| dc.contributor.advisor | Afendi, Farit Mochamad | |
| dc.contributor.advisor | Susetyo, Budi | |
| dc.contributor.author | Ain, Karimatu | |
| dc.date.accessioned | 2025-11-27T23:40:09Z | |
| dc.date.available | 2025-11-27T23:40:09Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/171600 | |
| dc.description.abstract | Indonesia sebagai negara maritim memiliki potensi besar pada sektor
perikanan tangkap. Volume produksinya bervariasi antar provinsi karena perbedaan
sumber daya ikan dan kondisi geografis. Penelitian ini bertujuan mengelompokkan
provinsi di Indonesia berdasarkan pola volume produksi perikanan tangkap
menggunakan pendekatan penggerombolan deret waktu berbasis model. Setiap
provinsi dimodelkan dengan SARIMA, kemudian dihitung jarak antar model
menggunakan Jarak Piccolo. Proses penggerombolan dilakukan dengan metode
hierarki, menghasilkan lima gerombol optimal dengan nilai Silhouette Score
sebesar 0,626. Setiap gerombol direpresentasikan oleh satu prototipe yang
dimodelkan ulang untuk melakukan peramalan. Hasil evaluasi menunjukkan bahwa
pendekatan pemodelan berbasis gerombol mampu mengurangi jumlah model dari
30 menjadi 5, dengan nilai rata-rata MAPE peramalan sebesar 17%. Meskipun
terdapat peningkatan error pada beberapa provinsi, sebagian besar masih memiliki
selisih MAPE < 10% dibanding pemodelan individu. Temuan ini menunjukkan
bahwa pendekatan gerombol tetap mampu memberikan akurasi peramalan yang
layak dengan efisiensi komputasi yang lebih tinggi, serta dapat dimanfaatkan dalam
penyusunan strategi pengelolaan perikanan tangkap lintas wilayah | |
| dc.description.abstract | Indonesia, as a maritime country, has great potential in the capture fisheries
sector. The production volume varies across provinces due to differences in fish
resources and geographical conditions. This study aims to cluster provinces in
Indonesia based on the time series pattern of capture fisheries production volume
using a model-based approach. Each province was modeled using SARIMA, and
Piccolo Distance was used to measure dissimilarity between models. Hierarchical
clustering resulted in five optimal clusters with a Silhouette Score of 0.626. Each
cluster was represented by a prototype, which was re-modeled for forecasting.
Evaluation showed that the clustering-based approach reduced the number of
models from 30 to 5, achieving an average MAPE 17%. Although certain provinces
experienced higher forecasting errors, most showed a MAPE difference of less than
10% compared to individual modeling. These findings indicate that cluster-based
forecasting can still provide acceptable accuracy with significantly reduced
computational burden, making it a useful tool for regional fisheries management
and planning. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Penggerombolan Volume Produksi Perikanan Tangkap di Indonesia Berbasis Model Deret Waktu | id |
| dc.title.alternative | Clustering of Capture Fisheries Production Volume in Indonesia Based on Time Series Model | |
| dc.type | Skripsi | |
| dc.subject.keyword | gerombol hierarki | id |
| dc.subject.keyword | jarak piccolo | id |
| dc.subject.keyword | peramalan | id |
| dc.subject.keyword | SARIMA | id |
| dc.subject.keyword | Perikanan tangkap | id |