| dc.contributor.advisor | Sianturi, Paian | |
| dc.contributor.advisor | Kusnanto, Ali | |
| dc.contributor.author | SALMA, VIVI | |
| dc.date.accessioned | 2025-08-27T07:35:11Z | |
| dc.date.available | 2025-08-27T07:35:11Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/170614 | |
| dc.description.abstract | Penyakit Campak merupakan penyakit yang sangat mudah menular dan disebabkan oleh virus morbillivirus. Penyakit Campak dapat menyebar dengan cepat melalui udara atau kontak langsung melalui cairan dari hidung, mulut dan juga tenggorokan yang dihasilkan dari batuk atau bersin dari orang yang terinfeksi. Pada penelitian ini telah dikaji model penyebaran penyakit Campak dengan merekonstruksi model, menentukan titik tetap, menganalisis kestabilannya, dan menentukan bilangan reproduksi dasar menggunakan matriks next generation G. Selain itu, dilakukan juga analisis sensitivitas dan simulasi numerik untuk melihat dinamika penyebaran penyakit Campak. Hasil analisis menunjukkan bahwa model mempunyai dua titik tetap yaitu titik tetap bebas penyakit dan titik tetap endemik. Titik tetap bebas penyakit bersifat stabil asimtotik lokal jika bilangan reproduksi dasar kurang dari 1. Berdasarkan hasil simulasi numerik, upaya pengendalian penyebaran penyakit Campak dapat dilakukan dengan mengurangi laju kontak transmisi penyebaran penyakit, meningkatkan laju perawatan terhadap individu yang terpapar dan meningkatkan laju vaksinasi terhadap individu yang rentan. | |
| dc.description.abstract | Measles is a highly contagious disease caused by a morbillivirus. Measles can spread rapidly through the air or direct contact through fluids from the nose, mouth and throat resulting from coughing or sneezing of an infected person. In this study, the measles disease spread model was studied by reconstructing the model, determining the fixed point, analyzing its stability, and determining the basic reproduction number using the next generation matrix G. In addition, sensitivity analysis and numerical simulations were also carried out to see the dynamics of the measles disease spread. The analysis shows that the model has two fixed points, namely the disease-free fixed point and the endemic fixed point. The disease-free fixed point is locally asymptotically stable if the basic reproduction number is less than 1. Based on the results of numerical simulations, efforts to control the spread of measles can be done by reducing the contact rate of measles transmission, increasing the rate of treatment of exposed individuals and increasing the rate of vaccination of susceptible individuals. | |
| dc.description.sponsorship | | |
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Analisis Kestabilan Model Matematika pada Penyebaran Penyakit Campak yang Melibatkan Vaksinasi dan Perawatan | id |
| dc.title.alternative | | |
| dc.type | Skripsi | |
| dc.subject.keyword | analisis kestabilan | id |
| dc.subject.keyword | bilangan reproduksi dasar | id |
| dc.subject.keyword | campak | id |
| dc.subject.keyword | SEIR | id |