Show simple item record

dc.contributor.authorSitanggang, Imas S
dc.contributor.authorHermadi, Irman
dc.contributor.authorEdward
dc.date.accessioned2011-05-25T07:57:32Z
dc.date.available2011-05-25T07:57:32Z
dc.date.issued2007
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/45489
dc.description.abstract"Data berukuran besar yang sudah disimpan tidak digunakan secara optimal karena manusia seringkali tidak memiliki waktu dan ilmu yang cukup untuk mengelolanya. Kasus ini terjadi di Panitia Penerimaan Mahasiswa Baru Institut Pertanian Bogor (PPMB IPB). Penelitian ini bertujuan untuk mengimplementasikan Algoritma Self Organizing Maps (SOM) dalam clustering data, dan untuk mendapatkan karakteristik data dari hasil clustering. Data yang digunakan adalah rata-rata nilai Biologi, Fisika, Matematika, dan Kimia (cawu 1 sampai cawu 7) dari pelamar tahun 2004 dengan pilihan pertama program sarjana di Fakultas Pertanian, IPB. Data (sebanyak 1899 baris dan 4 field yaitu: Biologi, Fisika, Kimia, dan Matematika) akan menjadi masukan algoritma SOM, dengan parameter awal algoritma SOM: ukuran vektor bobot/ output: 3, 4, 5, 6, 7, 8, 9, 10; learning rate: 0.1, 0.5, 0.9; ukuran lingkungan: 0, dan penurunan learning rate: 0.1, 0.5, 0.9, 1. Penentuan bobot pemenang dalam algoritma SOM menggunakan Jarak Mahalanobis, dengan fungsi topologi adalah Gridtop, dan inisialisasi nilai bobot awal dengan nilai midpoint. Kriteria pemberhentian algoritma SOM dalam penelitian ini adalah iterasi, dengan banyak iterasi: 1, 5, dan 10. Hasil clustering dari SOM divalidasi menggunakan Indeks Davies-Bouldin. Hasil clustering data yang memiliki DBI minimal (53.472) dari penelitian adalah ukuran vektor bobot 9 dengan learning rate 0.9, penurunan learning rate 0.1, dan 5 iterasi. Pelamar dari Sumatera banyak berada pada cluster yang memiliki rataan nilai Biologi, Fisika, Kimia, dan Matematika lebih tinggi (81.12, 77.50, dan 74.16). Berbeda dengan daerah asal Jawa, yang banyak berada di cluster yang memiliki rataan lebih rendah (74.08, 73.09, 71.91, 70.04, 68.59, dan 67.93). Pelamar dari Luar Negeri tergolong pelamar dengan nilai rendah, hanya berada di cluster dengan rataan 68.59. Peluang diterima dari masing-masing kategori SMA bergantung kepada nilai, namun nilai pelamar bukan satu-satunya acuan dalam seleksi penerimaan mahasiswa baru. Kategori SMA juga berkontribusi terhadap diterima/tidaknya pelamar. Penelitian selanjutnya dapat difokuskan untuk optimasi kombinasi nilai-nilai parameter algoritma SOM."en
dc.publisherBogor Agricultural University (IPB)
dc.relation.ispartofseriesVol 5;No 2
dc.titleClustering menggunakan self organizing maps studi kassus : data ppmb ipb) Vol 5, No 2, 2007en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record