Show simple item record

dc.contributor.authorKustiyo, Aziz
dc.contributor.authorTjandrasa, Handayani
dc.date.accessioned2011-05-25T03:32:09Z
dc.date.available2011-05-25T03:32:09Z
dc.date.issued2004
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/45457
dc.description.abstractDiagnosa untuk membedakan penyakit-penyakit yang termasuk ke dalam golongan erythemato-squamous merupakan masalah besar dalam dermatologi. Hal tersebut disebabkan karena penyakit-penyakit tersebut memiliki ciri-ciri erythema dan scaling yang hampir serupa. Di samping itu, pada tahap awal perjalanannya, satu penyakit dapat menunjukkan ciri-ciri penyakit lain dan pada tahap berikutnya baru menunjukkan gejala penyakit yang sebenarnya. Pada penelitian ini, model feedforward neural network dengan training propagasi balik dengan inisialisasi pembobot awal menggunakan regresi logistik biner digunakan untuk melakukan prediksi terhadap jenis penyakit tersebut. Hasil yang diperoleh menunjukkan bahwa model neural network tersebut memiliki ketepatan 91,04% lebih tinggi dibandingkan dengan model regresi logistik nominal (74,50%) dan model neural network dengan inisialisasi pembobot awal secara acak (53,63%).en
dc.publisherBogor Agricultural University (IPB)
dc.relation.ispartofseriesVol 2;No 2
dc.titleModel neural network dengan inisialisasi pembobot awal menggunakan regresi logistik biner untuk memprediksi jenis penyakit eryhematho-squamous Vol 2, No 2, 2004en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record