View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Software Engineering Technology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pengembangan Sistem Peringkat dan Ulasan Katalog dengan Penyaringan Komentar Toksik dan Visualisasi Klasifikasi Sentimen Otomatis pada Website Pemesanan PT AGFI

      Thumbnail
      View/Open
      Cover (2.277Mb)
      Fulltext (7.788Mb)
      Lampiran (2.981Mb)
      Date
      2025
      Author
      Mahira, Nisrina Ishmah
      Priandana, Karlisa
      Metadata
      Show full item record
      Abstract
      Peringkat dan ulasan pelanggan daring berperan penting dalam membentuk persepsi publik terhadap produk kuliner, namun komentar toksik dapat merusak reputasi dan pengalaman pengguna. Penelitian ini mengembangkan sistem peringkat dan ulasan pada website pemesanan PT Ayam Goreng Fatmawati (AGFI) dengan integrasi penyaringan komentar toksik dan visualisasi klasifikasi sentimen otomatis. Sistem dikembangkan melalui metode prototipe. Penyaringan berbasis aturan diterapkan untuk mendeteksi konten toksik, sementara klasifikasi sentimen memanfaatkan pendekatan NLP menggunakan NLTK, TF-IDF, dan algoritma Logistic Regression. Komentar dikategorikan ke dalam tiga jenis: positif, negatif konstruktif, dan negatif non-konstruktif (toksik). Penyaringan komentar toksik diterapkan pada halaman detail katalog sisi pelanggan, sedangkan visualisasi klasifikasi sentimen tersedia di dashboard penilaian sisi admin untuk mendukung pengambilan keputusan berbasis data dan menjaga kualitas interaksi digital.
       
      Online customer ratings and online customer reviews (OCRs) are crucial in shaping public perception of culinary products, but toxic comments can damage reputation and user experience. This research develops a rating and review system for the PT Ayam Goreng Fatmawati (AGFI) ordering website, integrating toxic comment filtering and automated sentiment classification visualization. The system was developed through the prototype method. Rule-based filtering was applied to detect toxic content, while sentiment classification utilized an NLP approach using NLTK, TF-IDF, and the Logistic Regression algorithm. Comments were categorized into three types: positive, constructive negative, and non-constructive negative (toxic). Toxic comment filtering was applied on the customer-side catalog detail page, while sentiment classification visualization was provided on the admin-side review dashboard page to supports data driven decisions making and maintain the quality of digital interactions.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170955
      Collections
      • UT - Software Engineering Technology [182]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository