View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Statistics and Data Sciences
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Penggerombolan Indeks LQ45 Berdasarkan Pola Harga Menggunakan Jarak Dynamic Time Warping dan Global Alignment Kernel

      Thumbnail
      View/Open
      Cover (650.6Kb)
      Fulltext (1.359Mb)
      Lampiran (378.2Kb)
      Date
      2025
      Author
      AZZAHRA, RANI YASMIN
      Masjkur, Mohammad
      Firdawanti, Aulia Rizki
      Metadata
      Show full item record
      Abstract
      Krisis perang dagang antara Amerika Serikat dan Cina pada awal 2025 menyebabkan tekanan terhadap pasar saham, termasuk indeks LQ45 di Indonesia. Penelitian ini bertujuan untuk menggerombolkan saham-saham dalam indeks LQ45 berdasarkan pola pergerakan harga selama periode krisis menggunakan pendekatan shape-based time series clustering. Proses penggerombolan dilakukan dengan metode hierarki menggunakan tiga jenis pautan (rataan, tunggal, dan lengkap) dan dua ukuran ketidakmiripan, yaitu Dynamic Time Warping (DTW) dan Global Alignment Kernel (GAK). Evaluasi model dilakukan menggunakan metrik internal berupa Silhouette, Calinski-Harabasz Index (CHI), dan Dunn Index. Hasil menunjukkan bahwa kombinasi pautan rataan dan jarak GAK menghasilkan performa terbaik dengan empat gerombol optimum. Model ini memperoleh nilai Silhouette sebesar 0,447, CHI sebesar 42,46, dan Dunn Index sebesar 1,914, yang mengindikasikan kualitas penggerombolan yang baik. Tiap gerombol menunjukkan pola harga dan komposisi sektoral yang berbeda. Salah satu gerombol yang didominasi sektor Financials, Energy, dan Infrastructures menunjukkan pemulihan harga signifikan, sedangkan gerombol lainnya cenderung menunjukkan pemulihan yang lemah atau bahkan tidak terpengaruh penurunan tajam saat trading halt.
       
      The trade war crisis between the United States and China in early 2025 exerted pressure on the stock market, including the LQ45 index in Indonesia. This study aims to cluster stocks in the LQ45 index based on price movement patterns during the crisis period using a shape-based time series clustering approach. The clustering process was conducted using hierarchical methods with three linkage types (average, single, and complete) and two dissimilarity measures, namely Dynamic Time Warping (DTW) and Global Alignment Kernel (GAK). Model evaluation was carried out using internal metrics including Silhouette, Calinski-Harabasz Index (CHI), and Dunn Index. The results show that the combination of average linkage and GAK distance produced the best performance with four optimal clusters. This model achieved a Silhouette Score of 0.447, a CHI value of 42.46, and a Dunn Index of 1.914, indicating good clustering quality. Each cluster demonstrated distinct price patterns and sectoral compositions. One cluster, dominated by the Financials, Energy, and Infrastructures sectors, showed significant price recovery, while the other clusters tended to have low price recovery or even were unaffected by the sharp declines during the trading halt periods.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170620
      Collections
      • UT - Statistics and Data Sciences [82]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository