View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Sentimen Masyarakat terhadap Transportasi Transjakarta Menggunakan Maximum Entropy, Naive Bayes dan Support Vector Machine

      Thumbnail
      View/Open
      Cover (420.4Kb)
      Fulltext (1.132Mb)
      Lampiran (455.6Kb)
      Date
      2025
      Author
      Abdurrahman, Imaduddin
      Hardhienata, Medria Kusuma Dewi
      Adrianto, Hari Agung
      Metadata
      Show full item record
      Abstract
      Moda transportasi Transjakarta mengalami peningkatan penggunaan secara signifikan pada awal tahun 2023. Peningkatan ini menyebabkan opini yang beredar mengenai Transjakarta di masyarakat bermunculan. Opini masyarakat terhadap moda transportasi Transjakarta dapat diteliti dengan analisis sentimen. Penelitian ini bertujuan untuk melakukan analisis sentimen opini masyarakat terhadap Transportasi Transjakarta menggunakan pendekatan machine learning. Data yang digunakan adalah tweet media sosial X dengan kata kunci “Transjakarta” pada rentang 1 Januari 2023 - 14 Juni 2023 sebanyak 238.734 tweet. Tahapan penelitian terdiri dari pengambilan data, praproses data, pembobotan kata, resampling data, pembagian data, klasifikasi menggunakan algoritma machine learning serta evaluasi kinerja algoritma. Dalam penelitian ini akan diuji tiga algoritma machine learning, yaitu algoritma maximum entropy, naive bayes dan support vector machine (SVM) untuk menganalisis sentimen masyarakat terhadap moda transportasi TransJakarta. Sentimen dibagi menjadi positif, netral dan negatif yang sudah diberi label menggunakan mesin dan diperiksa secara manual. Hasil simulasi menunjukkan bahwa model terbaik diperoleh dengan metode support vector machine dengan precision sebesar 72%, recall sebesar 71%, F1-score sebesar 71% dan akurasi sebesar 71%.
       
      Transjakarta's transportation mode experienced a significant increase in usage in early 2023. This increase caused opinions circulating about Transjakarta in the community to emerge. Public opinion on Transjakarta's mode of transportation can be examined by sentiment analysis. This study aims to analyze public opinion sentiment towards Transjakarta Transportation using a machine learning approach. The data used was 238,734 tweets from social media X with the keyword "Transjakarta" in the range of January 1, 2023 - June 14, 2023. The research stages consist of data collection, data preprocessing, word weighting, data resampling, data sharing, classification using machine learning algorithms and algorithm performance evaluation. In this study, three machine learning algorithms will be tested, namely maximum entropy, naive bayes and support vector machine (SVM) algorithms to analyze public sentiment towards TransJakarta transportation modes. Sentiment is divided into positive, neutral and negative which have been labeled using a machine and checked manually. The simulation results showed that the best model was obtained by the support vector machine method with a precision of 72%, recall of 71%, F1-score of 71% and accuracy of 71%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170731
      Collections
      • UT - Computer Science [88]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository