View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Vocational School
      • UT - Computer Engineering Tehcnology
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Tingkat Kematangan Pisang Cavendish Berbasis Warna Kulit dengan Sensor TCS34725

      Thumbnail
      View/Open
      Cover (1.432Mb)
      Fulltext (1.892Mb)
      Lampiran (612.8Kb)
      Date
      2025
      Author
      Maulidan, Muhammad Hafizh
      Wahjuni, Sri
      Metadata
      Show full item record
      Abstract
      Pisang Cavendish merupakan salah satu komoditas tropis bernilai ekonomi tinggi. Namun, proses penilaian kematangan buah ini masih dilakukan secara manual dan subjektif, sehingga rentan terhadap kesalahan dan inkonsistensi. Penelitian ini merancang sistem klasifikasi otomatis menggunakan sensor warna TCS34725 dan metode logika fuzzy Mamdani untuk mengelompokkan pisang ke dalam tiga tingkat kematangan: Mentah, Mengkal, dan Matang. Proses klasifikasi melibatkan tahapan fuzzifikasi nilai RGB, inferensi berbasis 9 aturan fuzzy dominan, dan defuzzifikasi menggunakan metode nilai representatif. Sistem diuji menggunakan 15 buah pisang baru, masing-masing dengan pembacaan lima kali di tiga titik (pangkal, tengah, ujung). Hasil klasifikasi ditampilkan melalui LCD dan dikirim ke dashboard IoT secara real-time. Evaluasi menunjukkan sistem memiliki akurasi sebesar 73,33% dengan 11 data benar dari 15 sampel. Sistem ini terbukti cukup efektif dan berpotensi digunakan sebagai alat bantu klasifikasi kematangan buah secara otomatis dan non-destruktif.
       
      Cavendish bananas are a High-value tropical commodity. However, ripeness assessment is still manually and subjectively performed, leading to inconsistency and errors. This study developed an automatic classification system using the TCS34725 color sensor and Mamdani fuzzy logic to categorize ripeness levels: Unripe, Midripe, and Ripe. The classification process involves RGB fuzzification, inference using nine dominant fuzzy rules, and defuzzification with representative values. The system was tested on 15 new bananas, each measuRed five times at three different points (base, middle, tip). Results were displayed on an LCD and sent to an IoT dashboard in real-time. Evaluation showed an accuracy of 73.33%, with 11 out of 15 samples correctly classified. This system is effective and has potential for automatic, non-destructive ripeness classification.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170882
      Collections
      • UT - Computer Engineering Tehcnology [172]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository