View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Geophysics and Meteorology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Geophysics and Meteorology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Downscaling Curah Hujan Pulau Jawa Berbasis Pix2Pix

      Thumbnail
      View/Open
      Cover (610.5Kb)
      Fulltext (2.182Mb)
      Lampiran (568.2Kb)
      Date
      2025
      Author
      Jannah, Salamah Zukhrufa
      Faqih, Akhmad
      Muttaqien, Furqon Hensan
      Metadata
      Show full item record
      Abstract
      Curah hujan menjadi unsur iklim dengam keragaman dan fluktuasi yang tinggi di Indonesia. Pulau Jawa memiliki topografi yang kompleks sehingga curah hujan antar wilayahnya sangat bervariasi. Peningkatan resolusi dan akurasi data curah hujan dapat dilakukan melalui metode statistical downscaling. Metode ini didasarkan pada pendekatan berbasis data dan memiliki keunggulan dalam efisiensi komputasi, akan tetapi lemah dalam sisi akurasi data. Deep learning dengan metode Pix2Pix dapat menjadi solusi karena memiliki kemampuan yang baik dalam menangani bentuk data yang beragam seperti data iklim. Evaluasi dan analisis dilakukan pada hasil downscaling Pix2Pix dengan data RegCM non-hydrostatic yang mempertimbangkan aspek topografi. Nilai model terbaik diperoleh pada epoch ke-20 dengan RMSE 9,66 mm, FSS 0,66, SSIM 0,96, dan TSS 0,72. Model menghasilkan data curah hujan yang cukup baik untuk intensitas ringan hingga sedang namun belum optimal dalam hujan ekstrim, terutama di dataran tinggi baik dalam skala harian maupun tahunan. Data hasil model dapat menggambarkan variasi curah hujan musiman secara spasial bahkan saat terjadinya fenomena iklim ENSO. Berdasarkan hasil tersebut, metode Pix2Pix dapat menjadi alternatif pendekatan downscaling curah hujan yang lebih cepat dan akurat untuk mendukung analisis variabilitas serta dampak curah hujan di berbagai bidang.
       
      Rainfall is a climate variable with high variations and fluctuations in Indonesia, with Java island has a complex topography that contribute to rainfall disparities across regions. Improved resolution and accuracy of rainfall data can be done through statistical downscaling method. This method is based on a data-driven approach and has advantages in computational efficiency. Deep learning with Pix2Pix method can be a potential solution due to its robust performance in diverse datasets, such as climate data. Evaluation and analysis are based on Pix2Pix downscaling results with non-hydrostatic RegCM results that consider topographic aspects. The best model values were achieved at the 20th epoch, yielding an RMSE of 9,66 mm, an FSS of 0,66, an SSIM of 0,96, and an a TSS of 0,72. The model can generate accurate rainfall data for light to moderate rainfall but not optimal for extreme rainfall, particularly within highlands areas, on both daily and annual timescales. The model output can capture seasonal spatial variation in rainfall, including during ENSO climate events. Based on these results, the model can serve as an alternative approach for more efficient and accurate rainfall downscaling, thereby supporting improved assessments of rainfall impacts across various sectors.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/171455
      Collections
      • UT - Geophysics and Meteorology [1717]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository