Show simple item record

dc.contributor.advisorSumertajaya, I Made
dc.contributor.advisorErfiani
dc.contributor.authorPASARIBU, REYND HAMONANGAN
dc.date.accessioned2025-12-19T07:20:11Z
dc.date.available2025-12-19T07:20:11Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/171753
dc.description.abstractHarga beras sebagai komoditas strategis di Indonesia mengalami fluktuasi yang berdampak pada kestabilan ekonomi dan kesejahteraan masyarakat. Adanya fluktuasi, mengakibatkan diperlukannya model peramalan yang mampu menangkap pola kompleks dan nonlinier pada data harga beras. Penelitian ini bertujuan untuk membangun dan mengevaluasi model Temporal Convolutional Network (TCN) multivariat untuk memprediksi harga beras di Provinsi Jawa Barat serta melakukan peramalan untuk 30 periode mendatang. Data yang digunakan berupa deret waktu harga beras harian dari 3 Januari 2022 hingga 30 April 2025, dengan variabel tambahan berupa dummy bulan pada salah satu model. Ada dua model TCN yang dibangun, masing-masing dengan peubah dan tanpa peubah dummy bulan, kemudian dilakukan hyperparameter tuning terhadap kernel size, dilation rate, dropout rate, dan learning rate. Tahap hyperparameter tuning disertai dengan sliding window validation. Hasil menunjukkan bahwa model TCN tanpa peubah dummy bulan memberikan performa terbaik dengan nilai RMSE 245,61 dan MAPE 1,640%, lebih baik dibandingkan model dengan dummy bulan yang memiliki RMSE 353,95 dan MAPE 2,150%. Peramalan 30 periode ke depan menunjukkan tren harga yang menurun secara konstan. Kemampuan TCN dalam mempelajari pola temporal yang kompleks dan hubungan non-linear menjadikan model ini potensial sebagai alat prediksi yang baik dan dapat dipertimbangkan. Kata kunci: dummy bulan, harga beras harian, peramalan, sliding window, TCN
dc.description.abstractAs a strategic commodity in Indonesia, rice prices experience fluctuations that affect economic stability and community welfare. Therefore, a forecasting model capable of capturing complex and nonlinear patterns in rice price data is required. This study aims to develop and evaluate a multivariate Temporal Convolutional Network (TCN) model to predict rice prices in West Java Province and to forecast prices for the next 30 periods. The data used consist of daily rice price time series from January 3, 2022, to April 30, 2025, with an additional monthly dummy variable included in one of the models. Two TCN models were constructed, one with and one without the dummy variable. Hyperparameter tuning was performed on the kernel size, dilation rate, dropout rate, and learning rate. The hyperparameter tuning stage was accompanied by sliding window validation. The results show that the TCN model without the dummy variable achieved the best performance, with an RMSE of 245.61 and a MAPE of 1.640%, outperforming the model with the dummy variable, which had an RMSE of 353.95 and a MAPE of 2.150%. The 30-period-ahead forecast indicates a consistently decreasing trend in rice prices. The TCN’s ability to learn complex temporal patterns and nonlinear relationships makes it a promising predictive tool that can be further considered for modeling rice price dynamics. Keywords: daily rice price, forecast, monthly dummy, sliding window, TCN.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titleAplikasi Temporal Convolutional Network dalam Peramalan Harga Beras Harian di Jawa Barat dengan Pendekatan Multivariate Time Seriesid
dc.title.alternativeApplication of Temporal Convolutional Network on Daily Rice Price Forecasting in West Java Using a Multivariate Time Series Approach
dc.typeSkripsi
dc.subject.keywordtcnid
dc.subject.keywordharga berasid
dc.subject.keywordsliding windowid
dc.subject.keyworddummy bulanid
dc.subject.keywordPeramalanid


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record