View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penerapan Algoritma K-Means Dan K-Medoids Pada Peubah Recency, Frequency, Monetary (Rfm) Untuk Segmentasi Pelanggan Di Swalayan XYZ

      Thumbnail
      View/Open
      Cover (643.3Kb)
      Fulltext (2.166Mb)
      Lampiran (251.8Kb)
      Date
      2025
      Author
      Firdaus, Muhammad Dhiyaaul
      Sartono, Bagus
      Erfiani
      Metadata
      Show full item record
      Abstract
      Persaingan yang semakin meningkat dalam industri ritel telah mendorong perusahaan ritel untuk memahami lebih baik preferensi dan perilaku pelanggan mereka. Penentuan segmentasi pelanggan yang akurat sangat penting dalam merancang strategi pemasaran yang efektif untuk meningkatkan kepuasan pelanggan dan memperoleh keuntungan yang lebih besar. Penelitian ini mengevaluasi penggunaan metode pengelompokan K-Means dan K-Medoids pada peubah RFM (Recency, Frequency, Monetary) untuk menentukan segmentasi pelanggan di swalayan XYZ. Penelitian ini menggunakan data transaksi dari pelanggan selama periode waktu tertentu untuk mengekstrak nilai RFM dari setiap pelanggan. Metode K-Means dan K-Medoids kemudian diterapkan untuk mengelompokkan pelanggan ke dalam segmen berdasarkan nilai RFM mereka. Tujuan dari penelitian ini adalah untuk membandingkan efektivitas kedua metode pengelompokan dalam menentukan segmentasi pelanggan. Hasil penelitian ini diharapkan dapat membantu Swalayan XYZ dalam memahami preferensi pelanggan dan memberikan rekomendasi strategi pemasaran. Hasil penggerombolan terbaik ditentukan berdasarkan parameter optimal yang dievaluasi menggunakan Davies-Bouldin Index, indeks Silhouette, dan analisis eksploratif. Metode analisis gerombol terbaik yang diperoleh adalah metode K-Means yang menghasilkan 4 gerombol. Kata kunci: analisis RFM, k-means, k-medoids, manajemen hubungan pelanggan, segmentasi pelanggan
       
      The increasing competition in the retail industry has driven retail companies to better understand their customers’ preferences and behaviors. Accurate customer segmentation is essential in designing effective marketing strategies to enhance customer satisfaction and generate greater profits. This study evaluates the use of K-Means and K-Medoids clustering methods on RFM (Recency, Frequency, Monetary) variables to determine customer segmentation at XYZ Supermarket. The research uses transaction data from customers over a specific period to extract the RFM values for each customer. The K-Means and K-Medoids methods are then applied to group customers into segments based on their RFM values. The purpose of this study is to compare the effectiveness of the two clustering methods in determining customer segmentation. The results of this research are expected to help XYZ Supermarket understand customer preferences and provide marketing strategy recommendations. The best clustering results were determined based on optimal parameters evaluated using the Davies-Bouldin Index, the Silhouette Index, and exploratory analysis. The best clustering method obtained was the K-Means method which produced four clusters. Keywords: customer relationship management, customer segmentation, k-means, k-medoids, RFM analysis
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170998
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository