Additive vector autoregressive exogenous model for forecasting rainfall in Indramayu
Model aditif-VARX untuk peramalan curah hujan di Kabupaten Indramayu
Date
2012Author
Saputro, Dewi Retno Sari
Mattjik, Ahmad Ansori
Boer, Rizaldi
Hamim Wigena, Aji
Djuraidah, Anik
Metadata
Show full item recordAbstract
Problems in developing a model to forecast rainfall in Indramayu are the existence of missing data, outliers, high variability between rainfall stations. Zoning is a way to accommodate the variability of rainfall stations. Zoning resulted in three regions, i.e. region 1 consists of stations Anjatan, Bugel, Tulung Kacang, Karang Asem, Lawang Semut, Wanguk, Gabus Wetan, Cikedung, Kroya, Sukadana, Sumur Watu, Tugu, Bondan; region 2 consists of stations Salamdarma and Gantar; and region 3 consists of stations Cidempet, Losarang, Bangkir, Indramayu, Jatibarang, Juntinyuat, Kedokan Bunder, Lohbener, Sudi Mampir, Krangkeng, and SudiKampiran. Vector Autoregressive Exogenous (VARX) Additive models were developed for each region. This model is based on VARX lag 1 or VARX (1) model, smoothing spline, and the rainfall indicator variable. VARX (1) model was developed from the VAR (1) model by adding the exogenous factors that affect rainfall such as Sea Surface Temperature (SST) Nino 3.4, Southern Oscillation Index (SOI), and Dipole Mode Index (DMI). The reliability of VARX additive model especially for region 2 is evaluated by Relative Operating Characteristics (ROC) curve. The model is reliable only in January, February, March, April, November, and December. Kabupaten Indramayu dipilih sebagai lokasi penelitian model curah hujan karena merupakan salah satu kabupaten yang sangat sensitif terhadap kejadian iklim ekstrim. Luas lahan yang terkena kekeringan pada tahun El Nino selalu melonjak tinggi dibanding tahun normal. Berdasarkan hasil eksplorasi data curah hujan di kabupaten tersebut, diperoleh beberapa data hilang dan beberapa data pencilan. Rata-rata data hilang tersebar di semua bulan, mencapai 3.7% dengan persentase tertinggi terjadi pada bulan Januari sebesar 5.46% (musim hujan). Pencilan terbesar terjadi di bulan Agustus dan September dengan persentase 8.29% (musim kemarau). Data yang lengkap diperlukan dalam suatu pemodelan, oleh karena itu pendugaan data diperlukan untuk melengkapi data yang hilang. Selain itu, pengamatan yang merupakan pencilan dalam data deret waktu tidak dapat dihilangkan karena eratnya hubungan antar amatan dalam deret waktu. Adanya pencilan akan berpengaruh terhadap beberapa pengamatan sesudahnya. Penelitian ini bertujuan melakukan pendugaan data hilang, melakukan pewilayahan curah hujan, menentukan model Vector Autoregressive (VAR) dan Vector Autoregressive Exogenous (VARX), mengembangkan model VARX dengan model aditif-VARX.