Time Series Clustering dengan Mahalanobis Distance-Based Dynamic Time Warping pada Peramalan Tingkat Gerombol Harga Bawang Merah Provinsi di Indonesia
Date
2025Author
Kereh, Pingkan Febbe Fiorela
Fitrianto, Anwar
Wigena, Aji Hamim
Metadata
Show full item recordAbstract
Bawang merah menjadi salah satu komoditas hortikultura strategis yang
memiliki tingkat permintaan yang cukup tinggi di Indonesia dan produksinya
dinilai sangat lambat karena sifatnya yang musiman. Hal tersebut berdampak pada
terjadinya fluktuasi harga yang menyebabkan harga bawang merah menjadi tidak
stabil. Penelitian ini bertujuan menggerombolkan provinsi berdasarkan pola
pergerakan harga bawang merah yang serupa melalui pendekatan time series
clustering dengan jarak Mahalanobis distance-based dynamic time warping
(MDDTW) dan melakukan peramalan tingkat gerombol menggunakan metode
seasonal autoregressive integrated moving average (SARIMA). Data yang
digunakan dalam penelitian ini adalah harga bawang merah mingguan dari 34
provinsi di Indonesia yang bersumber dari Portal Satu Data Kementerian
Perdagangan Republik Indonesia. Analisis data dilakukan dengan bantuan software
Rstudio. Hasil penelitian menunjukkan pautan rataan sebagai pautan terbaik yang
menggerombolkan data harga bawang merah dari 34 provinsi ke dalam tiga
gerombol. Pemodelan deret waktu dilakukan pada data prototype setiap gerombol.
Dari keseluruhan model tentatif setiap prototype, dipilih dua kandidat model terbaik
berdasarkan nilai AIC terkecil. Seluruh model tersebut dievaluasi performanya
dengan menerapkan skema expanding window dan diperoleh nilai rataan MAPE
dari setiap model. Hasil peramalan setiap gerombol menunjukkan akurasi yang baik,
dengan nilai rataan MAPE di bawah 20%. Shallot are one of the strategic horticultural commodities that have a fairly
high demand in Indonesia, and their production is considered very slow due to their
seasonal nature. This has an impact on price fluctuations, causing shallot prices to
become unstable. This study aims to cluster provinces based on similar shallot
prices movement patterns using a time series clustering approach with Mahalanobis
distance-based dynamic time warping (MDDTW) and to forecast cluster level using
the seasonal autoregressive integrated moving average (SARIMA) method. The
data used in this study are weekly shallot prices from 34 provinces in Indonesia
sourced from the One Data Portal The Ministry of Trade Republic of Indonesia.
Data analysis was performed using Rstudio software. The results show that the
average linkage is the best linkage that clusters shallot price data from 34 provinces
into three clusters. Time series modeling was performed on the prototype data of
each cluster. From all tentative models of each prototype, the two best model
candidates were selected based on the smallest AIC value. All models were
evaluated for performance by applying an expanding window scheme, and the
average MAPE value of each model was obtained. The forecasting results for each
cluster showed good accuracy, with an average MAPE value below 20%.
