Formulasi Eksplisit Determinan, Invers, dan Norma Matriks Left Circulant dengan Entri Barisan Aritmetika
Date
2025Author
ROHMAH, IRMA OKTAFIANI
Mas'oed, Teduh Wulandari
Guritman, Sugi
Metadata
Show full item recordAbstract
Penelitian ini membahas bentuk eksplisit dari determinan, invers, dan norma pada matriks left circulant dengan entri barisan aritmetika, mengonstruksi algoritmenya, dan menunjukkan efisiensi waktu komputasinya. Dalam penelitian ini, determinan dan invers dihitung menggunakan operasi baris dan kolom dasar dengan mengubah matriksnya menjadi matriks segitiga atas dan diagonal yang ekuivalen. Hasilnya ditulis hanya dalam satu teorema yang memungkinkan perhitungan secara simultan antara determinan dan invers. Norma matriks dihitung berdasarkan jenis norma yang digunakan, yaitu norma maksimum jumlah baris, norma maksimum jumlah kolom, dan norma Frobenius. Algoritme untuk masing-masing formulasi disusun dan diimplementasikan menggunakan perangkat lunak Mathematica. Hasil komputasi semua algoritme tersebut menunjukkan efisiensi komputasi tinggi dengan waktu eksekusi jauh lebih cepat dibandingkan fungsi bawaan Mathematica, terutama untuk matriks berukuran besar. This research examines the explicit formulation of the determinant, inverse, and norm of left circulant matrices with arithmetic sequence entries, construct their algorithms, and demonstrate their computational time efficiency. In this study, the determinant and inverse are formulated using elementary row and column operations by transforming the matrix into equivalent upper triangular and diagonal forms. The results are consolidated into a single theorem, enabling simultaneous computation of both the determinant and inverse. The matrix norm is calculated based on the the type of norm used, namely the maximum row sum norm, maximum column sum norm, and Frobenius norm approaches. Algorithms for each formulation are developed and implemented using Mathematica software. The computational results show high efficiency with execution times significantly faster than Mathematica’s built-in functions, especially for large sized matrices.
Collections
- UT - Mathematics [89]
