| dc.contributor.advisor | Sitanggang, Imas Sukaesih | |
| dc.contributor.advisor | Agmalaro, Muhammad Asyhar | |
| dc.contributor.author | Maha, Tioninta Mandaika | |
| dc.date.accessioned | 2025-08-29T09:33:39Z | |
| dc.date.available | 2025-08-29T09:33:39Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/170975 | |
| dc.description.abstract | Jakarta menghadapi tantangan polusi udara serius, khususnya partikulat
halus (PM2.5) yang berdampak buruk bagi kesehatan seperti asma, penyakit
jantung, dan kematian dini. Sumber utama PM2.5 meliputi emisi kendaraan,
industri, serta kondisi meteorologi. Menurut IQAir, rata-rata PM2.5 Jakarta pada
2023 mencapai 43,8 µg/m³, jauh melebihi ambang batas WHO sebesar 5 µg/m³.
Penelitian ini bertujuan membangun modul backend berbasis Django Rest
Framework untuk akuisisi otomatis data PM2.5 dari citra satelit Himawari dan
stasiun cuaca di Jakarta. Sistem ini dilengkapi manajemen data spasial untuk
mendukung analisis dan penyajian informasi kualitas udara. Sistem berhasil
mengelola akuisisi data secara terjadwal dan menyimpannya dalam basis data
spasial terstruktur yang terdiri dari sembilan entitas utama. Keterlambatan data
satelit akibat format harian menunjukkan perlunya sumber dengan resolusi waktu
lebih tinggi. Selain itu, ketidaktersediaan data stasiun pada periode tertentu
menunjukkan pentingnya integrasi sumber alternatif atau interpolasi spasial.
Pengujian nonfungsional menunjukkan 185 kegagalan permintaan saat stress
testing, dengan waktu respons rata-rata 11231–17223 ms. Pada load testing, waktu
respon tetap stabil hingga 80 pengguna (67,94 ms), namun meningkat menjadi
1493,86 ms pada 100 pengguna. Sistem ini diharapkan menjadi fondasi aplikasi
monitoring udara untuk mendukung kebijakan mitigasi polusi di Jakarta. | |
| dc.description.abstract | Jakarta faces serious air pollution challenges, particularly fine particulate
matter (PM2.5) which has adverse health effects such as asthma, heart disease, and
premature death. The main sources of PM2.5 include vehicle emissions, industry,
and meteorological conditions. According to IQAir, Jakarta's average PM2.5 level
in 2023 reached 43.8 µg/m³, far exceeding the WHO threshold of 5 µg/m³. This
study aims to develop a Django Rest Framework-based backend module for
automatic acquisition of PM2.5 data from Himawari satellite imagery and weather
stations in Jakarta. The system is equipped with spatial data management to
support analysis and presentation of air quality information. The system
successfully manages scheduled data acquisition and stores it in a structured
spatial database consisting of nine main entities. The delay in satellite data due to
daily formatting highlights the need for sources with higher temporal resolution.
Additionally, the unavailability of station data during certain periods underscores
the importance of integrating alternative sources or spatial interpolation. Non
functional testing revealed 185 request failures during stress testing, with an
average response time of 11231–17223 ms. During load testing, response times
remained stable up to 80 users (67,94 ms), but increased to 1493,86 ms at 100
users. This system is expected to serve as the foundation for an air monitoring
application to support pollution mitigation policies in Jakarta. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Pengembangan Modul Backend untuk Manajemen Data PM2.5 Berbasis Citra Satelit dan Pengamatan Stasiun Cuaca | id |
| dc.title.alternative | | |
| dc.type | Skripsi | |
| dc.subject.keyword | Aerosol Optical Depth (AOD) | id |
| dc.subject.keyword | Backend | id |
| dc.subject.keyword | Himawari | id |
| dc.subject.keyword | Data spasial | id |
| dc.subject.keyword | PM 2.5 | id |