View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Agriculture
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Agriculture
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Prediksi Genomik Hibrida Jagung Berdasarkan Marka SCoT dan Analisis Grup Heterotik Tetuanya untuk Efisiensi Uji Progeni

      Thumbnail
      View/Open
      Cover (2.620Mb)
      Fulltext (4.666Mb)
      Lampiran (2.552Mb)
      Date
      2025
      Author
      Bayhaki, Maulana Farhan
      Suwarno, Willy Bayuardi
      Kusumo, Yudiwanti Wahyu Endro
      Marwiyah, Siti
      Metadata
      Show full item record
      Abstract
      Jagung merupakan komoditas strategis bagi ketahanan pangan, industri, dan perekonomian. Peningkatan permintaan di tengah keterbatasan lahan menuntut pemuliaan efisien untuk menghasilkan varietas hibrida berdaya hasil tinggi. Keberhasilan perakitan hibrida bergantung pada tetua dengan keragaman genetik luas dan pengelompokan heterotik yang tepat, karena metode konvensional pembentukan grup heterotik dan evaluasi daya gabung memerlukan sumber daya besar. Analisis berbasis marka molekuler dan model prediksi menjadi alternatif yang lebih cepat dan akurat. Penelitian ini mencakup dua percobaan. Percobaan pertama mengidentifikasi keragaman genetik dan membentuk grup heterotik sepuluh galur inbrida jagung menggunakan 36 primer SCoT. Hasil PCR dan elektroforesis dianalisis secara biner untuk menghitung polimorfisme dan nilai informasi polimorfisme, kemudian dilakukan klasterisasi berbasis matriks ketidakmiripan Gower. Percobaan kedua mengevaluasi keragaan agronomis, daya gabung umum (DGU) dan khusus (DGK), serta melakukan seleksi simultan hibrida dengan indeks MGIDI. Subpercobaan terakhir memanfaatkan data SCoT untuk memprediksi performa hibrida yang belum diuji menggunakan model GBLUP dengan validasi silang. Hasil menunjukkan marka SCoT efektif mengungkap keragaman genetik sedang hingga tinggi (rata-rata polimorfisme 45,29%; rata-rata PIC 0,29), membentuk tiga grup heterotik, dan mengonfirmasi bahwa persilangan antargrup menghasilkan produktivitas serta ketidakmiripan genetik lebih tinggi. Beberapa galur seperti B4B, L27, dan galur MR14, memiliki posisi kluster ambigu yang mengindikasikan percampuran genetik. Evaluasi daya gabung menunjukkan galur P42, L27, dan L53 memiliki DGU tinggi, sedangkan kombinasi seperti B4B×L26, MR14×P42, dan H1×L26 menunjukkan DGK tinggi. Sepuluh hibrida terbaik hasil seleksi simultan menggunakan MGIDI memiliki potensi peningkatan karakter hasil hingga 30% dan perbaikan aspek tongkol hingga 41%. Nilai heritabilitas arti luas yang tinggi mengindikasikan kontribusi genetik dominan terhadap keragaan karakter. Model GBLUP berbasis SCoT mampu memprediksi efek DGU dan DGK melalui matriks hubungan genetik. Model B yang mengintegrasikan keduanya, memberikan kinerja terbaik dengan korelasi prediksi–aktual 0,548 dan galat rendah, menunjukkan peningkatan akurasi prediksi performa hibrida untested cross. Integrasi analisis SCoT, evaluasi keragaan, dan prediksi genomik melalui model B memberikan kerangka yang efisien untuk mempercepat pemuliaan jagung hibrida, menghemat sumber daya, dan membuka peluang eksplorasi kombinasi genetik unik guna menghasilkan varietas unggul yang adaptif dan berdaya hasil tinggi.
       
      Maize is a strategic commodity for food security, industry, and the economy. Increasing demand under land constraints necessitates efficient breeding strategies to develop high-yielding hybrid varieties. The success of hybrid development depends on parental lines with broad genetic diversity and accurate heterotic group classification. As conventional methods for heterotic grouping and combining ability assessment require substantial resources, molecular marker-based analysis and predictive modeling offer faster and more accurate alternatives. This study comprised two complementary experiments. The first experiment aimed to characterize genetic diversity and classify ten maize inbred lines into heterotic groups using 36 Start Codon Targeted (SCoT) primers. PCR and electrophoresis results were scored in a binary format to estimate polymorphism and polymorphism information content (PIC), followed by cluster analysis based on the Gower dissimilarity matrix. The second experiment evaluated agronomic performance, general combining ability (GCA), and specific combining ability (SCA), and conducted simultaneous hybrid selection using the Multi-trait Genotype-Ideotype Distance Index (MGIDI). In the final sub-experiment, SCoT data were utilized to predict the performance of untested hybrids using the Genomic Best Linear Unbiased Prediction (GBLUP) model with cross-validation. The results showed that SCoT markers effectively revealed moderate-to-high genetic diversity (mean polymorphism 45.29%; mean PIC 0.29), forming three heterotic groups and confirming that inter-group crosses yielded higher productivity and genetic dissimilarity than intra-group crosses. Several lines, such as B4B, L27, and MR14, exhibited ambiguous cluster positions, indicating possible unique allelic compositions. GCA analysis identified P42, L27, and L53 as high-GCA parents for key yield and morphological traits, while crosses such as B4B×L26, MR14×P42, and H1×L26 exhibited high SCA, indicating strong non-additive effects. MGIDI-based selection identified ten top-performing hybrids with yield potential increases of up to 30% and ear trait improvements of up to 41%. High broad-sense heritability values indicated a dominant genetic contribution to trait performance. The SCoT-based GBLUP model successfully predicted GCA and SCA effects through the genomic relationship matrix. Model B, which incorporated both GCA and SCA, achieved the best performance with a prediction actual correlation of 0.548 and low prediction error, demonstrating improved accuracy in predicting untested hybrid performance. The integration of SCoT marker analysis, phenotypic evaluation, and genomic prediction through Model B provides an efficient framework to accelerate maize hybrid breeding, optimize resource use, and enable the exploration of unique genetic combinations for the development of high-yielding, adaptive varieties.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170774
      Collections
      • MT - Agriculture [3993]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository