View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Dissertations
      • DT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Dissertations
      • DT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Utilization of READY-ARL NOAA data and CMORPH for land and forest fire risk model development in Central Kalimantan

      Pemanfaatan data READY-ARL NOAA dan CMORPH untuk pengembangan model risiko kebakaran hutan dan Lahan di Kalimantan Tengah

      Thumbnail
      View/Open
      Fulltext (3.606Mb)
      Date
      2012
      Author
      Prasasti, Indah
      Boer, Rizaldi
      Ardiansyah, Muhammad
      Buono, Agus
      Syaufina, Lailan
      Metadata
      Show full item record
      Abstract
      Land and forest fires are one of the many causes of land degradation in Central Kalimantan. The utilization of remote sensing data, particularly READY-ARL NOAA and CMORPH data, is helpful in providing climate observation data. The objectives of this study are: 1) to analyze the relationship between the surface observation data and the READY-ARL NOAA and CMORPH (CPC Morphing) data by using Partial Least Square (PLS) Method to extract climate data from the satellite, 2) to develop the FDRS (Fire Danger Rating System) indices by using READY-ARL NOAA, CMORPH and hotspot data derived from the satellite data, 3) to develop an estimation model for burned area from hotspot, rainfall condition, and FDRS indices, and 4) to develop fire risk prediction model. The result of this study indicates that the READY-ARL NOAA and CMORPH data have the potential to make climate data estimation and are relatively good as FDRS (SPBK) data input. The use of PLS method is much better in generating a model estimation than simple regression. Precipitation accumulation for two months prior to fire occurrence and drought condition have correlation with the burned area. There is a correlation between the total number of fire hotspot and a series of days without rain around one to two months prior to fire occurrence. In addition, this study also found that the burned area in Central Kalimantan will increase if the drought code exceeds 500 point. Burned area can be estimated by using the following formulas: Burned Area (Ha) = 5.13 – 21.7 (CH2bl – 93) (R-sq = 67.2%) and this formula: Burned Area (Ha) = -62.9 + 5.14 (DC – 500) (R-sq = 58%) where CH2bl = precipitation accumulation for two months prior to fire occurrence and DC = drought code. The forecasts of fire occurrence probability can be determined by using a precipitation accumulation for two months prior to fire occurrence and Monte Carlo simulation. Efforts to anticipate and address the fire risk should be carried out as early as possible, i.e. two months in advance if the probability of fire risk has exceeded the value of 40%.
      URI
      http://repository.ipb.ac.id/handle/123456789/61139
      Collections
      • DT - Mathematics and Natural Science [475]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository