| dc.contributor.advisor | Widanarni | |
| dc.contributor.advisor | Yuhana, Munti | |
| dc.contributor.author | Faramudhita, Indira | |
| dc.date.accessioned | 2025-11-24T01:47:11Z | |
| dc.date.available | 2025-11-24T01:47:11Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/171565 | |
| dc.description.abstract | Permasalahan utama dalam budidaya udang vaname sistem intensif adalah tingginya risiko serangan penyakit. AHPND (Acute Hepatopancreatic Necrosis Disease) merupakan salah satu penyakit yang banyak menyerang udang vaname yang disebabkan oleh Vibrio parahaemolyticus pembawa gen penyandi toksin pirA dan pirB, serta menyebabkan kerugian global. Teknologi bioflok dapat diaplikasikan pada budidaya udang vaname sebagai alternatif untuk mengatasi permasalahan tersebut. Teknologi bioflok diketahui dapat meningkatkan pertumbuhan, meningkatkan kualitas air, menurunkan FCR, dan menurunkan risiko serangan penyakit. Upaya optimalisasi teknologi bioflok dapat dilakukan dengan penambahan probiotik ke dalam sistem bioflok untuk meningkatkan keragaman bakteri dan manfaat yang dihasilkan dari aktivitas probiotik. Penggunaan probiotik dalam sistem bioflok telah banyak diteliti, sebagian besar studi masih menggunakan isolat dari lingkungan umum seperti laut terbuka atau tambak konvensional. Isolat ini memiliki kekurangan dimana probiotik tidak dapat melakukan aktivitas dan perannya secara optimal dikarenakan lingkungan yang berbeda. Isolat yang berasal dari sistem bioflok berpotensi lebih adaptif dan efektif untuk diaplikasikan kembali ke dalam sistem bioflok karena telah beradaptasi dengan lingkungan tersebut. Oleh karena itu, penelitian ini dilakukan untuk mengisi kesenjangan tersebut dengan mengevaluasi efek aplikasi probiotik yang berasal dari sistem bioflok terhadap kinerja pertumbuhan, imunitas, dan profil mikrobiota usus udang vaname yang dipelihara dalam sistem bioflok. Hewan uji yang digunakan yaitu udang vaname dengan bobot 0,08 ± 0,01 g yang berasal dari Hatchery PT Suri Tani Pemuka Anyer dan telah bersertifikat specific pathogen free (SPF). Probiotik yang digunakan yaitu Tenacibaculum discolor (kode isolat 1AP), Acinetobacter radioresistens (kode isolat 2AP), dan Vibrio tubiashii (kode isolat 1UP) yang mempunyai keunggulan aktivitas enzim pencernaan (amilase, protease, dan lipase) dan kemampuan denitrifikasi pada A. radioresistens. Probiotik berasal dari koleksi Laboratorium Kesehatan Organisme Akuatik, Departemen Budidaya Perairan, Institut Pertanian Bogor yang diisolasi dari sistem bioflok. Penelitian ini dirancang menggunakan metode eksperimental dengan rancangan acak lengkap (RAL) yang terdiri dari empat perlakuan dan masing-masing tiga ulangan. K: tanpa penambahan probiotik, 1AP: penambahan probiotik Tenacibaculum discolor, 2AP: penambahan probiotik Acinetobacter radioresistens, 1UP: penambahan probiotik Vibrio tubiashii. Masing-masing probiotik diberikan dengan kepadatan 105 CFU mL-1 dalam wadah pemeliharaan. Bioflok yang digunakan untuk pemeliharaan udang vaname berasal dari starter flok yang dicampurkan air laut dengan perbandingan 2:3. Starter flok didapatkan dari hasil kultur bioflok dalam wadah budidaya udang vaname yang diberikan molase sebagai sumber C organik dengan estimasi rasio C:N 10. Jumlah karbon yang ditambahkan menggunakan skema kalkulasi kebutuhan karbon berdasarkan De Schryver et al. (2008). Probiotik dikultur sesuai kebutuhan. Sebanyak satu ose bakteri probiotik dari media sea water complete (SWC) agar dikultur pada 10 mL media SWC cair di tabung reaksi. Kultur bakteri probiotik di-shaker selama 24 jam pada suhu ruang (28–29?). Setelah di-shaker, kultur probiotik dicuci dengan PBS, ditambahkan PBS kembali lalu dihomogenkan. Kultur yang dihasilkan diencerkan sehingga penambahan kultur probiotik terhitung sebanyak 105 CFU mL-1 dalam wadah pemeliharaan. Udang vaname pada stadia post larva (PL 8) diaklimatisasi selama 2 minggu sebelum dimasukkan ke dalam wadah perlakuan. Pemeliharaan selama perlakuan dilakukan dalam akuarium berukuran 60 × 40 × 30 cm³ dengan volume air 30 L dan padat tebar 1 ekor L-1. Selama 30 hari pemeliharaan, udang diberi perlakuan sesuai rancangan percobaan dan diberi pakan menggunakan metode restricted feeding sebanyak empat kali sehari (pukul 06.00, 10.00, 14.00, dan 18.00 WIB) dengan feeding rate (FR) bertahap dari 40% hingga 8%. Molase dan probiotik ditambahkan setiap hari. Molase ditambahkan dua jam setelah pemberian pakan pagi. Dilanjut pemberian probiotik ke dalam media pemeliharaan dengan kepadatan akhir sekitar 105 CFU mL-1. Kualitas air selama pemeliharaan, yaitu: suhu 26–27?, dissolved oxygen 4,0–5,8 mg L-1, pH 7,5–8,3, salinitas 29–32 g L-1, total ammonia nitrogen 0,29–0,70 mg L-1, nitrit 0,14–0,41 mg L-1, nitrat 0,213–2,633 mg L-1, alkalinitas 102–148 mg L-1, dan total suspended solids 157–513 mg L-1. Parameter yang diamati dalam penelitian ini meliputi survival rate (SR), bobot akhir, specific growth rate (SGR), feed conversion ratio (FCR); aktivitas enzim amilase, aktivitas enzim protease, aktivitas enzim lipase; histologi usus; total haemocyte count (THC), aktivitas fagositik (AF), aktivitas phenoloxidase (PO), aktivitas respiratory burst (RB); kelimpahan dan keragaman mikrobiota di saluran pencernaan. Pemberian probiotik pada sistem bioflok udang vaname terbukti mampu meningkatkan kinerja pertumbuhan udang, dibuktikan dengan tingginya nilai bobot, SGR, dan FCR yang rendah dengan 2AP merupakan perlakuan terbaik. Perlakuan probiotik meningkatkan aktivitas enzim amilase, protease, dan lipase, dengan perlakuan terbaik pada 2AP. Perlakuan probiotik meningkatkan morfologi usus udang dengan hasil terbaik pada perlakuan 2AP. Imunitas udang yang dilihat dari nilai Total Haemocyte Count (THC), aktivitas fagositik (AF), aktivitas phenoloxidase (PO), dan aktivitas respiratory burst (RB), menunjukkan peningkatan pada perlakuan probiotik, dengan perlakuan terbaik pada perlakuan 2AP. Pemberian probiotik 2AP mampu meningkatkan kekayaan spesies mikrobiota usus udang. Berbanding terbalik dengan 1AP dan 1UP yang menurunkan kekayaan spesies mikrobiota usus udang. Perlakuan 2AP memiliki jumlah OTU unik terbanyak. Selain itu, perlakuan probiotik mampu menurunkan kelimpahan V. parahaemolyticus, dengan 2AP merupakan perlakuan terbaik. Perlakuan probiotik signifikan menurunkan kelimpahan Vibrio brasiliensis dan Gordonia bronchialis yang keduanya merupakan patogen pada udang. Perlakuan 1AP dan 1UP meningkatkan kelimpahan Agarivorans gilvus yang merupakan probiotik potensial. Perlakuan 2AP meningkatkan kelimpahan Winogradskyella poriferorum dan Maribacter cobaltidurans yang keduanya merupakan probiotik potensial. Penelitian ini menunjukkan bahwa penambahan bakteri probiotik T. discolor, A. radioresistens, dan V. tubiashii pada udang vaname dalam sistem bioflok dapat meningkatkan kinerja pertumbuhan, imunitas, dan keragaman mikrobiota usus udang, dengan hasil terbaik pada perlakuan 2AP (A. radioresistens). | |
| dc.description.abstract | The main problem in intensive whiteleg shrimp farming is the high risk of disease. AHPND (Acute Hepatopancreatic Necrosis Disease) is one of the diseases that frequently affects whiteleg shrimp, caused by Vibrio parahaemolyticus, which carries genes encoding the pirA and pirB toxins, resulting in significant global losses. Biofloc technology can be applied to whiteleg shrimp farming to overcome this problem. Biofloc technology is also known to increase growth, improve water quality, reduce FCR, and reduce the risk of disease attacks. Efforts to optimize biofloc technology can be enhanced by adding probiotics to the biofloc system, thereby increasing bacterial diversity and the benefits resulting from probiotic activity. The use of probiotics in biofloc systems has been widely studied, most studies still use isolates from common environments such as the open ocean or conventional ponds. These isolates have the disadvantage that probiotics cannot perform their activities and roles optimally due to the different environment. Isolates originating from biofloc systems have the potential to be more adaptive and effective for reintroduction into biofloc systems because they have adapted to that environment. Therefore, this study was conducted to fill this gap by evaluating the effects of probiotics derived from a biofloc system on the growth performance, immune response, and gut microbiota profile of whiteleg shrimp reared in a biofloc system. The test animals used were whiteleg shrimp weighing 0,08 ± 0,01 g from the Suri Tani Pemuka Anyer Hatchery and certified specific pathogen free (SPF). The probiotics used were Tenacibaculum discolor (isolate code 1AP), Acinetobacter radioresistens (isolate code 2AP), and Vibrio tubiashii (isolate code 1UP), which have advantageous digestive enzyme activity (amylase, protease, and lipase) and denitrification ability in A. radioresistens. The probiotics are a collection of the Aquatic Organism Health Laboratory, Department of Aquaculture, IPB University, and were isolated from the biofloc system. This study employed an experimental design with a completely randomized design (CRD), consisting of four treatments and three replications. K: without probiotic addition, 1AP: addition of Tenacibaculum discolor probiotic, 2AP: addition of Acinetobacter radioresistens probiotic, 1UP: addition of Vibrio tubiashii probiotic. Each probiotic was given at a density of 105 CFU mL-1 in a rearing container. The biofloc used for whiteleg shrimp rearing was obtained from a floc starter mixed with seawater in a ratio of 2:3. The floc starter was derived from the results of biofloc culture in whiteleg shrimp cultivation containers, which received molasses as a source of organic carbon with an estimated C:N ratio of 10. Probiotics were cultured as needed. A total of one loop of probiotic bacteria from seawater complete (SWC) agar media was cultured in 10 mL of liquid SWC media in a test tube. The probiotic bacterial culture was shaken for 24 hours at room temperature (28–29?). After being shaken, the probiotic culture was washed with PBS, PBS was added again, and then homogenized. The resulting culture was diluted so that the addition of the probiotic culture was calculated as 105 CFU mL-1 in the rearing container. Whiteleg shrimp at the post-larval stage (PL 8) were acclimatized for 2 weeks before being placed in the treatment container. Reared during the treatment were carried out in the aquaria measuring 60 × 40 × 30 cm³ with a water volume of 30 L and a stocking density of 1 shrimp L-1. For 30 days of rearing, the shrimp were given treatments according to the experimental design and fed using the restricted feeding method four times a day (at 06.00, 10.00, 14.00, and 18.00 WIB) with a gradual feeding rate (FR) from 40% to 8%. Molasses was added daily, two hours after morning feeding. Probiotics were applied daily to the rearing medium with a final density of approximately 105 CFU mL-1. Water quality during rearing were: temperature 26–27?, dissolved oxygen 4,0–5,8 mg L-1, pH 7,5–8,3, salinity 29–32 g L-1, total ammonia nitrogen 0,29–0,70 mg L-1, nitrite 0,14–0,41 mg L-1, nitrate 0,213–2,633 mg L-1, alkalinity 102–148 mg L-1, and total suspended solids 157–513 mg L-1. The parameters observed in this study included survival rate (SR), final weight, specific growth rate (SGR), feed conversion ratio (FCR); amylase enzyme activity, protease enzyme activity, lipase enzyme activity; intestinal histology; total hemocytic count (THC), phagocytic activity (AF), phenoloxidase activity (PO), respiratory burst activity (RB); abundance and diversity of microbiota in the digestive tract. The provision of probiotics in the biofloc system of whiteleg shrimp has been proven to be able to increase shrimp growth performance, as evidenced by the high final weight, SGR values, and the low FCR values, with 2AP being the best treatment. The probiotic treatment increased amylase, protease, and lipase enzyme activities, with the best treatment being 2AP. The probiotic treatment improved the morphology of the shrimp intestine, with the best treatment being 2AP. The shrimp immune response, as seen from the total haemocyte count (THC), phagocytic activity (AF), phenoloxidase activity (PO), and respiratory burst activity (RB) values, showed an increase in the probiotic treatment, with the best treatment being the 2AP treatment. Administration of 2AP probiotics was able to increase the species richness of the shrimp intestinal microbiota. In contrast to 1AP and 1UP, which actually decreased the species richness of the shrimp intestinal microbiota. The 2AP treatment had the highest number of unique OTUs. In addition, probiotic treatment can reduce the abundance of V. parahaemolyticus, with 2AP being the best treatment. Probiotic treatment significantly reduced the abundance of Vibrio brasiliensis and Gordonia bronchialis, both pathogens in shrimp. The 1AP and 1UP treatments increased the abundance of Agarivorans gilvus, a potential probiotic. The 2AP treatment increased the abundance of Winogradskyella poriferorum and Maribacter cobaltidurans, both potential probiotics. This study shows that the addition of probiotic bacteria T. discolor, A. radioresistens, and V. tubiashii to whiteleg shrimp in a biofloc system can improve growth performance, immune response, and gut microbiota diversity, with the best results in the 2AP treatment (A. radioresistens). | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Evaluasi Komparatif Probiotik yang Berasal dari Bioflok untuk Pertumbuhan, Imunitas, dan Modulasi Mikrobiota Usus Penaeus vannamei | id |
| dc.title.alternative | Comparative Evaluation of Biofloc-derived Probiotics for the Growth, Immunity, and Modulation of Gut Microbiota in Penaeus vannamei | |
| dc.type | Tesis | |
| dc.subject.keyword | bioflok | id |
| dc.subject.keyword | imunitas | id |
| dc.subject.keyword | keragaman mikrobiota | id |
| dc.subject.keyword | pertumbuhan | id |
| dc.subject.keyword | probiotik | id |