Pengembangan Produk Kayu Rekayasa Skala Industri melalui Modifikasi Non-Biocide Ramah Lingkungan
Date
2025Author
Amanah, Sinta
Darmawan, I Wayan
Rahayu, Istie Sekartining
Mubarok, Mahdi
Metadata
Show full item recordAbstract
Permintaan kayu komersial di Indonesia meningkat pesat seiring
pertumbuhan industri konstruksi dan furnitur, sementara pasokan kayu rotasi
panjang dari hutan alam terus menurun akibat deforestasi dan konversi lahan.
Kondisi ini menimbulkan kesenjangan pasokan bahan baku kayu yang signifikan.
Sebagai alternatif, pemerintah mengembangkan hutan tanaman cepat tumbuh yang
menghasilkan kayu rotasi pendek, seperti karet (Hevea brasiliensis), mahoni
(Swietenia spp), akasia (Acacia mangium), dan jati (Tectona grandis). Namun
demikian, jenis kayu ini memiliki keterbatasan dari sisi keawetan, kekuatan
mekanis, dan stabilitas dimensi karena tingginya proporsi kayu juvenil.
Kelemahan kayu rotasi pendek menjadikan nilai jualnya rendah dan kurang
kompetitif di pasar. Untuk mengatasinya, diperlukan teknologi peningkatan mutu
kayu yang ramah lingkungan, ekonomis, dan dapat diterapkan pada skala industri.
Modifikasi panas telah lama digunakan untuk meningkatkan stabilitas dimensi,
tetapi sering menurunkan kekuatan mekanis kayu. Modifikasi kimia konvensional
dengan biosida juga memiliki kelemahan berupa penggunaan bahan beracun yang
tidak ramah lingkungan. Oleh sebab itu, diperlukan pendekatan modifikasi non
biosida ramah lingkungan yang dapat memperbaiki sifat kayu tanpa dampak
ekologis negatif. Penelitian ini menerapkan metode modifikasi non-biosida
berbasis glycerol–citric acid (GCA) 40% yang dikombinasikan dengan perlakuan
panas. Sementara itu, perkembangan produk kayu rekayasa seperti finger joint
laminated board (FJLB) telah membuka peluang peningkatan nilai tambah kayu
kualitas rendah, dengan luaran utama berupa pengembangan bevel siding board
untuk aplikasi eksterior. Tujuan penelitian ini adalah 1) Mengoptimalkan metode
modifikasi panas dan kimia menggunakan GCA dalam skala industri. 2)
Menganalisis dan mengkarakterisasi kayu rotasi pendek serta produk FJLB hasil
modifikasi non-biosida pada skala industri.
Tahapan penelitian diawali dengan pengukuran log kayu untuk menentukan
dimensi dan kualitas awal bahan baku. Selanjutnya dilakukan pemotongan sampel
sesuai ukuran uji dan proses pengeringan awal (kiln drying) untuk menurunkan
kadar air kayu. Setelah itu, kayu yang telah kering diolah melalui impregnasi larutan
GCA 40% dalam kiln industri berkapasitas 5 m³, proses impregnasi vakum sebesar -65cm/Hg selama 15 menit, dan tekanan sebesar 8-10 bar selama 6-8 jam hingga
jenuh, dilanjutkan dengan pemanasan pada suhu 150?°C selama 20 jam guna
memperkuat ikatan kimia di dalam sel kayu. Kayu termodifikasi kemudian diproses
menjadi produk rekayasa. Papan disambung (finger joint lumber) menggunakan
teknik finger joint dan dilaminasi (edge gluing lumber) menjadi FJLB dengan
perekat berbasis air jenis isosianat, sehingga menghasilkan panel berukuran industri
yang siap diuji lebih lanjut untuk hasil akhir produk FJLB dengan pelapisan
permukaan untuk penggunaan eksterior.
Pengujian dilakukan terhadap sifat fisis, stabilitas dimensi, mekanis, dan
biologis (ketahanan terhadap perusak kayu). Hasil menunjukkan bahwa metode
modifikasi GCA menurunkan kadar air rata-rata sebesar 81,75% (nilai akhir 1,36
3,17%) dan meningkatkan kerapatan rata-rata sebesar 27,85% (nilai akhir 713,53
kg/m³). Stabilitas dimensi membaik dengan nilai ASE (anti-swelling efficiency)
rata-rata 53,26% dan penyerapan air menurun hingga 28,55%. Nilai leachability
rendah (=3,41%) membuktikan keberhasilan fiksasi bahan kimia ke dalam dinding
sel kayu. Sifat mekanis kayu solid termodifikasi memiliki MOE (modulus of
elasticity) rata-rata 10.671,15 kgf/cm² dan MOR (modulus of rupture) 767,78
kgf/cm² (kelas kuat II–III). Untuk produk FJLB, MOE mencapai 83.841,12 kgf/cm²
dan MOR 210,83 kgf/cm². Meskipun terjadi penurunan MOR akibat sambungan
finger joint, kekuatan produk masih memenuhi standar industri. Uji lapang
(graveyard test) menunjukkan peningkatan signifikan dalam keawetan dari 4
menjadi 10, dengan kehilangan massa rata-rata hanya 9,73% pada kayu
termodifikasi solid, dan skor 3,5 dari skala 4. Analisis FTIR (fourier transform
infrared) mendeteksi pita serapan baru pada 1720 cm?¹ (C=O ester), yang
menunjukkan terbentuknya ikatan ester antara gliserol, asam sitrat, dan komponen
dinding sel kayu. Hal ini membuktikan keberhasilan modifikasi kimia yang
mendukung peningkatan stabilitas dimensi serta ketahanan biologis terhadap
organisme perusak kayu. Berdasarkan analisis skor, mahoni solid termodifikasi
memperoleh skor tertinggi (20), diikuti akasia solid (19), serta jati solid dan jati
FJLB (18).
Penelitian ini membuktikan bahwa kombinasi impregnasi GCA dan
perlakuan panas pada skala industri efektif meningkatkan kualitas kayu rotasi
pendek, baik dalam bentuk solid maupun komposit FJLB. Temuan ini menegaskan
potensi penerapan teknologi modifikasi non-biosida ramah lingkungan sebagai
strategi berkelanjutan untuk memperkuat daya saing industri kayu nasional
sekaligus mendukung konservasi sumber daya hutan. Selain itu, hasil penelitian
juga menunjukkan bahwa FJLB termodifikasi sangat layak direkomendasikan
untuk diproduksi secara luas, dengan catatan diperlukan kajian lebih mendalam
untuk menemukan jenis perekat yang paling sesuai serta pengaturan mesin jointing
yang optimal, sehingga kualitas rekat dan performa produk dapat ditingkatkan
secara maksimal. The demand for commercial timber in Indonesia has increased rapidly along
with the growth of the construction and furniture industries, while the supply of
long-rotation timber from natural forests has continued to decline due to
deforestation and land conversion. This situation has created a significant gap in the
availability of raw wood materials. As an alternative, the government has developed
fast-growing plantation forests that produce short-rotation timber, such as rubber
(Hevea brasiliensis), mahogany (Swietenia spp.), acacia (Acacia mangium), and
teak (Tectona grandis). However, these species have limitations in durability,
mechanical strength, and dimensional stability due to the high proportion of
juvenile wood.
The weaknesses of short-rotation timber reduce its market value and
competitiveness. To overcome this, environmentally friendly, economical, and
industrially applicable wood modification technologies are required. Heat
modification has long been used to improve dimensional stability but often reduces
mechanical strength. Conventional chemical modification using biocides also has
drawbacks, particularly the use of toxic substances that are harmful to the
environment. Therefore, an environmentally friendly non-biocidal modification
approach is needed to improve wood properties without causing negative ecological
impacts. This study employed a non-biocidal modification method based on 40%
glycerol–citric acid (GCA) combined with heat treatment. At the same time, the
development of engineered wood products such as finger-joint laminated board
(FJLB) has created opportunities to enhance the added value of low-quality timber,
with the primary output being the development of bevel siding boards for exterior
applications. The objectives of this research were: (1) to optimize thermal and
chemical modification methods using GCA at an industrial scale; and (2) to analyze
and characterize short-rotation timber and FJLB products resulting from non
biocidal modification at an industrial scale.
The research began with log measurements to determine the dimensions and
initial quality of the raw material. The samples were then cut according to testing
standards and pre-dried (kiln drying) to reduce moisture content. Subsequently, the
dried timber was processed through impregnation with a 40% GCA solution in an
industrial kiln with a 5 m³ capacity, followed by vacuum impregnation at –65
cm/Hg for 15 minutes and pressure treatment at 8–10 bar for 6–8 hours until
saturation. This was followed by heating at 150 °C for 20 hours to strengthen
chemical bonding within the wood cell walls. The modified timber was then
processed into engineered products. Finger-jointed lumber was produced and
further laminated (edge-glued lumber) into FJLB using water-based isocyanate
adhesive, yielding industrial-sized panels that were subsequently tested, with
surface finishing applied for exterior use.
Testing was conducted on physical properties, dimensional stability,
mechanical properties, and biological resistance (decay resistance). The results
demonstrated that GCA modification reduced the average moisture content by
81.75% (final values 1.36–3.17%) and increased the average density by 27.85%
(final value 713.53 kg/m³). Dimensional stability improved, with an average anti
swelling efficiency (ASE) of 53.26%, while water absorption decreased by 28.55%.
Low leachability (=3.41%) confirmed the successful fixation of chemicals within
the wood cell walls. The mechanical properties of modified solid wood showed an
average modulus of elasticity (MOE) of 10,671.15 kgf/cm² and modulus of rupture
(MOR) of 767.78 kgf/cm² (strength class II–III). For FJLB products, MOE reached
83,841.12 kgf/cm² and MOR 210.83 kgf/cm². Although MOR decreased due to
finger-jointing, the product’s strength still met industrial standards. Field testing
(graveyard test) showed a significant increase in durability from 4 to 10, with an
average mass loss of only 9.73% in modified solid wood, and a rating of 3.5 out of
4. Fourier-transform infrared (FTIR) analysis detected a new absorption band at
1720 cm?¹ (C=O ester), indicating the formation of ester bonds between glycerol,
citric acid, and wood cell wall components. This confirmed the success of the
chemical modification in enhancing dimensional stability and biological resistance
against wood-degrading organisms. Based on scoring analysis, modified solid
mahogany achieved the highest score (20), followed by solid acacia (19), as well as
solid teak and teak FJLB (18).
This study demonstrated that the combination of GCA impregnation and heat
treatment at an industrial scale effectively enhanced the quality of short-rotation
timber, both in solid form and as FJLB composites. These findings highlight the
potential of environmentally friendly non-biocidal modification technologies as a
sustainable strategy to strengthen the competitiveness of the national wood industry
while supporting forest resource conservation. Moreover, the results indicate that
modified FJLB is highly feasible for large-scale production, although further
research is required to determine the most suitable adhesive type and optimize
jointing machinery settings to maximize bonding quality and overall product
performance.
Collections
- MT - Forestry [1505]
