility of finding the same 
substring, not just in the overlap region but also in other 
parts of the read. Thus, it causes ambiguity and tends to 
generate mis-assembled contigs. Furthermore, sequencing 
errors produced by the sequencer increase the complexity 
of the graph topology because these errors yield erroneous 
edges in the graph. 

2.2 DNA Sequence Assembly Approach 
 There are two main approaches to dealing with DNA 
sequence assembly: Overlap Layout Consensus (OLC) and 
the Eulerian Path approach. The OLC approach consists of 
three steps: overlap, layout, and consensus. 

 In the overlap step, we first find potentially 
overlapping reads by a greedy approach. This information 
is used to construct an overlap graph by the following 
procedure: construct a graph with n vertices, representing 
the n strings (reads) s1, s2,…., sn, and insert edges of length 
overlap (si, sj) between the vertices si and sj. For this 
purpose, we define weight as the length of the prefix of sj 
that matches a suffix of si and overlap (si, sj) as the length 
of the longest prefix of sj that matches a suffix of si. 

 During the layout stage, the overlap graph is analyzed 
to find the single path in the overlap graph that has the 
maximum total weight. This path is the ideal solution. 
However, in fact, this overlap graph formulation is not 
suitable for finding the single path that represents the 
shortest superstring [11]. Therefore, current genome 
assemblers still produce many contigs as their outputs. In 
the layout stage, the set of contigs is merged to yield 
supercontigs. For this purpose, we need information on the 
mate pair lengths to estimate the distance between two 
contigs that are to be merged.  

 The final step in the OLC strategy is consensus. The 
goal of this step is to determine the DNA sequence by 
applying an alignment of all the reads covering the genome. 
The consensus sequence is determined by vote using 
quality values. 

 Currently, the Eulerian Path approach introduced by 
Pevzner [5] is very popular. It adopts de Bruijn Graphs to 
assemble the sequence by organizing (k-1)-mers as vertices 
and k-mers as edges. This approach can simplify the 
complexity of the layout problem in the OLC approach into 
an Eulerian Path problem that can be solved efficiently. 
The most important issue in the Eulerian approach is 
choosing the optimal value of k when constructing the de 
Bruijn Graph. Actually, the effectiveness of the de Bruijn 
Graph in producing significant contigs depends on the 
value of k. Smaller k-mers increase the connectivity of the 
graph, increasing sensitivity. However, smaller k-mers also 
increase the number of ambiguous repeats in the graph [6]. 

3 Requirement Analysis 
3.1 Data Requirements 
 Based on the characteristics of the cell, there are two 
types of DNA sequence data: prokaryotic genomes and 
eukaryotic genomes. A distinction between prokaryotes and 
eukaryotes is that eukaryotic cells have a nucleus 
containing their DNA, whereas prokaryotic cells lack a 
nucleus. In general, working with prokaryotic genomes 
entails dealing with smaller data sets than working with 
eukaryotic genomes.  

 The length of read also affects DNA sequence 
assembly. There are three types of reads: long reads   
(500 bp) [1], short reads (100-200 bp), and very short reads  
(25-50 bp) [6]. Currently, some sequencers, such as the 
Illumina, 454, and SOLiD, produce very short reads. 
Eukaryotic genomes are usually assembled from long reads. 
On the other hand, prokaryotic genomes are usually 
assembled from shorter reads. Assembling large eukaryotic 
genomes from very short reads has yet to be exploited. 

 Beside DNA-sequence reads, we also require mate-
pair reads as input for producing supercontigs. As 
explained in the previous section, representing the DNA 
sequence assembly problem as an overlap graph or a de 
Bruijn Graph could not meet the ultimate goal of producing 
a single contig that represents the original DNA sequence. 
We require mate-pair reads to provide information on the 
distance between two contigs that are to be merged. This 
information is used to concatenate the set of contigs into 
supercontigs.  

3.2 Functional Requirements 
 The functional features of DNA sequence assembly 
actually depend on the approach used. However, there are 



several functions that are implemented by both approaches, 
such as simplification and sequence error removal. The 
other functions are adjusted to the characteristics of each 
approach. OLC consists of conducting the overlapping 
phase, processing the layout, and obtaining a consensus. On 
the other hand, the Eulerian Path approach usually contains 
several main functions, such as constructing de Bruijn 
Graphs and generating contigs by finding Eulerian paths. In 
addition, some assemblers introduce new functional 
features that distinguish them from other assemblers to 
obtain significant results, such as reducing the read 
redundancy [12], finding all paths in the de Bruijn Graph 
and localization [7], and clustering reads to obtain accurate 
contigs when running a distributed de Bruijn graph in a 
parallel environment [10]. 

 To define a set of functional requirements for our 
assembler, we consider two aspects. First, we did a 
functional analysis of previous assemblers, taking into 
account the success of each assembler in applying its 
approach. Second, we focused on large eukaryotic genomes 
as our target. This strategy will guide us in developing an 
accurate and efficient DNA sequence assembler. 

Table 1 DNA sequence assembler 
 

Assembler Strategy/Approach Type of reads 
Celera OLC long read 
ARACHNE OLC long read 
PCAP OLC long read 
Allpath Eulerian Path very short read 
Velvet Eulerian Path very short read 
Edena  OLC very short read 

 

Table 2 Execution time of Edena and Velvet, in CPU      
3.2 GHz and 2 Gb Memory using the Staphylococcus 
Aureus strain MW2 

Assembler Process Execution 
time 

Edena Eliminating Redundant 
Reads and Detecting Overlap 

11 m 30 s 

Layout and Consensus 17 s 
Velvet 
(k=23) 

Hashing Reads 59 s 
Constructing and 
Manipulating de Bruijn 
Graph 

1 m 40 s 

 

 Table 1 lists DNA sequence assemblers and their 
approaches. All assemblers for long reads applied the OLC 
approach. On the other hand, most of the assemblers for 
very short reads, except Edena, adopted the Eulerian Path 
approach. From this fact, we gather that the OLC approach 
is more suitable for assembling long reads, while the 
Eulerian Path approach is appropriate for assembling very 
short reads. Although the authors of Edena tried to prove 

that the OLC approach could also give accurate results for 
very short reads [12], our experiment found it to be less 
efficient than Velvet (see Table 2). Edena requires a 
preprocessing stage to reduce the number of redundant 
reads, while redundant reads in Velvet are intrinsically 
handled by the de Bruijn Graph. 

 Another important issue in DNA assembly is related 
to sequencing error removal. Some assemblers, such as 
Velvet [6] and Edena [12], remove errors after constructing 
the graph. In the case of Velvet, sequencing errors are 
removed based on topological features, such as erroneous 
edges and bubbles. The topological approach is effective 
for small genomes, such as prokaryotic genomes. However, 
for large eukaryotic genomes, removing errors after 
constructing the graph is not efficient. Constructing a de 
Bruijn Graph for a eukaryotic genome will itself consume 
much memory and time. Therefore, removing sequencing 
errors before constructing the graph, as a preprocessing 
step, is more efficient. The Euler assembler [5] applies 
preprocessing sequencing error correction based on 
spectral alignment.  

 For efficiency, some researchers introduced 
parallelization to accelerate the eukaryotic genome 
assembly process. Some of the parallelization strategies 
that have been used are parallelizing hierarchical data [8], 
distributing and manipulating a bi-directed string graph 
using multiprocessor computers [9], and representing very 
short reads in distributed de Bruijn graphs [10]. However, 
to obtain accurate contigs, Simpson et al. [10] applied 
clustering to their data before constructing the distributed 
de Bruijn graph in a parallel environment. This clustering 
method is based on the k-mer information.  

 Table 3 Functional requirements 
 

Functional 
Requirement 

Description 

Clustering of very 
short reads 

Very short reads will be clustered 
based on their k-mer frequency to 
obtain groups of reads that share as 
many of the same k-mer as possible 

Sequencing error 
correction 

Sequencing errors will be corrected 
using the spectral alignment approach 
during a preprocessing step. 

Construction, 
simplification, 
and processing of 
the de Bruijn 
Graph to produce 
contigs 

Each group of reads will be 
distributed to each processor to 
implement the Eulerian Path approach  

Application of the 
OLC approach for 
long reads 

Contigs produced by the Eulerian 
approach in previous processes will 
be assembled using the OLC 
approach to generate supercontigs.  



 Furthermore, based on the above functional analysis 
of previous assemblers, we identified the main functional 
requirements of our assembler, as presented in Table 3. 

4 Design and Simulation 
4.1  Hybrid DNA Sequence Assembly 
 We propose a hybrid assembly process strategy to 
assemble very short reads of large eukaryotic genomes 
(Figure 1). The previous research by Reinhardt et al. [13] 
had adopted a hybrid approach by combining two 
assemblers, VCAKE and NEWBLER, and two types of 
reads, Illumina very short reads and 454 long reads. In our 
case, we would not apply the assembler directly; we want 
to combine the OLC and Eulerian Path assembler 
approaches in our framework to obtain significant contigs. 
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Figure 1 Hybrid DNA sequence assembly 

  In our proposed assembler, first, Illumina very short 
reads will be clustered based on k-mers (A). If the same k-
mer is found in multiple sequences, those sequences are 
likely to come from the same region of the genome. Each 
group of reads will be distributed to each processor, which 
will simultaneously execute a sequencing error correction 
process based on spectral alignment (B). This process is 
aimed at reducing the size of the de Bruijn graph that will 
be constructed. Then, the Eulerian Path approach will be 
applied in a parallel environment to assemble very short 
reads, starting with constructing and simplifying the graph, 
and then finding the Eulerian path to produce contigs (C). 
These contigs will be treated as long reads and combined 
with long reads and mate pair reads to generate 
supercontigs using the OLC approach in parallel 
environment (D). This hybrid assembly process is outlined 
in Figure 1. 

 At the implementation level, we would like to 
consider a new programming model, MapReduce. 
MapReduce has a map function that can be used to extract 
all shifts of a predefined length k of k-mers in the input 
sequences. Thus, we could develop clustering based on     

k-mers more simply than by using another programming 
model. Furthermore, we would like to apply MPI to 
perform the error correction process and execute the core 
assembly process for both the Eulerian and OLC 
approaches. MPI is a distributed memory programming 
model; therefore, it is suitable for representing the 
distributed de Bruijn graph. 

4.2 Simulation and Results 
 In this simulation, we would like to focus on the 
assembly process as the core of our approach. Our 
objective is to show the effectiveness of our hybrid 
assembler. Therefore, in this paper, we were not concerned 
with clustering, sequencing error correction, or even 
parallelization. We believe that if we can prove that our 
hybrid assembler approach is effective, then we can 
implement it in a parallel environment. We applied three 
assemblers, Velvet (based on the Eulerian Path), Edena 
(based on OLC), and Minimus (based on OLC) [15], as 
proposed by Hernandez [12], to simulate our approach. 

  Table 4 Results of Hybrid assembly using the 
Staphylococcus Aureus strain MW2 dataset 

Assembler Number of 
contigs  

N50 
(kbp) 

Maximum 
(kbp) 

Total 
(Mbp) 

Velvet 1152 5.3 2.3 2.78 
Edena 1175 5.4 2.3 2.76 
Hybrid 890 7.4 3.3 2.77 

 

Table 5 Results of Hybrid assembly using the Helicobacter 
pullorum NCTC 12824 dataset 

Assembler Number of 
contigs 

N50 
(kbp) 

Maximum 
(kbp) 

Total 
(Mbp) 

Velvet 3981 0.58 4.4 1.77 
Edena 4330 0.35 4.1 1.25 
Hybrid 2570 0.86 9.1 1.66 

 

Table 6 Results of Hybrid assembly using the 
Saccharomyces cerevisiae chromosome 5 dataset 

Assembler Number 
of contigs 

N50 
(kbp) 

Maximum 
(kbp) 

Total 
(Mbp) 

Velvet 105 22.6 48.9 0.56 
Edena 131 17.9 41.8 0.56 
Hybrid 78 27.2 48.9 0.56 

 

 First, we assembled very short reads with Velvet and 
Edena, separately. Next, we assembled contigs produced by 
Velvet and Edena using the Minimus assembler. In this 
case, the contigs produced by Edena represent long reads 
that would be combined with contigs produced by Velvet 
and then be assembled using Minimus. This simulation 
combines the Eulerian Path and OLC approaches, which 



are represented by the Velvet and Minimus assemblers, 
respectively. Moreover, it also combines two types of 
reads: very short reads and long reads, represented by the 
contigs produced by Edena. Thus, we refer to our approach 
as a Hybrid assembler. To show the performance of our 
simulation, we use three datasets: Staphylococcus Aureus 
strain MW2 [12], Helicobacter pullorum NCTC 12824 
from the NCBI Short Read Archive, and Saccharomyces 
cerevisiae chromosome 5 from simulated Solexa/Illumina-
style datasets [14]. All the results of the assembly process 
showed that assembly using a hybrid strategy could 
produce longer contigs, especially on N50 and maximum 
contigs, than Velvet or Edena (Table 4-6). 

 
5 Conclusions and Future Work 
 In this paper, we have presented data and functional 
requirements for an accurate and efficient hybrid DNA 
assembler for large eukaryotic genomes. Our proposed 
assembler uses a hybrid strategy that combines two main 
DNA assembly approaches and two types of reads for 
execution in a high-performance computing environment. 
Our simulation of the core assembly process has shown that 
the hybrid strategy can generate long contigs. 
Implementation of this hybrid approach with a large dataset, 
such as a eukaryotic genome, may produce similar results. 
However, the accuracy and efficiency of our assembler for 
large eukaryotic genomes will also depend on other 
processes, such as clustering of very short reads and 
correction of sequencing errors. Therefore, our future work 
includes implementing those two processes in a parallel 
environment. 

6 References 
[1] Myers, E. W., Sutton G. G., Delcher, A. L., Dew, I. M., 
Fasulo, D. P., Flanigan, M. J., Kravitz, S. A., Mobarry, C. 
M., Reinert, K.H.J., Remington, K.A. “A Whole-genome 
assembly of Drosophila”. Science 287: 2196-2204. 2000. 
 
[2] Batzoglou, S., Jaffe, D. B., Stanley, K., Butler, J., 
Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P., and 
Lander, E. S. “ARACHNE: A whole genome shotgun 
assembler”. Genome Res. 12: 177 – 189. 2002. 
 
[3] Huang, X., Wang, J., Aluru, S., Yang, S., and Hillier, D. 
“PCAP: A Whole-Genome Assembly Program”. Genome 
Res. 13:2164-2170. 2003. 

 
[4] Mullikin, J. C. and  Ning, Z. “The Phusion Assembler”. 
Genome Res. 13:81-90. 2003. 
 
[5] Pevzner, P.A., Tang, H., and Waterman, M.S.  “An 
Euler path approach to DNA fragment assembly”. Proc. 
Natl. Acad. Sci. 98: 9478-9753. 2001. 
 

[6] Zerbino, D.R. and Birney, E. “Velvet: Algorithms for de 
novo short read assembly using de Bruijn graphs”. Genome 
Res. 18: 821-829. 2008. 
[7] Butler, J., MacCallum, L., Kleber, M., et. al. 
“ALLPATHS: De novo assembly of whole-genome shotgun 
microreads”. Genome Res. 18:810-820. 2008. 
 
[8] Sundquist, A., Ronaghi, M., Tang, H., Pevzner, P, 
Batzoglou S. “Whole genome sequencing and assembly 
with high-throughput, short read technology”. PloS One 
2:e484. 2007. 
 
[9] Jackson, B.G., Shnable, P.S., and Aluru, S. “Parallel 
short sequence assembly of transcriptomes”. BMC 
Bioinformatics 10 (Suppl I):S14. 2009. 
 
[10] Simpson, J. T., Wong, K., Jackman, S. D., et. al. 
“ABySS: A parallel assembler for short read sequence 
data”. Genome Res. 19:1117-1123. 2009. 
 
[11] Pop, M. “Genome assembly reborn: recent 
computational challenges”. Oxford University Press.  2009. 
 
[12] Hernandez, D., et. al. “De novo bacterial genome 
sequencing: Millions of very short reads assembled on a 
desktop computer”.  Genome Research 18:802 – 809. 2008. 
 
[13] Reinhardt, J. A. et. al. “De novo using low-coverage 
short read sequence data from the rice pathogen 
Pseudomonas syringae pv. Oryzae”. Genome Res. 19:294-
305. 2009. 
 
[14] Shi, H. et. al. “Accelerating Error Correction in High-
Throughput Short-Read DNA Sequencing Data with 
CUDA”. IEEE International Symposium on 
Parallel&Distributed Processing. 2009. 
 
[15] Sommer, D. D., et. al. “Minimus: a fast, lightweight 
genome assembler”. BMC Bioinformatics: 8:64. 2007. 
 
 


	Introduction
	de novo DNA Sequence Assembly
	A common problem in DNA sequence assembly
	DNA Sequence Assembly Approach

	Requirement Analysis
	Data Requirements
	Functional Requirements

	Design and Simulation
	Hybrid DNA Sequence Assembly
	Simulation and Results

	Conclusions and Future Work
	References

