View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Forestry
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Forestry
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Validasi Distribusi Radial Akar Pohon Agathis (Agathis loranthifolia Salisb.) yang Diuji Menggunakan Alat Nondestruktif Root Detector

      Thumbnail
      View/Open
      Cover (906.4Kb)
      Fulltext (2.921Mb)
      Lampiran (573.1Kb)
      Date
      2025
      Author
      Taufiqurrachman, Mochammad
      Karlinasari, Lina
      Syafitri, Utami Dyah
      Metadata
      Show full item record
      Abstract
      Distribusi akar memiliki peran penting dalam penyerapan air dan unsur hara serta menjaga stabilitas pohon. Ketidakseimbangan distribusi akar dapat menurunkan kemampuan pohon dalam menahan beban eksternal. Letaknya yang tersembunyi dalam tanah menyulitkan proses evaluasi. Root detector merupakan teknologi nondestruktif yang dapat digunakan untuk mendeteksi distribusi radial akar berdasarkan kecepatan gelombang bunyi. Penelitian ini bertujuan untuk mengidentifikasi hasil deteksi distribusi akar oleh root detector dan menilai akurasinya. Pohon yang diuji adalah enam Agathis loranthifolia Salisb., tiga pohon memiliki kondisi akar tampak, dan tiga lainnya tidak tampak. Uji sifat fisik tanah (bobot isi, porositas, dan kadar air) dilakukan untuk mengetahui kondisi tempat tumbuh. Identifikasi sifat fisis akar (kadar air dan kerapatan) juga dilakukan untuk mengetahui karakteristik internal akar. Deteksi distribusi radial akar dilakukan menggunakan Fakopp® root detector pada jarak 80 cm dari pusat batang berdasarkan dua metode pendugaan akar berdasarkan nilai kecepatan gelombang bunyi. Metode pertama yaitu pendugaan berdasarkan root detector software dengan menggunakan nilai kecepatan gelombang bunyi (V) minimum dan maksimum. Metode kedua berdasarkan metode klasifikasi Rahman et al. 2023 dan Taufiqurrachman et al. 2023 yaitu nilai V > 400 m.s?¹, > V rata-rata pohon, dan merupakan nilai puncak. Distribusi akar aktual divalidasi melalui penggalian tanah hingga kedalaman 30 cm dan radius 100 cm dari batang. Visualisasi 3D pasca penggalian dilakukan menggunakan KIRI Engine. Metode klasifikasi biner dan chi-square digunakan untuk mengevaluasi akurasi deteksi alat root detector dalam mendeteksi akar dan bukan akar. Hasil deteksi distribusi akar oleh root detector menunjukkan jumlah deteksi akar yang lebih rendah dibandingkan kondisi sebenarnya. Faktor pertama penyebab rendahnya jumlah deteksi yaitu nilai V pada akar pohon lain dan tanah terkadang tinggi sehingga dapat terdeteksi sebagai akar. Faktor kedua yaitu pengaruh keberadaan akar (pohon contoh atau pohon lain) di dekat titik deteksi yang berpotensi menjadi media rambat gelombang sehingga menghasilkan nilai V yang tinggi. Faktor ketiga adalah keterbatasan alat dalam mendeteksi akar yang berdekatan. Root detector mampu mendeteksi akar pohonnya sendiri termasuk diameter kecil (<2 cm), sedang (2-5 cm), dan besar (=5 cm). Diameter akar memiliki korelasi yang paling tinggi (0,47) terhadap kecepatan gelombang bunyi diikuti dengan sudut kemiringan akar (0,32) dan kedalaman akar (0,25). Alat root detector dapat menduga distribusi radial akar pohon agathis dengan akurasi lebih dari 80%. Akurasi deteksi akar pada pohon akar tidak tampak lebih tinggi dibandingkan pohon akar tampak pada kedua metode yang digunakan.
       
      Root distribution plays a crucial role in water and nutrient uptake as well as maintaining tree stability. An imbalance in root distribution can reduce a tree’s ability to withstand external loads. However, its hidden location underground makes evaluation challenging. The root detector is a non-destructive technology that can be used to detect radial root distribution based on sound wave velocity. This study aims to identify root distribution patterns detected by the root detector and evaluate its accuracy. The tested trees were six Agathis loranthifolia Salisb., of which three had veiled root conditions and the other three had appeared root conditions. Soil physical properties (bulk density, porosity, and moisture content) were examined to determine site conditions. Root physical properties (moisture content and density) were also assessed to determine the internal characteristics of roots. Radial root distribution detection was carried out using a Fakopp® root detector at a distance of 80 cm from the trunk center, applying two root estimation methods based on sound wave velocity (V). The first method was based on the root detector software, using minimum and maximum V values. The second method followed the classification approach of Rahman et al. (2023) and Taufiqurrachman et al. (2023), which considers roots as having V > 400 m·s?¹, V > the tree’s mean velocity, and representing peak values. Actual root distribution was validated through excavation to a depth of 30 cm and a radius of 100 cm from the trunk. Post-excavation 3D visualization was carried out using the KIRI Engine. Binary classification and chi-square methods were used to evaluate the accuracy of the root detector in distinguishing between root and non-root points. The root detector results showed a lower number of detected roots compared to actual conditions. The first factor contributing to this underestimation was that V values from other trees’ roots and soil were sometimes high enough to be detected as roots. The second factor was the influence of nearby roots (either from the sample tree or neighboring trees), which could act as wave transmission media and produce high V values. The third factor was the device’s limitation in detecting closely spaced roots. The root detector was able to detect roots of its own tree, including small (<2 cm), medium (2–5 cm), and large (=5 cm) diameters. Root diameter showed the highest correlation (0.47) with sound wave velocity, followed by root inclination angle (0.32) and root depth (0.25). The root detector was able to estimate the radial root distribution of Agathis trees with an accuracy exceeding 80%. Root detection accuracy in trees with veiled roots was higher than in trees with appeared roots for both methods applied.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/170395
      Collections
      • MT - Forestry [1505]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository