Show simple item record

dc.contributor.authorSitanggang, Imas Sukaesih
dc.contributor.authorHusin, Nor Azura
dc.contributor.authorAgustina, Anita
dc.contributor.authorMahmoodian, Naghmeh
dc.date.accessioned2016-06-13T02:57:12Z
dc.date.available2016-06-13T02:57:12Z
dc.date.issued2010
dc.identifier.isbn978-1-4244-6716-7
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/81043
dc.description.abstractApplication of data mining techniques in library data results interesting and useful patterns that can be used to improve services in university libraries. This paper presents results of the work in applying the sequential pattern mining algorithm namely AprioriAll on a library transaction dataset. Frequent sequential patterns containing book sequences borrowed by students are generated for minimum supports 0.3, 0.2, 0.15 and 0.1. These patterns can help library in providing book recommendation to students, conducting book procurement based on readers need, as well as managing books layout.id
dc.language.isoenid
dc.publisherUniversiti Teknologi PETRONASid
dc.titleSequential Pattern Mining on Library Transaction Dataid
dc.typeArticleid
dc.subject.keywordSequential Pattern Miningid
dc.subject.keywordAprioriAllid
dc.subject.keywordLibrary Transaction Dataid


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record